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ABSTRACT
We present a method for automatically generating descriptions

of biological events encoded in the KB BIO 101 Knowledge base.
In this knowledge base, events are concepts (e.g., RELEASE)
related by role relations (e.g., AGENT, PATIENT, PATH, INSTRUMENT)
to the concepts denoting their arguments (e.g., GATED-CHANNEL,
VASCULAR-TISSUE, IRON). We propose a probabilistic, unsupervised
method which extracts possible verbalisation frames from large
biology specific domain corpora and uses probabilities both to select
an appropriate frame given an event description and to determine
the mapping between syntactic and semantic arguments. That is,
probabilities are used to determine which event argument fills which
syntactic function (e.g., subject, object) in the produced verbalisation.
We evaluate our approach on a corpus of 336 event descriptions,
provide a qualitative and quantitative analysis of the results obtained
and discuss possible directions for further work.

1 INTRODUCTION
An ontology specifies a conceptualisation of a given domain by
listing the objects, concepts and other entities that are assumed
to exist in that domain and the relationships that hold among
them (Genesereth and Nilsson, 1987). To constrain the possible
interpretations for the defined terms, class definitions are also
often included. These can be provided either as logical axioms or
as natural language text. In general though, both styles (logical
axioms and natural language descriptions) are equally important.
Axioms are required to support reasoning while natural language
descriptions are needed to help development (by improving inter-
annotator agreement) and to facilitate usage by non experts. Indeed,
in bio-ontologies, the provision of a textual definition for each entity
present in the ontology has become one of the OBO Foundry criteria
(Smith et al., 2007).

Authoring both logical and textual definitions and keeping them
consistent is time consuming however. To address this shortcoming,
we therefore propose to explore ways of automatically generating
natural language text from OWL data. As a first step towards this
goal, we focus on the verbalisation of single events using data from
the KB BIO 101 Knowledge base.

KB BIO 101 (Chaudhri et al., 2013) was developed by the Halo
Project to represent a significant fraction of an introductory college-
level biology textbook (Reece et al., 2011) and was used as part of
a prototype of an intelligent digital textbook called Inquire designed
to help students to learn better. The knowledge base (KB BIO 101)
underlying this digital textbook contains descriptions of biological
events and of their interrelation. To facilitate the description to
the user of these events, we propose a method for automatically
producing a natural language verbalisation of the event descriptions
contained in the KB BIO 101 Knowledge base.

The paper is structured as follows. In Section 2, we present
the method used to verbalise KB events and their participants. In

Section 3, we situate our approach with respect to previous work,
evaluate our approach on a corpus of 336 event descriptions, provide
a qualitative and quantitative analysis of the results obtained and
discuss possible directions for further work. Section 4 concludes.

2 METHODOLOGY
As mentioned above, our goal is to automatically generate
natural language verbalisations of the event descriptions contained
in KB BIO 101. To ensure portability to other domains, we
develop an unsupervised method in which the natural language
information required to produce the verbalisations is extracted from
automatically constructed domain specfic corpora. The development
of our generation system involves the following main steps.

Corpus Building. We first gather a large domain specific corpus
from the web i.e., digitised texts which bear on biology.

Lexicon Creation. For each event and entity in the input KB, we
build a lexicon associating event and entities with synonyms and
morphological variants.

Frame extraction. For each event in the input KB, syntactic
frames are extracted from the corpus using the lexicon as a bridge
between KBGEN+ event/entity names and their natural language
lexicalisations. Frequency counts are gathered about the number of
times a given frame occurs, the event and roles it represents and the
syntactic dependencies binding argument(s) in the frame.

Probabilistic Frame Selection. Given an input event KB
representation, the set of frames associated by Frame extractions
with mentions of that event is retrieved and ranked by decreasing
order of probability. The most probable frame given the input event
KB representation is chosen for generation.

Probabilistic Argument Linking. Given an input event KB
representation and a syntactic frame, all possible mappings between
KB and syntactic arguments are considered and the most probable
mapping given the input event KB representation is selected.

Slot Filling The frame slots are filled with verbalisations of the
arguments and of the events thus producing a verbalisation of the
input KB event and its arguments.

We start by giving a brief overview of the content and the structure
of KB BIO 101(Section 2.1). We the describe the steps involved in
building our generation system.

2.1 KB Bio 101
The foundational component of the KB is the Component Library
(CLIB), an upper ontology which is linguistically motivated and
designed to support the representation of knowledge for automated
reasoning (Gunning et al., 2010). CLIB adopts four simple top level
distinctions: (1) entities (things that are); (2) events (things that
happen); (3) relations (associations between things); and (4) roles
(ways in which entities participate in events). Using this ontological
inventory, KB BIO 101 encodes events, the entities that participate in
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Events Entities Roles
# Types # Tokens # Types # Tokens # Types # Tokens

KBGEN+ 126 336 271 929 14 929
Table 1. KBGEN+ Statistics

events and roles that the entities play in an event. Events and entities
are concepts while roles are Event-to-Entity relations.

Figure 1 shows an example representation for a blocking event
between a plasma membrane and hydrophobic compounds. Block
is a subclass of the event class. Plasma-Menbrane and Hydrophobic-
Compound are subclasses of the entity class. The Plasma-Menbrane
and the Hydrophobic-Compound concepts stand respectively in an
instrument and in an object role relation with the Block event.

SubClassOf ( : Hydrophobic−Compound : E n t i t y )
SubClassOf ( : Plasma−Membrane : E n t i t y )
SubClassOf ( : Block

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : Plasma−Membrane )
ObjectSomeValuesFrom ( : o b j e c t : Hydrophobic−Compound ) ) )

Fig. 1. Example Event Representation in KB BIO 101

KB BIO 101 is organized into a set of concept maps, where each
concept map corresponds to a biological entity or process. It was
encoded by biology teachers and contains around 5,000 concept
maps. KB BIO 101 is available for download for academic purposes
in various formats including OWL1 .

To test and evaluate our approach, we focus on the subpart of
KB BIO 101 isolated for the KBGEN surface realisation shared task
by (Banik et al., 2013). In this dataset, content units were semi-
automatically selected from KB BIO 101 in such a way that:
• the set of relations in each content unit forms a connected graph

• each content unit can be verbalised by a single, possibly
complex sentence which is grammatical and meaningful

• the set of content units contain as many different relations
and concepts of different semantic types (events, entities,
properties, etc) as possible.

That is, the KB content extracted for KBGEN isolate event
descriptions which can be verbalised by a single, coherent sentence.
To evaluate the ability of our generator to generate event description,
we further process this dataset to produce all KB fragments which
represent a single event. The statistics for the resulting dataset
(dubbed KBGEN+) are shown in Table 2. More detailed statistics
about the input data we test generation on is given in Table1.

2.2 Corpus Collection
We begin by gathering sentences from several of the publicly
available Biomedical domain corpus2 This includes the BioCause

1 http://www.ai.sri.com/halo/halobook2010/
exported-kb/biokb.html
2 Ideally, since KB BIO 101 was developed based on a textbook, we
would use this textbook as a corpus. Unfortunately, the textbook, previously
licensed from Pearson, is no longer available.

Items Count
Total nb of Triples set 336
Avg. nb of relations in a triple set 2.93
Total nb of distinct events 126
Total nb of distinct entities 271
Total nb of distinct relations 14

Table 2. Input Statistics

(Mihil et al., 2013), BioDef 3, BioInfer (Pyysalo et al., 2007),
Grec (Thompson et al., 2009), Genia4 and PubMedCentral (PMC)5

corpus. We also include sentences provided by the KB BIO 101
challenge. This custom collection of sentences will be the corpus on
which our unsupervised learning approach will build upon. Table 3
lists the count of sentences available in each corpus and in total.

#Sentences
BioCause 3,187
BioDef 8,426
BioInfer 1,100
Genia 37,092,000
Grec 2,035
PMC 7,018,743
BioKB101 3,393
Total 44,128,884

Table 3. Corpus Size

2.3 Lexicon Creation
To enable the description in natural language of KB content,
knowledge about how relations and concepts are realised in natural
language is required. One way to capture such knowledge is by
specifying a lexicon mapping concept and relation names to natural
language words or phrases. Ideally this lexicon should map each
concept/relation to the set of lexical and phrasal variants lexicalising
that concept/relation and to their various forms (e.g., both singular
and plural for a noun).

To identify corpus sentences which might contain verbalisation
of KB events, we first build such a lexicon making use of existing
resources namely, the lexicon provided by the KBGEN challenge and

3 Obtained by parsing the 〈Supplement〉 section of html pages crawled from
http://www.biology-online.org/dictionary/
4 http://www.nactem.ac.uk/genia/
5 ftp://ftp.ncbi.nlm.nih.gov/pub/pmc
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synsets automatically extracted from the Mesh vocabulary6 and the
BioDef lexicon7.

The KBGEN lexicon is composed of entries that provide inflected
forms and nominalizations for the event variables and singular and
plural noun forms for the entity variables, such as :

S e c r e t i o n , s e c r e t e s , s e c r e t e , s e c r e t e d , s e c r e t i o n
Earthworm , earthworm , ea r thworms

On the other hand, the lexical entries obtained from Mesh and
BioDef are usually synsets, such as :

Block , p r e v e n t , s t o p
Neoplasms , Neoplasm , Tumors , N e o p l a s i a , Cancer

In Table 4, we list the count of lexical entries available in each
source and those that co-occur in our input. Table 5 shows the
proportion of KBGEN+ event and entity classes for which a lexical
entry was found as well as the max, min and average number of
lexical items associated with event and entities.

KBGen Mesh BioDef
#Lexical Entries 469 26795 14934
#Intersecting Entries 397 65 99

Table 4. Lexical Entries

KBGen Mesh BioDef ALL Min/MAx/Avg
Event 100% 10.31% 25.39% 100% 1/21/5.68
Entity 100% 19.18% 24.72% 100% 3/18/3.88
All 100% 16.37% 24.93% 100% 1/21/4.40

Table 5. Proportion of Event and Entity Names for which a Lexical Entry
was found. Min, max and average number of lexical items associated with

event and entities

2.4 Frame Extraction
Events in KBGEN+ take an arbitrary number of participants ranging
from 1 to 8. Knowing the lexicalisation of an event name is therefore
not sufficient. For each event lexicalisation, information about
syntactic subcategorisation and syntactic/semantic linking is also
required. Consider for instance, the following event representation:

SubClassOf ( : PC / EBP b e t a : E n t i t y )
SubClassOf ( : TNF−a c t i v a t i o n : E n t i t y )
SubClassOf ( : Myeloid−C e l l s : E n t i t y )
SubClassOf ( : Block

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : C / EBP b e t a )
ObjectSomeValuesFrom ( : o b j e c t : TNF−a c t i v a t i o n ) ) )
ObjectSomeValuesFrom ( : ba se : Myeloid−C e l l s ) ) )

Knowing that a possible lexicalisation of a Block event is the
finite verb form blocked is not sufficient to produce an appropriate
verbalisation of the KB event e.g.,

(1)
6 http://www.nlm.nih.gov/mesh/filelist.html
7 Obtained by parsing the entries in 〈Synonyms〉 section of html pages
crawled from http://www.biology-online.org/dictionary/

C/EBP beta blocked TNF activation in myeloid cells.

In addition, one must know that this verb (i) takes a subject,
an object and an optional prepositional argument introduced by
a locative preposition (subcategorisation information) and (ii) that
the INSTRUMENT role is realised by the subject slot, the OBJECT

role by the DOBJ slot and the BASE role by the PREP-LOC slot
(syntax/semantics linking information). That is, we need to know,
for each KB event e and its associated roles (i.e., event-to-entity
relations), first, what are the syntactic arguments of each possible
lexicalisations of e and second, for each possible verbalisation,
which role maps to which syntactic function.

To address this issue, we extract syntactic frames from our
constructed corpus and use the collected data to learn the mapping
between KB and syntactic arguments.

Frame extraction proceeds as follows. For each event name in the
KBGEN+event set, we look for sentences in the corpus that mention
this event name or one of its several verbalisations available in the
merged lexicon (ALL in Table 5).

From all such sentences, event frames are then extracted where
an event frame is a syntactic frame obtained from the dependency
parse tree of the sentence by selecting the local subtree originating
at the node labelled with the event name (or one of its variants).
For instance, given the sentence and the dependency tree shown in
Figure 2, the extracted frame will be:

nsubj:NP,VB,dobj:NP

indicating that the verb form block requires a subject and an object
noun phrase (NP). That is, a syntactic frame describes the arguments
required by the lexicalisations of an event, the syntactic function
they realise and their syntactic category (e.g., NP).

We use the Stanford Dependency Parser8 to produce the
dependency trees and take as input for frame extraction, the
collapsed typed dependency variant. NP variants (NN, NNS, NNP,
NNPS, PRP, PRP) are generalized as NP and the VB variants (VB
,VBD ,VBG ,VBN ,VBP ,VBZ) are generalized as VB. When
extracting the frames, we only consider a subset of the dependency
relations9 produced by the Stanford parser to avoid including in
the frame adjuncts such as temporal or spatial phrases which are
optional rather than required arguments.

Note that for each event, many event frames can arise from a
single sentence (if the sentence has multiple mentions of the event)
and several sentences can be extracted for the same event. Also note
that the same event frame can be observed for different events in the
event set although their event representation may differ. Table 6 lists
the count of events on our event set for which at least a sentence was
found in the individual and total corpus.

A total of 2383 distinct event frames were observed whereby
96.06% of the KBGEN+events were assigned at least one frame
and each event was assigned an average of 116.48 distinct frames.
The high variety of frames assigned to each event results from both
lexical and syntactic variations. Each event can be lexicalised by

8 http://nlp.stanford.edu/software/lex-parser.
shtml
9 The dependency relations considered for frame construction are: advcl,
agent, appos, csubj, csubjpass, dobj, expl, iobj, mwe, nn, npadvmod, nsubj,
nsubjpass, number, pobj, possessive, tmod, vmod and the variants of prep
and prepc .
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New/JJ immunosuppressive/JJ drug/NN pnu156804/NNS blocks/VBZ IL-2-dependent/JJ proliferation/JJ

AMOD

AMOD

NN NSUBJ

DOBJ

AMOD

Fig. 2. Example Dependency Parse Tree

#Events Found #Stces/Event
BioCause 30 5
BioDef 71 9.9
BioInfer 31 4
Genia 51 26.33
Grec 32 5.15
PMC 93 2163.43
BioKB101 58 22.15
TOTAL 122 1078.59
Table 6. Sentences containing Event Verbalisations

several natural language words or phrases and each natural language
expressions may occur in several syntactic environments.

Here are some examples showing for a given event name and a
corpus sentence, the tree extracted from the dependency parse tree
and the corresponding frame.

Event BLOCK

Sentence New immunosuppressive drug PNU156804 blocks IL-
2-dependent proliferation and nf-kappa b and ap-1
activation.

Tree
blocks/VBZ

proliferation/NNpnu156804/NNS

nsubj dobj

Frame nsubj:NP,VB,dobj:NP
Event BLOCK

Sentence Finally, a dominant-negative version of C/EBP beta
blocked TNF alpha promoter activation in myeloid
cells.

Tree

blocked/VBZ

cells/NNactivation/NNversion/NN

nsubj dobj prep in

Frame nsubj:NP,VB,dobj:NP,prep in:NP

Event SYNTHESIS-OF-FAT

Sentence Nucleus synthesizes mrna using instructions provided
by the DNA.

Tree

synthesizes/VBZ

mrna/NNnucleus/NNS

nsubj dobj

Frame nsubj:NP,VB,dobj:NP

2.5 Probabilistic Learning
Using the frequency counts produced by the frame extraction
process, we estimate the probability P (f |e) of frame f given an
event e as follows:

P (f |e) = counts(f, e)

counts(e)

where counts(f,e) is the number of time the combination of frame
f and event ewas observed and counts(e) is the number of time event
e was observed.

We further observe that an entity can be bound via different
relations to different/same events in different triplesets of the input.
Thus we build a mapping of each entity in the entity set to the set
of all relations it is bound with across all the events in the event set
and refer it as entity-relation map. On average, an entity was found
to be bound via 1.35 distinct relations.

The entity-relation map will be useful in computing the likelihood
of roles to be ascribed to event frames. We assume that if an event
dependency tree bears a mention of any entity (or one of its several
verbalisations available from the lexicon) from the entity set as its
immediate dependent node, the corresponding event frame of this
event dependency tree can be ascribed to all of the roles associated
for that entity in the entity-relation map. By checking this criteria on
all of the event dependency trees obtained for all events in the event
set, we compute the frequency of all of the roles available for each
event frames and this will give us the probability P (f | r) which
we estimate as follows :

P (f |r) = counts(f, r)

counts(r)

Add-one smoothing is applied to account for any role that does
not hold for the given frame.

One final probabilistic parameter that we compute from the event
frames is the likelihood of the syntactic dependency relation (Dep)
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being assigned to the role relation. Here, we assume that the
dependency relation of the event dependency tree binding an entity
(or one of its several verbalisations available from the lexicon)
serves as a representative of all the roles associated to the entity
in the entity-relation map. By checking this criteria on all of the
event dependency trees obtained for all events in the event set, we
compute the frequency of all of the dependency relations available
for each role and this will give us the probability P (d | r). We
estimate P (d | r) using frequency counts as follows :

P (d|r) = counts(d, r)

counts(r)

2.6 Surface Realisation
The set of probabilities so learnt are then used for generating
sentences to verbalize input triplesets as follows. Given an input
tripleset to verbalize, we first identify the event name and the roles
present in the input. All possible frames for the current event can be
retrieved but we only retain those frames (for further processing)
that have an arity matching the number of roles in the input.
Then, for each frame thus obtained, we compute its probability in
conjunction with all the roles present in the input, i.e.

P (f |e)× P (f |r1)× . . .× P (f |rn) (1)

We select the top 5 highest scoring frames given by Equation 1 as
our candidate frames for generation. Each of those frames serves
as a template for our generation task. In particular, we replace the
dependents of the root node with the entities of the roles of the input
so that

∏
i P (di|ri) is maximized. An example below will illustrate

(For readability reasons, the probabilities are in logarithmic of base
10) :

Input:

SubClassOf ( : Plasma−membrane : E n t i t y )
SubClassOf ( : Hydrophobic−Compound : E n t i t y )
SubClassOf ( : Block

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : Plasma−membrane )
ObjectSomeValuesFrom ( : o b j e c t : Hydrophobic−Compound ) ) )

Selected Frame : nsubj:NP,VB,dobj:NP
Known P(d|r) :
P(nsubj|instrument)=−1.25, P(dobj|instrument)=−1.15
P(nsubj|object)=−0.99, P(dobj|object)=−0.76
Assignment Possibilities :
instrument→ nsubj & object→ dobj = −1.25+−0.76 = −2.01
instrument→ dobj & object→ nsubj = −1.15+−0.99 = −2.14
Chosen Assignment :

blocks/VBZ

Hydrophobic-Compound/NNPlasma-membrane/NNS

nsubj dobj

Generated Sentence : Plasma membrane blocks Hydrophobic
compounds.

3 DISCUSSION AND EVALUATION
3.1 Related Work
There has been much research in recent years on developing natural
language generation systems which support verbalising knowledge
bases.

Many of the existing KB Verbalising tools rely on generating
so-called Controlled Natural Languages (CNL) i.e., a language
engineered to be read and written almost like a natural language but
whose syntax and lexicon is restricted to prevent ambiguity. Some
CNLs are completely formal and can be automatically mapped to
logic. Examples of such languages include ACE (Fuchs et al., 2008),
CELT (Pease and Li, 2010), CLCE (Pool, 2006), CLP (Clark et al.,
2005), Formalized-English (Martin, 2002) and PENG (Kaljurand
and Fuchs, 2007).

Thus, the OWL verbaliser integrated in the Protégé tool is a
CNL based generation tool, (Kaljurand and Fuchs, 2007) which
provides a verbalisation of every axiom present in the ontology
under consideration and (Wilcock, 2003) describes an ontology
verbaliser using XML-based generation.

More complex NLG system have also been developed to
generate text (rather than simple sentences) from knowledge
bases. Thus, the MIAKT project (Bontcheva and Wilks., 2004)
and the ONTOGENERATION project (Aguado et al., 1998) use
symbolic NLG techniques to produce textual descriptions from
some semantic information contained in a knowledge base. Both
systems require some manual input (lexicons and domain schemas).
More sophisticated NLG systems such as TAILOR (Paris, 1988),
MIGRAINE (Mittal et al., 1994), and STOP (Reiter et al., 2003)
offer tailored output based on user/patient models. While offering
more flexibility and expressiveness, these systems are difficult
to adapt by non-NLG experts because they require the user to
understand the architecture of the NLG systems (Bontcheva and
Wilks., 2004). Similarly, the NaturalOWL system (Galanis et al.,
2009) has been proposed to generate fluent descriptions of museum
exhibits from an OWL ontology. This approach however relies on
extensive manual annotation of the input data. Finally, recent work
by the SWAT project10 has focused on producing descriptions of
ontologies that are both coherent and efficient (Williams and Power,
2010).

More recently, statistical, data-driven approaches have focused
on learning a generation system from parallel corpora of data and
text. In particular, (Angeli et al., 2010; Chen and Mooney, 2008;
Wong and Mooney, 2007; Konstas and Lapata, 2012b,a) trained
and developed data-to-text generators on datasets from various
domains including the air travel domain (Dahl et al., 1994), weather
forecasts (Liang et al., 2009; Belz, 2008) and sportscasting (Chen
and Mooney, 2008). Here, the dominant approach consists in
learning a direct mapping between meaning representations and
natural language.

Our approach differs from previous work in two main ways.
First, it is unsupervised. As mentioned above, most of

the previous work on generating from knowledge bases either
makes use of hand-crafted grammars (and sometimes lexicons)
or of a parallel data/text corpus. In both cases, considerable
time and expertise must be spent on developing the required
linguistic resources (aligned data-text corpus, grammar, lexicon)

10 http://crc.open.ac.uk/Projects/SWAT
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thereby restricting domain independence. Porting the system to
a new domain is therefore costly. In contrast, our approach is
fully unsupervised; extracting and learning the relevant linguistic
and probabilistic information from available text only corpora.
Consequently, it can be used for any knowledge base for which there
exists large textual corpora.

Second, we focus on the verbalisation of n-ary relations and on
the task of appropriately mapping KB roles to syntactic functions.
Little attention has been paid to this issue so far. In symbolic
approaches (e.g., the CNL or KB based approaches mentioned
above), this mapping is determined by the lexicon and must be
manually specified. In data-driven approaches on the other hand the
mapping is learned from the alignment between text and data. In
both cases, predicting the appropriate mapping depends on having
the appropriate linguistic resources (manually specified lexicon ,
parallel data-text corpus) and is restricted to cases which either
are specified in the lexicon or have been seen in the training
data. Instead, we view the syntax/semantic mapping task as a
bipartite graph alignment problem (each syntactic function must be
aligned with exactly one semantic role and vice versa) and learn a
probabilistic model designed to select the most probable mapping.
In this way, we provide a domain independent, fully automatic,
means of verbalising n-ary relations.

3.2 Evaluation
We evaluate our approach on the 336 event representations included
in the KBGEN+dataset. For each event representation, we generate
the 5 best natural language verbalisations using the method
described in the preceding section. We then evaluate the results both
qualitatively and quantitatively.

We first consider coverage i.e., the proportion of input in the
test set for which a verbalisation is produced. Because we limit
the choice of selected frames to the ones that bear the right arity
and are VB rooted frame, we fail in selecting a frame for some of
the input. There are 45 input cases for which none of the selected
frames had a matching arity and 9 input cases where a VB rooted
event frame was not found. Thus we generated an output for 82.5%
of the input dataset. We are currently investigating whether relaxing
these constraints would improve coverage and how it would impact
the quality of the generated verbalisations.

Taking a random sample of 100 inputs from the KBGEN+dataset,
we examine the quality of the output, in particular the
syntax/semantic mapping induced by our probabilistic model and
the lexicalisation of events and arguments. For each randomly
sampled input, we consider the 5 best output and manually
annotated the input as follows:

1. Correct: both the syntax/semantic linking of the arguments and
the lexicalisation of the event and of its arguments is correct.
Some examples are shown in Table 7.

2. Incorrect Linking: the lexicalisation of the event and of its
arguments is correct but the syntax/semantic linking of the
arguments is not. Some examples are shown in Table 8.

3. Incorrect Frame or Lexicalisation: the lexicalisation or the
frame chosen for the event is incorrect. Some examples are
shown in Table 9.

29% of the ouput were found to be correct , 17% to have incorrect
linking and 54% to lack a correct frame. Manual examination of the

Example 1

SubClassOf ( : R a d i o a c t i v e−I s o t o p e : E n t i t y )
SubClassOf ( : Cancer : E n t i t y )
SubClassOf ( : R a d i o a c t i v e−T r e a t m e n t

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : i n s t r u m e n t : R a d i o a c t i v e−I s o t o p e )
ObjectSomeValuesFrom ( : o b j e c t : Cancer ) ) )

Generated
Sentence Cancer is treated with radioactive isotope.

Example 2

SubClassOf ( : Sucrose−Hydrogen−ion−C o t r a n s p o r t e r : E n t i t y )
SubClassOf ( : P l a n t−C e l l : E n t i t y )
SubClassOf ( : S u c r o s e : E n t i t y )
SubClassOf ( : C o t r a n s p o r t−of−s u c r o s e−and−hydrogen−i o n

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : a g e n t : Sucrose−Hydrogen−

ion−C o t r a n s p o r t e r )
ObjectSomeValuesFrom ( : ba se : P l a n t−C e l l )
ObjectSomeValuesFrom ( : o b j e c t : S u c r o s e ) ) )

Generated
Sentence

Sucrose hydrogen ion cotransporter transports
sucrose in plant cells.

Table 7. Correct Examples

Example 1

SubClassOf ( : Earthworm : E n t i t y )
SubClassOf ( : Mucus : E n t i t y )
SubClassOf ( : A l imen ta ry−Canal : E n t i t y )
SubClassOf ( : S e c r e t i o n

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : o b j e c t : Mucus )
ObjectSomeValuesFrom ( : ba se : Earthworm )
ObjectSomeValuesFrom ( : s i t e : A l imen ta ry−Canal ) ) )

Generated
Sentence Alimentary canal secretes earthworm in mucus.

Example 2

SubClassOf ( : Food−Vacuole : E n t i t y )
SubClassOf ( : S o l i d−S u b s t a n c e : E n t i t y )
SubClassOf ( : Conf ine

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : ba se : Food−Vacuole )
ObjectSomeValuesFrom ( : o b j e c t : S o l i d−S u b s t a n c e ) ) )

Generated
Sentence Food vacuole is confined to solid substance.

Table 8. Incorrect Linking Examples

results indicates that often, the correct results are found but are not
in the 5 best list. We are currently exploring various directions for
improving these first results.

One first possibility is to improve ranking by acquiring a
more fine grained probabilistic model which in addition to the
probabilities presented in Section 2.5, also takes into account
e.g., the probability of a dependency given not only a role
(P (d|r)) but also an event or an event class (P (d|r, e). These
two probability distributions could be combined using linear
interpolation (λ1P1(d|r) + λ2P2(d|r, e)) for instance. A further
interesting avenue for further research would be to use a backoff
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Generating Event Descriptions

Example 1

SubClassOf ( : Water−Molecu le : E n t i t y )
SubClassOf ( : C e l l u l o s e : E n t i t y )
SubClassOf ( : C e l l u l a s e : E n t i t y )
SubClassOf ( : Monomer : E n t i t y )
SubClassOf ( : C e l l u l o s e−d i g e s t i o n

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : o b j e c t : C e l l u l o s e )
ObjectSomeValuesFrom ( : raw−m a t e r i a l : Water−Molecu le )
ObjectSomeValuesFrom ( : r e s u l t : Monomer )
ObjectSomeValuesFrom ( : a g e n t : C e l l u l a s e ) ) )

Generated
Sentence

In cellulose, water molecules were digested
with cellulase before monomer.

Example 2

SubClassOf ( : P r o t e i n : E n t i t y )
SubClassOf ( : K i n e t o c h o r e−M i c r o t u b u l e : E n t i t y )
SubClassOf ( : D iv id e

O b j e c t I n t e r s e c t i o n O f ( : Event
ObjectSomeValuesFrom ( : s i t e : K i n e t o c h o r e−M i c r o t u b u l e )
ObjectSomeValuesFrom ( : o b j e c t : P r o t e i n ) ) )

Generated
Sentence Kinetochore microtubules share protein.

Table 9. Incorrect Frame Examples

approach with several levels of specificity of probabilities following
the approach presented in (Swier and Stevenson, 2004) for
unsupervised semantic role labelling.

An alternative track consists in investigating vector based
approaches and to measure the similarity of a syntactic frame
and an event representations by aligning the arguments in the
syntactic frame with the arguments in the event representations
and computing the similarity of the aligned arguments. Following
(Cheung and Penn, 2014), this problem could be solved as a
maximum-weight bipartite graph matching problem and similarity
could compound both similarity between words and similarity
between the slot fillers of syntactic and semantic roles.

Finally, we plan to investigate whether a more intensive use of the
lexical (synonymy, hyperonymy) and KB relations (SubClass) could
help either approach. These relations could be used in different
phases of our approach to generalise over specific facts thereby
increasing the frequency counts and reducing the data sparsity.

4 CONCLUSION
We have presented an approach for verbalising biological event
representations which differs from previous work in that (i) it is
unsupervised and (ii) it focuses on n-ary relations and on the issue
of how to automatically map natural language and KB arguments.
A first evaluation gives encouraging results but also shows that
the current approach has limitations. We are currently exploring
two main directions for improvements. On the one hand, we
are investigating whether a more sophisticated probabilistic model
could help improve results. On the other hand, we are looking at an
alternative, vector-based approach.
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