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On the analogy between real reductive groups and Cartan motion groups

George Mackey suggested in 1975 that there should be analogies between the irreducible unitary representations of a noncompact reductive Lie group G and those of its Cartan motion group G 0the semidirect product of a maximal compact subgroup of G and a vector space. He conjectured the existence of a natural one-to-one correspondence between "most" irreducible (tempered) representations of G and "most" irreducible (unitary) representations of G 0 . We here describe a simple and natural bijection between the tempered duals of both groups, and an extension to a one-to-one correspondence between the admissible duals.

Introduction 1.Contractions of Lie groups and a conjecture of Mackey

When G is a Lie group and K is a closed subgroup, one can use the linear action of K on the vector space V = Lie(G)/Lie(K) to define a new Lie group: the semidirect product G 0 = K V , known as the contraction of G with respect to K. The notion first arose in mathematical physics (see Segal [START_REF] Segal | A class of operator algebras which are determined by groups[END_REF], İnönü and Wigner [START_REF] İnönü | On the contraction of groups and their representations[END_REF], Saletan [START_REF] Saletan | Contraction of Lie groups[END_REF] and the lecture by Dyson [START_REF] Dyson | Missed opportunities[END_REF]): the Poincaré group of special relativity admits as a contraction the Galilei group of classical inertial changes, and it is itself a contraction of the de Sitter group of general relativity.

It is a classical problem to try to determine whether there is a relationship between the representation theories of G and G 0 : for instance, the unitary (irreducible) representations of the Poincaré group famously yield spaces of quantum states for (elementary) particles [START_REF] Wigner | On unitary representations of the inhomogeneous Lorentz group[END_REF], and it is quite natural to wonder about the existence of "nonrelativistic" analogues in the representation theory of the Galilei group [START_REF] İnönü | Representations of the Galilei group[END_REF]. In many cases of physical interest, the observation that the contraction G 0 can be seen as the special point of a one-parameter family (G t ) t∈R of Lie groups (where the parameter t usually has some physical significance, and G t is isomorphic with G for all t = 0) has led to attempts to exhibit some representations of G 0 as "limiting cases" of representations of G; early examples include [START_REF] İnönü | Representations of the Galilei group[END_REF], [START_REF] Hermann | The Gell-Mann formula for representations of semisimple groups[END_REF], [START_REF] Mukunda | Expansions of Lie groups and representations of SL(3, C)[END_REF], [START_REF] Mickelsson | Contractions of representations of de Sitter groups[END_REF].

For most Lie groups, unitary representations do not behave well under the contraction; the parameters needed to identify an irreducible representation of G are often visibly different from those determining an irreducible representation of G 0 , and some of the differences are important for physicsa consequence of the bad behaviour in the case of the Poincaré group is that the notion of (rest) mass has different meanings in special and Galilean relativity.

Now, suppose G is a reductive Lie group and K is a maximal compact subgroup. The contraction G 0 is known in that case as the Cartan motion group of G, probably as a tribute to Élie Cartan's study of symmetric spaces: the group G acts by isometries on the negatively curved G/K, while G 0 acts by Euclidean rigid motions on the (flat) tangent space to G/K at the identity coset.

The algebraic structures of G and G 0 and their representation theories are quite different. Denote the unitary dual of a Lie group Γ by Γ and its reduced dual (when Γ is type-I) by Γ; then George Mackey's early work on semidirect products [START_REF] Mackey | Imprimitivity for representations of locally compact groups. I[END_REF][START_REF] Mackey | Unitary representations of group extensions. I[END_REF] describes G 0 in very simple and concrete terms, but describing G remains to this day an extremely deep problem (see [START_REF] Adams | Unitary representations of real reductive groups[END_REF]). A complete understanding of G was attained in the early 1980s, crowning tremendous efforts of Harish-Chandra and others that had begun in 1945.

In 1975, however, Mackey noticed surprising analogies, for several simple examples of reductive groups G, between his accessible description of G 0 and Harish-Chandra's subtle parametrization of G. In the examples studied by Mackey, "large" subsets of G 0 and G could be described using the same parameters, and the classical constructions for some of the corresponding representations were reminiscent of one another. Quantum-mechanical considerations led him to believe that there was more to this than chance, and he went on to conjecture that there should be a natural one-to-one correspondence between "large" subsets of G 0 and G [START_REF] Mackey | On the analogy between semisimple Lie groups and certain related semi-direct product groups, in Lie groups and their representations[END_REF]:

The physical interpretation suggests that there ought to exist a "natural" one-to-one correspondence between almost all the unitary representations of G 0 and almost all the unitary representations of Gin spite of the rather different algebraic structure of these groups.

Mackey's idea seems to have been widely considered overenthusiastic at the time. It is true that in the years immediately following his proposal, studying the relationship between G-invariant harmonic analysis on G/K and G 0 -invariant analysis on G 0 /K became a flourishing subject (see e.g. [START_REF] Helgason | A duality for symmetric spaces with applications to group representations. III. Tangent space analysis[END_REF][START_REF] Rouvière | Symmetric spaces and the Kashiwara-Vergne method[END_REF]), with beautiful ramifications for all Lie groups [START_REF] Duflo | Opérateurs différentiels bi-invariants sur un groupe de Lie[END_REF][START_REF] Kashiwara | The Campbell-Hausdorff formula and invariant hyperfunctions[END_REF], and the close relationship between the two kinds of harmonic analysis does call to mind Mackey's observations on the principal series. But few of the authors who pursued this subject explicitly referred to Mackey's suggestion. Exceptions include Dooley and Rice [START_REF] Dooley | On contractions of semisimple Lie groups[END_REF], who established in 1985 that the operators for (minimal) principal series representations of G do weakly converge, as the contraction is performed, to operators for a generic representation of G 0 ; and Weinstein [START_REF] Weinstein | Poisson geometry of the principal series and nonlinearizable structures[END_REF], who wrote down a Poisson correspondence relating coadjoint orbits of G attached to (minimal) principal series representations and generic coadjoint orbits for G 0 .

But as one moves away from the principal series of G to the other parts of the reduced dual, it must have seemed difficult in the 1970s to imagine that anything general could be extracted from Mackey's suggestions. The geometrical construction of representations in the deeper parts of G, for instance that of the discrete series, was then a burning subject; in contrast, the most degenerate parts of G 0 look somewhat trivial. Mackey had of course noticed the absence, for these deeper strata, of any clear geometrical relationship:

Above all [the conjectured analogy] is a mere coincidence of parametrizations, with no evident relationship between the constructions of corresponding representations.

Connection with the Connes-Kasparov isomorphism; Higson's work

In the late 1980s and in the 1990s, Mackey's proposal found an echo in the study of group C -algebras. The Baum-Connes conjecture, in its "Lie group" version due to Connes and Kasparov, describes the K-theory of the reduced C -algebra C r (G) of a connected Lie group G in terms of the representation ring of a maximal compact subgroup and Dirac induction. For real reductive groups, the conjecture was first established by Wassermann [START_REF] Wassermann | Une démonstration de la conjecture de Connes-Kasparov pour les groupes de Lie linéaires connexes réductifs[END_REF]; a later proof would follow from V. Lafforgue's work [START_REF] Lafforgue | K-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes[END_REF]. Viewing the operator K-theory of C r (G) as a noncommutativegeometry version of the topological K-theory of the reduced dual G, Paul Baum, Alain Connes and Nigel Higson pointed out in the 1990s that the Connes-Kasparov isomorphism can be reinterpreted as a statement that G and G 0 share algebraic-topological invariants (see [START_REF] Baum | Classifying space for proper actions and K-theory of group C *algebras[END_REF], §4). The Baum-Connes-Kasparov isomorphism can thus be viewed as a cohomological reflection of Mackey's conjectured analogy.

Nigel Higson later remarked that Mackey had in mind a measure-theoretic correspondence (which may have been defined only for "almost every" representation), but that the interplay with the Connes-Kasparov isomorphism brought the topologies of G and G 0 into the game, albeit at the level of cohomology. Because the relationship between the Fell topologies and the Plancherel measure is nontrivial, he noted [START_REF] Higson | The Mackey analogy and K-theory, in Group representations, ergodic theory, and mathematical physics: a tribute to[END_REF][START_REF] Higson | On the analogy between complex semisimple groups and their Cartan motion groups, in Noncommutative geometry and global analysis[END_REF] that the simplest way to reconcile both points of view was to guess that there might exist a natural one-to-one correspondence between every irreducible tempered representation of G and every unitary irreducible representation of G 0 .

After the turn of the century, Higson took up the issue in more detail and examined the case of complex semisimple groups, in which the reduced dual G is completely described by the principal series. He constructed in 2008 a natural bijection between G and G 0 in the complex case [START_REF] Higson | The Mackey analogy and K-theory, in Group representations, ergodic theory, and mathematical physics: a tribute to[END_REF], and used it to analyze the structures of C r (G) and C r (G 0 )discovering building blocks for the two C -algebras that fit together rigidly in the deformation from C r (G) to C r (G 0 ). With the help of tools crafted for the purpose in the early 1990s by Connes and himself (see [START_REF] Connes | Déformations, morphismes asymptotiques et K-théorie bivariante[END_REF] and [START_REF] Connes | Noncommutative geometry[END_REF], §II.10.δ ), he was led to a new proof of the Connes-Kasparov isomorphism for complex semisimple groups that is both natural from the point of view of representation theory and elementary from the point of view of K-theory.

Contents of this article

We here construct a simple and natural bijection between G and G 0 , for any real reductive group G (more precisely, whenever G is the group of a real points of a connected reductive algebraic group defined over R).

David Vogan's notion of lowest K-types will play a crucial part: we shall imitate Mackey's classical parametrization of G 0 (recalled in §2) and build a Mackey-like parametrization of G using Vogan's work on tempered irreducible representations with real infinitesimal character (see §3.1). Our bijection will turn out (see §4) to preserve lowest K-types and be compatible with a natural notion of variation of continuous parameters in the representation theories of both groups. As we shall see (in §5), the Langlands classification of admissible representations provides an immediate extension to a one-to-one correspondence between the admissible duals of both groups.

With Mackey's conjecture established at the level of parameters, we shall turn elsewhere to the deformation (G t ) t∈R to try to better understand the reasons for, and implications of, the existence of the correspondence. A first companion article [START_REF] Afgoustidis | On the analogy between real reductive groups and Cartan motion groups: contraction of irreducible tempered representations[END_REF] gives a geometrical realization for the Mackey-Higson bijection, describing a natural deformation (at the level of representation spaces) of every irreducible tempered representation π of G onto the corresponding representation of G 0 . A second companion [START_REF] Afgoustidis | On the analogy between real reductive groups and Cartan motion groups: a proof of the Connes-Kasparov isomorphism[END_REF] focuses on the topologies on G and G 0 and the behavior of matrix coefficients, establishing rigidity properties of the deformation at the C -algebraic level and deducing a new proof of the Connes-Kasparov isomorphism. All this hopefully proves that there is much more to the Mackey-Higson bijection than the unexpected "coincidence of parametrizations" to be established in the present article.

Daniel Bennequin encouraged my interest for this subject and offered extremely kind and helpful advice. Several conversations with Michel Duflo, Nigel Higson and Michèle Vergne were very useful and important to me. François Rouvière and David Vogan read the manuscript of my thesis [START_REF] Afgoustidis | Représentations de groupes de Lie et fonctionnement géométrique du cerveau[END_REF] very carefully; the present version owes much to their suggestions and corrections. Jeremy Daniel heard preliminary (and false) versions of many of my ideas. I am very much indebted to all of them.

During my time as a PhD student, in which many of the results of this article were obtained, I benefited from excellent working conditions at Université Paris-7 and the Institut de Mathématiques de Jussieu -Paris Rive Gauche. I am grateful to my colleagues at Université Paris-Dauphine and CEREMADE for their more recent support.

Representations of the Cartan motion group

Notations

Let G be the group of real points of a connected reductive algebraic group defined over R (see for instance [START_REF] Adams | Unitary representations of real reductive groups[END_REF], §3), and let g be its Lie algebra. Fix a maximal compact subgroup K of G, write θ for the Cartan involution of G with fixed-point-set K, and form the corresponding Cartan decomposition g = k ⊕ p of G: here k is the Lie algebra of K and p is a linear subspace of g which, although not a Lie subalgebra, is stable under the adjoint action Ad : K → End(g). Recall that the semidirect product K p is the group whose underlying set is the Cartesian product K × p, equipped with the product law

(k 1 , v 1 ) • 0 (k 2 , v 2 ) := (k 1 k 2 , v 1 + Ad(k 1 )v 2 ) (k 1 , k 2 ∈ K, v 1 , v 2 ∈ p).
We will denote that group by G 0 and call it the Cartan motion group of G.

Writing V for the space of linear functionals on a vector space V and viewing p as the space of linear functionals on g which vanish on k, note that in the coadjoint action Ad : G → End(g ), the subspace p ⊂ g is Ad (K)-invariant.

We fix once and for all an abelian subalgebra a of g that is contained is p and is maximal among the abelian subalgebras of g contained in p. We write A for exp G (a).

When Γ is a type-I Lie group, we will write Γ for its unitary dual, Γ for its reduced dual (see for instance [START_REF] Dixmier | Les C * -algèbres et leurs représentations[END_REF], Chapter 18) and Γ adm for its admissible dual (see for instance [START_REF] Vogan | Representations of real reductive Lie groups[END_REF], §0.3). The motion group G 0 is amenable, so G 0 and G 0 coincide; but for our reductive group G, a unitary irreducible representation π ∈ G lies in the reduced dual G if and only if it is tempered, which means that its K-finite matrix elements lie in L 2+ε (G) for every ε > 0 (see [START_REF] Cowling | Almost L 2 matrix coefficients[END_REF]). For noncompact G, the trivial representation of G is not tempered, so G = G.

Mackey parameters

When χ is an element of p , we write K χ for its stabilizer in the coadjoint action of K on p; this compact group is usually disconnected. In physics, it is known as the "little group at χ".

We call Mackey parameter (or: Mackey datum) any pair δ = (χ, µ) where χ is an element of p and µ is an irreducible representation of K χ .

We call two Mackey parameters (χ, µ) and (χ , µ ) equivalent when there exists an element k in K such that

• χ = Ad (k) • χ ,

and

• µ is equivalent, as an irreducible representation of K χ , with the representation u → µ (k -1 u). This defines an equivalence relation on the set of Mackey data; we will write D for the set of equivalence classes.

It may be useful to mention two elementary facts from structure theory (see [START_REF] Knapp | Representation theory of semisimple groups[END_REF], sections V.2 and V.3): (i) Every Mackey datum is equivalent with a Mackey datum (χ, µ) in which χ lies in a ; furthermore, if χ and χ are two elements of a and if µ and µ are irreducible representations of K χ and K χ , then the Mackey data (χ, µ) and (χ , µ ) are equivalent if and only if there is an element of the Weyl group W = W (g, a) which sends χ to χ and µ to µ . (ii) The dimension of the Ad (K)-orbit of χ in p is maximal (among all possible dimensions of Ad (K)-orbits in p ) if and only if χ is regular. All regular elements in a have the same Ad (K)-stabilizer, viz. the centralizer M = Z K (a) of a in K.

Unitary dual of the motion group

We recall the usual way to build a unitary representation of G 0 from a Mackey parameter δ = (χ, µ).

Consider the centralizer L χ 0 of χ in G 0 (for the coadjoint action). It is K χ p, where K χ is the little group of §2.2.
Out of δ and χ, build an irreducible representation of this centralizer: fix a (finite-dimensional) carrier space V for µ, and define an action of L 0 χ on V , where (κ, v) ∈ K χ p acts through e i χ,v µ(κ). Write σ = µ ⊗ e iχ for this representation of L 0 χ . Now, observe the induced representation

M 0 (δ ) = Ind G 0 L 0 χ (σ ) = Ind G 0 K χ p µ ⊗ e iχ .
(2.1)

Theorem 2.1 (Mackey, 1949 [29]). (c) By associating to any Mackey parameter δ the equivalence class of M 0 (δ ) in G 0 , one obtains a bijection between D and G 0 .

Remark 2.2. If χ is zero, then K χ equals K and the representation of M 0 (χ, µ) of G 0 is the trivial extension of µ where p acts by the identity. There is thus in G 0 a family of finite-dimensional representations; every member of the family is equal to M 0 (0, µ) for some µ in K.

Remark 2.3. In §4, we will need information about the K-module structure of M 0 (χ, µ). Recall that M 0 (χ, µ) can be realized by fixing a µ(K)-invariant inner product on V , then equipping the Hilbert space

H = f ∈ L 2 (K,V ) : ∀m ∈ K χ , ∀k ∈ K, f (km) = µ(m -1 ) f (k)
with the G 0 -action in which

g 0 = (k, v) acts through π 0 (k, v) : f → u → e i Ad (u)χ,v f (k -1 u) ;
the restriction to K of that action is a classical picture for Ind K K χ (µ).

Admissible dual of the motion group

We now outline Champetier and Delorme's description of the admissible dual of G 0 adm (see [START_REF] Champetier | Sur les représentations des groupes de déplacements de Cartan[END_REF]; see also Rader [START_REF] Rader | Spherical functions on Cartan motion groups[END_REF]). Recall that the action Ad of K on p induces an action on the complexified space p C , in which K acts separately on the real and imaginary parts. We will still write Ad for it.

We call admissible Mackey parameter a pair (χ, µ) in which χ lies in a C and µ is an irreducible representation of K χ . In contrast to the previous section, we require from the outset that χ lie in a C : it is no longer true that Ad (K) • a C coincides with p C .

We define on the set of admissible Mackey parameters the same equivalence relation as described in §2.2 and write D adm for the set of equivalence classes of admissible Mackey data.

When δ = (χ, µ) is an admissible Mackey datum, we write M 0 (δ ) for the representation Ind

G 0 K χ p (µ ⊗ e χ
) of G 0 . (For details on admissible representations of G 0 , as well as induction and equivalence in this context, see [START_REF] Champetier | Sur les représentations des groupes de déplacements de Cartan[END_REF].) This representation is unitary if and only if the real part of χ is zero; in that case it coincides with the representation defined in §2.3 using the imaginary part of χ. 

The Mackey-Higson bijection for tempered representations

In this section, we introduce a natural one-to-one correspondence between G 0 and G.

The key step is to determine the subset of G that should correspond to the "discrete part" of G 0 encountered in Remark 2.2, which is a copy of K in G 0 .

For some reductive groups, there is a natural candidate for that subset of G: the discrete series. If G is a reductive group with nonempty discrete series, it is well-known from the work of Harish-Chandra, Blattner, Hecht-Schmid (see [START_REF] Hecht | A proof of Blattner's conjecture[END_REF]) that every discrete series representation π comes with a distinguished element of K, the minimal K-type of π (see for example [START_REF] Duflo | Représentations de carré intégrable des groupes semi-simples réels[END_REF], §I.5). Furthermore, inequivalent discrete series representations of G have inequivalent minimal K-types.

There are at least two obvious reasons not to use the discrete series for our construction, however:

(i) there are reductive groups with no discrete series representations;

(ii) even when G has a nonempty discrete series, there are elements of K which cannot be realized as the minimal K-type of any discrete series representation.

To define a natural candidate for the class of representations to be associated in G to the copy of K in G 0 , we turn to David Vogan's work on lowest K-types for other representations.

Real-infinitesimal-character representations and a theorem of Vogan

Fix a linear reductive group G and a maximal compact subgroup K as above. Given a Cartan subalgebra t of k and and a choice of positive root system ∆ + c for the pair (k C , t C ), Vogan defines [START_REF] Vogan | Classification of the irreducible representations of semisimple Lie groups[END_REF] a positive-valued function µ → µ K on K: starting from an irreducible µ in K, one can consider its ∆ + c -highest weight μ and the half-sum ρ c of positive roots in ∆ + c ; these are two elements of t C , and that space comes with a Euclidean norm

• t C ; one then defines µ K = μ + 2ρ c t C
. When π is an admissible (but not necessarily irreducible) representation of G, the lowest K-types of π are the elements of K that appear in the restriction of π to K and have the smallest possible norm among the elements of K that appear in π |K . Every admissible representation has a finite number of lowest K-types, and these do not depend on the choice of T and ∆ + c . Given an irreducible tempered representation π of G, we say π has real infinitesimal character when there exists a cuspidal parabolic subgroup P = LN of G and a discrete series representation σ of L with the property that π is equivalent with one of the irreducible factors of Ind G P (σ ⊗ 1). We will not need to explain the link with the notion of infinitesimal character and refer the reader to [START_REF] Vogan | A Langlands classification for unitary representations, in Analysis on homogeneous spaces and representation theory of Lie groups[END_REF].

We write G RIC for the subset of G whose elements are the equivalence classes of irreducible tempered representations of G with real infinitesimal character. I thank Michel Duflo for calling my attention to this subset.

Vogan discovered ( [START_REF] Vogan | Representations of real reductive Lie groups[END_REF], see also [START_REF] Vogan | The algebraic structure of the representation of semisimple Lie groups. I[END_REF]) that if π is an irreducible tempered representations of G with real infinitesimal character, then π has a unique lowest K-type. He went on to prove that every K-type is the lowest K-type of exactly one representation in G RIC : Theorem 3.1 (Vogan 1981 [42] ; see [START_REF] Vogan | Branching to a maximal compact subgroup, in Harmonic analysis, group representations, automorphic forms and invariant theory[END_REF], Theorem 1.2). The map from G RIC to K which, to an irreducible tempered representation π of G with real infinitesimal character, associates the lowest K-type of π, is a bijection.

When µ is (the class of) an irreducible representation of K, we will write V G (µ) for the real-infinitesimalcharacer irreducible tempered representation of G with lowest K-type µ. Remark 3.2. We will also need to use Theorem 3.1 for groups G that do not always occur as the group of real points of a connected reductive algebraic group. Therefore let us note that Theorem 3.1 is also valid when G is a linear reductive group in Harish-Chandra's class and has all its Cartan subgroups abelian (see §0.1 in [START_REF] Vogan | Representations of real reductive Lie groups[END_REF]).

Remark 3.3. Still assuming that G is a linear reductive group in Harish-Chandra's class with abelian Cartan subgroups, Vogan proved that if π is an irreducible admissible representation, then the lowest K-types of π all occur with multiplicity one in π| K (see [START_REF] Vogan | Representations of real reductive Lie groups[END_REF], §6.5, and for comments, [START_REF] Adams | Unitary representations of real reductive groups[END_REF], §6).

Construction of the bijection

We first proceed to build tempered representations of G by following as closely as possible the procedure described in §2.3 to build representations of G 0 from Mackey parameters.

Fix a Mackey parameter (χ, µ).

Consider, as we did in §2.3, the centralizer L χ of χ in G for the coadjoint action. This is the group of real points of a connected reductive algebraic group. Furthermore, the "little group" K χ is a maximal compact subgroup of L χ . Applying Vogan's Theorem 3.1, we can build, out of the irreducible representation µ of K χ , a tempered irreducible representation of L χ : the representation V L χ (µ).

The centralizer L χ turns out to be the θ -stable Levi factor of a real parabolic subgroup of G (see [START_REF] Vogan | A Langlands classification for unitary representations, in Analysis on homogeneous spaces and representation theory of Lie groups[END_REF], Lemma 3.4(4)). Write L χ = M χ A χ for its Langlands decompositiona direct product decomposition in which A χ is abelian and contained in exp G (p), so that χ defines an abelian character of L χ .

From our Mackey datum (χ, µ), we can thus build as in §2.3 a tempered irreducible representation σ = V L χ (µ) ⊗ e iχ of the centralizer L χ .

In order to obtain a tempered irreducible representation of G, it is however not reasonable to keep imitating the previous construction and induce without further precaution from L χ to G. Indeed, our centralizer L χ = Z G (χ) in G is a poor geometric analogue of the centralizer L 0 χ = Z G 0 (χ): these two groups usually do not have the same dimension and the contraction of L χ with respect to K χ is usually not isomorphic with L 0 χ . The induced representation Ind G L χ (σ ) is also likely to be very reducible. But we recalled that there exists at least one parabolic subgroup P χ = L χ N χ of G whose θ -stable Levi factor is L χ . In fact, there is only one conjugacy class of parabolic subgroups of G that contain L χ as a proper subgroup and are minimal among those that contain L χ as a proper subgroup; we choose P χ in that class. Now, the subgroup P χ is closer to being a good geometric analogue in G of the centralizer L 0 χ : these two groups have the same dimension, and whenever P χ is a parabolic subgroup of G with θ -stable Levi factor L χ , the contraction of P χ with respect to K χ is none other than L 0 χ . It seems, then, that the representation obtained by extending σ to P χ is the simplest possible analogue of the representation of L 0 χ used in §2.3. This makes it natural to form the induced representation

M(δ ) = Ind P χ (σ ) = Ind G M χ A χ N χ (V M χ (µ) ⊗ e iχ ⊗ 1). (3.1)
This is a tempered representation. For the last equality in (3.1), we note that M χ satisfies the hypothesis of Remark 3.2 (see [START_REF] Vogan | Representations of real reductive Lie groups[END_REF], page 142), so that Theorem 3.1 does apply to M χ as well as L χ ; and that V L χ (µ) coincides with the representation of L χ obtained by extending V M χ (µ) to L χ , because both belong to (L χ ) RIC and have the same lowest K χ -type.

We can now state our main result. Combined with Mackey's description of G 0 in §2.3, this yields a bijection

M : G 0 ∼ -→ G. (3.2) 
We will refer to it as the Mackey-Higson bijection. Proof of Theorem 3.4. Our result is a simple and straightforward consequence of the classification of tempered irreducible representations of G; in other words, it is a simple and straightforward consequence of an immense body of work (the bulk of which is due to Harish-Chandra).

We first remark that given Remark 2.2.(i) and the properties of unitary induction, we may assume without losing generality that χ lies in a .

In that case, M χ is a reductive subgroup of G that contains the compact subgroup M = Z K (a) mentioned in §2.2, point (ii); in addition, A χ is contained in A, it is related with its own Lie algebra a χ through A χ = exp G (a χ ), and the group M χ centralizes A χ . We recall that L χ is generated by M and the root subgroups for those roots of (g C , a C ) whose scalar product with χ is zero; in the Langlands decomposition, the subgroup A χ is by definition the intersection of the kernels of these roots (viewed as abelian characters of A).

In order to choose a precise N χ , fix an ordering on a : with it comes a notion of positive weight for (g, a χ ); the sum of root subspaces corresponding to positive weights yields a subalgebra n χ , and we set N χ = exp G (n χ ). But of course another choice for N χ and P χ in (3.1) would yield an equivalent representation of G.

Recall that an element in a is called a χ -regular when its scalar product with every root for the pair (g C , a χ,C ) is nonzero. We now call in a theorem due to Harish-Chandra, although Harish-Chandra never published it himself; see [START_REF] Kolk | On the transverse symbol of vectorial distributions and some applications to harmonic analysis[END_REF], Theorem 4.11, for semisimple G, [START_REF] Knapp | Representation theory of semisimple groups[END_REF], Theorem 14.93, for linear connected reductive G, and [START_REF] Vogan | A Langlands classification for unitary representations, in Analysis on homogeneous spaces and representation theory of Lie groups[END_REF], Lemma 3.2(5) (with proofs in [START_REF] Speh | Reducibility of generalized principal series representations[END_REF]) for the current class of reductive groups:

If β ∈ a is a χ -regular and if η is an irreducible tempered representation of M χ with real infinitesimal character, then

Ind G M χ A χ N χ (V M χ (η) ⊗ e iβ
) is irreducible. To show that χ is a χ -regular, consider a root γ of (g C , a C ) whose scalar product with χ is zero. Then γ is a root for (l χ,C , a χ,C ) (see the remarks on the structure of L χ above), so that a χ is contained in the kernel of γ (see the same remarks). Thus, the restriction of γ to a χ must be zero, and γ cannot be a root of (g C , a χ,C ), because the latter are precisely the roots which do not vanish on a χ .

Using Harish-Chandra's theorem above, we obtain part (a) in Theorem 3.4. Part (b) then follows from the usual criteria for equivalence between parabolically induced representations (see for instance [START_REF] Kolk | On the transverse symbol of vectorial distributions and some applications to harmonic analysis[END_REF] We now turn to (c), which is a simple consequence of the Knapp-Zuckerman classification of irreducible tempered representations [START_REF] Knapp | Classification of irreducible tempered representations of semisimple groups[END_REF][START_REF] Knapp | Classification of irreducible tempered representations of semisimple groups[END_REF]. Suppose π is an arbitrary irreducible tempered representation of G; then there exists a parabolic subgroup P = M P A P N P of G, a tempered irreducible representation σ of M P with real infinitesimal character, and an element ν of (a P ) , so that Ind G M P A P N P σ ⊗ e iν is irreducible and equivalent with π. See [START_REF] Vogan | A Langlands classification for unitary representations, in Analysis on homogeneous spaces and representation theory of Lie groups[END_REF], Theorem 3.3; for proofs, see of course [START_REF] Knapp | Classification of irreducible tempered representations of semisimple groups[END_REF][START_REF] Knapp | Classification of irreducible tempered representations of semisimple groups[END_REF] in the connected compact-center case, and [START_REF] Shelstad | L-indistinguishability for real groups[END_REF], §5.4, for disconnected groups in the present class (see also the comments in [START_REF] Clozel | Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II[END_REF]). We need to prove that such a representation is equal to M(δ ) for some Mackey parameter δ . We first remark that P is conjugate to a parabolic subgroup contained in P ν : since ν lies in (a P ) , the centralizer L P = M P A P of a P for the coadjoint action is contained in L ν ; given the above remarks on the Langlands decomposition and the construction of parabolic subgroups, we deduce that L P is contained in L ν , so that M ν contains M P and that A ν is contained in A P , and finally that N ν is conjugate to a subgroup N contained in N P . So P is conjugate to M P A P N , which is contained in P ν .

Write à and Ñ for the subgroups of G whose Lie algebras are the orthogonal complements of a ν and n in a P and n P , respectively. Then A P = A ν à and N P = ÑN ; from the fact that m ν is orthogonal to a ν ⊕ n , we deduce that à and Ñ are contained in M ν . Since A P is abelian and N P normalizes A, we obain

Ind G M P A P N P τ ⊗ e iν ⊗ 1 Ind G (M P Ã Ñ)A ν N (τ ⊗ e 0 ) ⊗ e iν .
Now, P = M P Ã Ñ is a subgroup of M ν and M P à is the centralizer of à in M ν , so P is a parabolic subgroup of M ν . Finally, we note that σ = Ind M ν M Ã Ñ (σ ⊗ e 0 ) is a tempered representation of M ν , that it has real infinitesimal character (by double induction from the definition of real infinitesimal character), and that it is irreducible (otherwise π would not be). By double induction, we conclude that

Ind G P ν σ ⊗ e iν Ind G M ν A ν N Ind M ν P σ ⊗ e 0 ⊗ e iν :
thus π is equivalent with M(ν, µ), where µ is the lowest K ν -type of the representation Ind M ν P (σ ⊗ e 0 ). This concludes the proof.

First properties of the bijection

In our construction of the Mackey-Higson bijection in §3.2, the notion of lowest K-type for admissible representations of G was of critical importance. Since K is also a maximal compact subgroup in G 0 , the notion of lowest K-type for admissible representations of G 0 can similarly be brought in, and every irreducible admissible representation of G 0 has a finite number of lowest K-types.

We now prove that the Mackey-Higson bijection M : G 0 → G preserves lowest K-types. Proof: We recall that π 0 is equivalent with M 0 (χ, µ) for some Mackey datum (χ, µ). From Remark 2.3, we know that as a K-module, M 0 (χ, µ) is isomorphic with Ind K K χ (µ). So we need to show that the lowest K-types of the G-representation M(χ, µ) are exactly the irreducible K-submodules of Ind K K χ (µ) with minimal norm. Now, the definition of parabolic induction shows that M(χ, µ) is isomorphic, as a K-module, with Ind K K χ V(µ)| K χ (see the "compact picture" description of M(χ, µ) in §VII.1 of [START_REF] Knapp | Representation theory of semisimple groups[END_REF]). Of course that K-module contains Ind

K K χ (µ). Suppose then that α is a lowest K-type in Ind K K χ V(µ)| K χ , but is not a lowest K-type in Ind K K χ (µ).
Then there is an element µ 1 of K χ , distinct from µ, such that α is a lowest K-type in Ind K K χ (µ 1 ), and since α must appear with multiplicity one in Ind K K χ V(µ)| K χ (see Remark 3.3), µ 1 must appear with multiplicity one in V(µ)| K χ . Because the latter has only one lowest K χ -type, we know that µ 1 K χ must be greater than µ K χ .

If α were a lowest K-type in Ind K K χ V(µ 1 )| K χ , the representations Ind K K χ V(µ)| K χ and Ind K K χ V(µ 1 )| K χ would have a lowest K-type in common; but that cannot happen, because of the following reformulation of a result by Vogan: Lemma 4.2. Suppose MAN is a cuspidal parabolic subgroup of G, and µ 1 , µ 2 are inequivalent irreducible K ∩ Mmodules. Then the representations Ind K K∩M (V(µ 1 )) and Ind K K∩M (V(µ 2 )) have no lowest K-type in common.

Proof: When V(µ 1 ) and V(µ 2 ) are in the discrete series of M, this follows from Theorem 3.6 in [START_REF] Vogan | Classifying representations by lowest K-types[END_REF] (see also Theorem 1 in the announcement [START_REF] Vogan | Classification of the irreducible representations of semisimple Lie groups[END_REF], and of course [START_REF] Vogan | The algebraic structure of the representation of semisimple Lie groups. I[END_REF]). In the other cases, this actually follows from the same result, but we need to give some precisions. Assume that both V(µ 1 ) and V(µ 2 ) are either in the discrete series or nondegenerate limits of discrete series. Then both Ind G MAN (V(µ 1 )) and Ind G MAN (V(µ 2 )) are irreducible constituents of some representations induced from discrete series, from larger parabolic subgroups if need be (see [START_REF] Knapp | Classification of irreducible tempered representations of semisimple groups[END_REF], Theorem 8.7). If Ind G M * A * N * (δ 1 ) (with δ 1 in the discrete series of M ) contains Ind G MAN (V(µ 1 )) as an irreducible constituent, it must contain it with multiplicity one, and the set of lowest K-types are Ind G M * A * N * (δ 1 ) is the disjoint union of the sets of lowest K-types of its irreducible constituents (which are finite in number): see Theorem 15.9 in [START_REF] Knapp | Representation theory of semisimple groups[END_REF]. If Ind G MAN (V(µ 1 )) and Ind G MAN (V(µ 2 )) are constituents of the same representation induced from discrete series, then the desired conclusion follows; if that is not the case we are now in a position to use Vogan's result to the two representations induced from discrete series under consideration (Vogan's disjointness-of-K-types theorem is true of reducible induced-from-discrete-series representations). Now, if V(µ 1 ), in spite of its real infinitesimal character, is neither in the discrete series of M nor a nondegenerate limit of discrete series, then there is a smaller parabolic subgroup M A N and a discrete series or nondegenerate limit of discrete series representation ε 1 of M such that Ind K K∩M (V(µ 1 )) = Ind K K∩M (ε 1 ). If necessary, we can rewrite Ind K K∩M (V(µ 2 )) in an analogous way; then we can use Vogan's result again, after some embeddings in reducible representations induced from discrete series as above if necessary. This proves Lemma 4.2.

Coming back to the proof of Proposition 4.1, we now know that if α is a lowest K-type in Ind K K χ V(µ)| K χ , then it cannot be a lowest K-type in Ind K K χ V(µ 1 )| K χ . Let then α 1 in K be a lowest K-type in Ind K K χ V(µ 1 )| K χ ;

  (a) For every Mackey parameter δ , the representation M 0 (δ ) is irreducible. (b) Suppose δ and δ are two Mackey parameters. Then the representations M 0 (δ ) and M 0 (δ ) are unitarily equivalent if and only if δ and δ are equivalent as Mackey parameters.

Theorem 2 . 4 (

 24 [START_REF] Champetier | Sur les représentations des groupes de déplacements de Cartan[END_REF], Théorème A). (a) For every admissible Mackey parameter δ , the admissible representation M 0 (δ ) is irreducible. (b) Suppose δ and δ are two admissible Mackey parameters. Then the admissible representations M 0 (δ ) and M 0 (δ ) are equivalent if and only if δ and δ are equivalent as admissible Mackey parameters. (c) By associating to any admissible Mackey parameter δ the equivalence class of M 0 (δ ) in G adm , one obtains a bijection between D adm and G 0 adm .

Theorem 3. 4 .

 4 (a) For every Mackey parameter δ , the representation M(δ ) is irreducible and tempered. (b) Suppose δ and δ are two Mackey parameters. Then the representations M(δ ) and M(δ ) are unitarily equivalent if and only if δ and δ are equivalent as Mackey parameters. (c) By associating to any Mackey parameter δ the equivalence class of M(δ ) in G, one obtains a bijection between D and G.

Proposition 4 . 1 .

 41 Suppose π 0 is a unitary irreducible representation of G 0 . Then the representation π 0 of G 0 and the representation M (π 0 ) of G have the same lowest K-types.

  , Theorem 4.11(i)): if M 1 A 1 N 1 and M 2 A 2 N 2 are two parabolic subgroups containing a parabolic subgroup MAN, if β 1 and β 2 are elements of a 1 and a 2 which are respectively a 1 and a 2 -regular, and if η 1 and η 2 are two real-infinitesimalcharacter irreducible tempered representations of M 1 and M 2 , then the representations Ind G M 1 A 1 N 1 (η 1 ⊗ e iβ 1 ) and Ind G M 2 A 2 N 2 (η 2 ⊗ e iβ 2 ) are equivalent if and only if there is an element in W = W (g C , a C ) that sends β 1 to β 2 and η 1 to η 2 .
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we note that α 1 K < α K . If α 1 were to appear in Ind K K χ (µ 1 ), it would appear in Ind K K χ V(µ)| K χ , and that cannot be the case because α is already a lowest K-type there.

We conclude that there exists α 1 in K and µ 1 in K χ such that α 1 K < α K and µ 1 K χ > µ K χ α 1 is a lowest K-type in Ind K K χ V(µ 1 )| K χ , but it is not a lowest K-type in Ind K K χ (µ 1 ). This seems to trigger an infinite recursion, because the same argument can be used again, beginning with (α 1 , µ 1 ) instead of (α, µ); however, there are not infinitely many K-types which are strictly lower than α. Thus our hypothesis that the lowest K-type α in M(χ, µ) is not a lowest K-type in Ind K K χ (µ) leads to a contradiction. To complete the proof, notice (from the compatibility of induction with direct sums) the equality of K-modules

with M induced from a (quite reducible) K χ -module. We already proved that every lowest K-type in M(χ, µ) must occur in as a lowest K-type in Ind K K χ (µ). Conversely, every lowest K-type in Ind K K χ (µ) does occur as a lowest K-type in M(χ, µ): from (4.1) we know that it must occur there, and from the above argument we already know that it is lower than every K-type occuring in M, so that it is a lowest K-type in Ind K K χ (µ). This proves Proposition 4.1.

We should perhaps mention that the above proof establishes, in a somewhat roundabout way, the following property of unitary representations of G 0 : Corollary 4.3. In every unitary irreducible representation of G 0 , each lowest K-type occurs with multiplicity one.

Proof: Suppose π 0 is a unitary irreducible representation of G 0 ; choose a Mackey parameter (χ, µ) for π 0 ; recall that M 0 (χ, µ) is equivalent, as a K-module, with Ind K K χ (µ). In (4.1) we see that the multiplicity of every lowest K-type in π 0 is lower than its multiplicity in M(χ, µ); every lowest K-type occurs at least once in π 0 and exactly once in M(χ, µ); the corollary follows.

The Mackey-Higson bijection is compatible with other natural features of G and G 0 . We mention an elementary one, related to the existence in each dual of a natural notion of renormalization of continuous parameters for irreducible representations:

• On the G 0 -side, there is for every α > 0 a natural bijection

obtained from the Knapp-Zuckerman classification (see the proof of Theorem 3.4) as follows: starting with π in G, we know that π is equivalent with some representation Ind G M P A P N P σ ⊗ e iν , where M P A P N P , σ and ν are as in the proof of Theorem 3.4; the tempered representation π α = Ind G M P A P N P σ ⊗ e i ν α has the same R-group ([24], Section 10) as Ind G M P A P N P σ ⊗ e iν , so it is irreducible; we define R α G (π) as the equivalence class of π α . It is immediate from the construction in §3.2 that the Mackey-Higson bijection is compatible with these renormalization maps:

Together Propositions 4.1 and 4.4 may shed some light on our construction of the correspondence: any bijection

must, if it is to satisfy Proposition 4.4, induce a bijection between the fixed-point-sets

The first class is the copy of K discussed in Remark 2.2; the second is the class G RIC discussed in §3.1. So B must send any K-type µ to an element of G RIC ; if B is to satisfy Proposition 4.1, it must send µ to V G (µ), like our correspondence M . Now, observing the Knapp-Zuckerman classification, Lemma 4.2 and Proposition 4.1, and inserting the above remark, we note that if π 0 M(χ, µ) is a unitary irreducible representation of G with nonzero χ, any representation of G having the same set of lowest K-types as π 0 must be equal to

for some ν in a χ . We may view our correspondence M as that obtained by choosing ν = χ.

Extension to the admissible duals

We now come back to the setting of §3. Write χ = α + iβ , where α and β lie in a . Consider the centralizer L χ of χ for the coadjoint action: L χ is the intersection L α ∩ L β . Notice that in the notations of the proof of Theorem 3.4, L χ is the centralizer of a α + a β ; thus L χ appears as the θ -stable Levi factor of a real parabolic subgroup P χ = M χ A χ L χ of G, in which K χ is a maximal compact subgroup. In slight contrast with the construction of 3.2, we require from the outset that P χ be chosen in a specific way: we fix an ordering of a making the real part α nonnegative, and choose P χ accordingly (see the proof of Theorem 3.4).

As before, we can build from δ the representation V M χ (µ) ⊗ e χ of P χ ; we define

an admissible representation of G. Proof of Theorem 5.1. We use the Langlands classification to reduce the description of the irreducible admissible representations of G to that of the irreducible tempered representations of reductive subgroups of G.

We will write (a α ) o for the set of linear functionals on a whose restriction to a α is zero. Decompose

Consider the parabolic subgroup P α = M α A α N α attached to α. We point out that it is possible to view (β 1 , µ) as a (tempered) Mackey parameter for the reductive group M α : indeed, M α admits K α as a maximal compact subgroup, and if we view β 1 as a linear functional on m α ∩ p (where m α is the Lie algebra of M α ), then the stabilizer of β 1 for the action of

. Besides, the group M α satisfies the hypothesis of Remark 3.2: we can therefore construct, as in §3.2, the tempered representation M M α (β 1 , µ).

We now remark that M(χ, µ)

To see this, recall that M M α (β , µ) is built using the centralizer

thus, it is induced from a parabolic subgroup P of M α , which reads P = M χ (A χ ∩ M α ) Ñhere Ñ normalizes Z M α (β 1 ) and its Lie algebra is a sum of positive root spaces for the given ordering. The right-hand side of (5.2) can thus be rewritten as

, which, by double induction, can in turn be written with only one parabolic induction as

Since (A χ ∩ M α )(A α ) is none other than A χ , the parabolic subgroup that appears in the final expression is equal to P χ . This proves (5.2). From (5.2) we see that M(χ, µ) is induced from a tempered representation; furthermore, in (5.2) we know from the proof of Theorem 3.4 that α is a α -regular. It also has a positive scalar product with every positive root of (g, a α ) in the ordering used to define P α . Therefore M(χ, µ) meets the usual criterion for the existence of a unique irreducible subquotient (see [START_REF] Knapp | Representation theory of semisimple groups[END_REF], Theorem 8.54). This proves part (a) in Theorem 5.1; part (b) then follows from the usual criteria for equivalence between Langlands subquotients (implicit in [START_REF] Knapp | Representation theory of semisimple groups[END_REF], Theorem 8.54).

To prove part (c), recall from the Langlands classification that when π is an admissible irreducible representation of G, there exists a parabolic subgroup P = M P A P N P of G such that A P ⊂ A, there exists an a P -regular element α in a P , and there exists an element β 1 in a P , as well as an irreducible tempered representation σ of M P , so that π is equivalent with the unique irreducible subquotient of Ind G P σ ⊗ e α+iβ 1 . Since α is a P -regular, the subgroups P α and P are conjugate. Applying Theorem 3.4 to M α , we know that the tempered representation σ of M P is equivalent with M M α (β 2 , µ)for some linear functional β 2 on a ∩ (m α ∩ p) and some irreducible representation

(The group M α does not necessarily satisfy the "real points of a connected complex algebraic group" hypothesis of §3.2, but the centralizer L α does, and it is the direct product between M α and the abelian vector group A α ; thus Theorem 3.4 does hold for M α ). We note that β 2 ∈ (a α ) o , and conclude that π is equivalent with a representation of the kind that appears in the right-hand side of (5.2). This proves (c) and Theorem 5.1.