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Abstract
Species can respond to climate change by tracking appropriate environmental conditions

in space, resulting in a range shift. Species Distribution Models (SDMs) can help forecast

such range shift responses. For few species, both correlative and mechanistic SDMs were

built, but allis shad (Alosa alosa), an endangered anadromous fish species, is one of them.

The main purpose of this study was to provide a framework for joint analyses of correlative

and mechanistic SDMs projections in order to strengthen conservation measures for spe-

cies of conservation concern. Guidelines for joint representation and subsequent interpreta-

tion of models outputs were defined and applied. The present joint analysis was based on

the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish

Distribution) which was parameterized on allis shad and then used to predict its future distri-

bution along the European Atlantic coast under different climate change scenarios (RCP

4.5 and RCP 8.5). We then used a correlative SDM for this species to forecast its distribu-

tion across the same geographic area and under the same climate change scenarios. First,

projections from correlative and mechanistic models provided congruent trends in probabil-

ity of habitat suitability and population dynamics. This agreement was preferentially inter-

preted as referring to the species vulnerability to climate change. Climate change could not

be accordingly listed as a major threat for allis shad. The congruence in predicted range lim-

its between SDMs projections was the next point of interest. The difference, when noticed,

required to deepen our understanding of the niche modelled by each approach. In this

respect, the relative position of the northern range limit between the two methods strongly

suggested here that a key biological process related to intraspecific variability was poten-

tially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local

adaptations to cold temperatures deserved more attention in terms of modelling, but further

in conservation planning as well.
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Introduction
Altered species distributions are typical responses of biodiversity to climate change [1, 2]. Con-
temporary latitudinal and elevational range shifts have been reported for many taxonomic
groups in both terrestrial and aquatic ecosystems [3, 4]. Since the early 1990s, the future spatial
distribution of species suitable habitats has been intensively projected using correlative Species
Distribution Models (SDMs) [5]. However, there is increasing evidence that rapid (i.e., contem-
porary) evolutionary changes [6], dispersal [7, 8], spatial structures of the environment (e.g.,
habitat mosaics, connectivity between suitable patches) [9] and population dynamics [10]
comprise factors that are just as important for determining future species ranges as the abiotic
variables commonly considered in correlative SDMs. To improve predictions of species future
distributions, there has been a recent development of hybrid models combining correlative
SDMs and dispersal models e.g., [11, 12]. Mechanistic (i.e., process-based) SDMs that permit
explicit incorporation of these complex range-limiting processes [13] can be integrated to fur-
ther advance predictions. The effect of temperature on physiological and demographic pro-
cesses, such as growth and survival, are regularly made explicit to test for a causal effect of
temperature on species distributions [14]. However, mechanistic SDMs are more challenging
to develop than correlative SDMs, especially at large scales, because they require more compu-
tationally intense processes, time, and data to be constructed, parameterized, and validated.
For those reasons, joint analyses of SDMmodels for a given species remain rare but increas-
ingly occur in the last few years [10, 15–19]. In this context, how results produced using differ-
ent modelling methods, and sometimes in different studies and under the supervision of
different researcher groups can be best exploited? The rationales needed for their joint inter-
pretation, and particularly how results similarities and differences should be preferentially pre-
sented and interpreted, need clarifications.

Diadromous fishes have received attention from the scientific community regarding the
simulation of their geographic distribution over time. Diadromous fishes migrate between
fresh waters and the sea to complete their life cycle [20]. They have dramatically declined on a
global scale during the last two centuries [21, 22]. Thirty-two percent of European diadromous
fishes are currently ‘extinct’ or are ‘at risk of global extinction’ according to the International
Union for the Conservation of Nature red list (www.iucnredlist.org). Given this poor outlook,
the question of whether climate change could impact the effectiveness of diadromous fish con-
servation strategies has been raised. In response, correlative SDMs were first developed to
quantify the future suitability of stocking river basins identified in national and European diad-
romous fish restoration plans [23, 24]. Diadromous fish were studied for decades because of
their atypical life cycle associated with their economic, ecological and cultural importance [25].
This strong scientific basis enabled the recent development of a mechanistic SDM for diadro-
mous fish named GR3D, i.e. ‘Global Repositioning Dynamics of Diadromous fish Distribution’
[26]. GR3D will help assess whether changing environmental conditions in river basins will
allow existing populations to persist or new populations to become established using our cur-
rent knowledge of the species population dynamics, the influence of temperature on key demo-
graphic parameters, and accounting for population source-sink dynamics.

The primary goal of this work was to provide a framework for the joint analysis of SDMs
outputs to increase the robustness of model-derived conclusions, specifically towards resources
managers involved in species conservation planning. We proposed guidelines on the represen-
tation of multiple models outputs, including graphical representations. We also defined guide-
lines for the interpretation of similarities and differences in models outputs both in terms of
research activities and conservation planning. The present joint analysis was on the future
diadromous fish distribution under climate change scenarios predicted by correlative and
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mechanistic SDMs. Using the allis shad (Alosa alosa) as a case study, we reported how GR3D
was for the first time parameterized and calibrated following a sensitivity analysis and an opti-
mization procedure. Two parameters were adjusted to match the data to be predicted using the
Approximate Bayesian Computation (ABC) method. GR3D was finally implemented using cli-
matic scenarios derived from the last Intergovernmental Panel for climate Change report [27]
to predict species distributions until the year 2100. The allis shad correlative SDM and its pro-
jections were derived de novo following the procedure described in [28], but with updated
global climate models and emission scenarios.

Material and Methods

General model presentation
Mechanistic model description. A full description of the GR3D model was provided by

[26]. The Java code is available online following this URL http://trac.clermont.cemagref.fr/
projets/SimAqualife/browser/GR3D_ECOMOD. The present work was conducted using this
model. Here, we described the main model features and list all GR3D parameters in Table 1.

GR3D combines population dynamics, repositioning behavior through dispersal process
and climatic requirements to assess local and global persistence, as well as potential changes to
the distribution of diadromous fishes in response to climate change over large spatial scales.
GR3D has been designed to provide a wide variety of modelling applications ranging from
applied questions–where it can be parameterized for real landscapes and species as in the pres-
ent work–to more theoretical studies of species dynamics under different environmental pres-
sures. GR3D simulates a seasonal time step and has been designed to cover the entire life cycle
of any diadromous fish species. The present GR3D application is centered on an anadromous
species utilizing a specific computational order of life cycle events and processes as this type of
diadromous species reproduces in fresh waters and grows at sea [20] (Fig 1 adapted from [26]).

In GR3D, reproduction of an anadromous species occurs annually during the reproductive
season in each river basin when spawners are present. The number of recruits Rj (we assume
that recruits are juveniles in estuaries) produced by Sj spawners in a river basin j is assumed to
follow a Beverton and Holt stock-recruitment relationship (Eq 1). This equation is modified in
two aspects. First, an Allee effect is included to take into account difficulties to establish a popu-
lation with limited numbers of fish in new habitats [40, 41]. To do so, the Allee effect intensity
(i.e., the number of spawners that effectively participate in reproduction) is modelled as a func-
tion of the river basin watershed area waj through the parameters η and θ (Table 1) with depen-
sation intensity positively correlated to parameter η and negatively correlated to parameter θ.
Secondly, a direct effect of water temperature and of watershed area on mortalities from eggs
to recruits is considered on the parameters αj and βj of Eq 1 (see [26] for details):

Rj ¼
ajSj

1

1þe
ð�lnð19ÞððSj�Z=y:wajÞ=ðZ:waj�Z=y:wajÞÞÞ

bj þ Sj
1

1þe
ð�lnð19ÞððSj�Z=y:wajÞ=ðZ:waj�Z=y:wajÞÞÞ

: Eq1

Growth of individuals is seasonal and modelled with a Von Bertalanfy growth function
including an effect of water temperature T on the growth coefficient κ (Eq 2) through a dome
shaped relationship [42] with an optimum growth coefficient κoptGrow around ToptGrow and a
null growth below Tmin Grow and above Tmax Grow:

k ¼ ðT � Tmin GrowÞðT � Tmax GrowÞ
ðT � Tmin GrowÞðT � Tmax GrowÞ � ðT � ToptGrowÞ2 : Eq2
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Table 1. GR3D parameter description with nominal values and ranges (minima andmaxima) for the 11 parameters involved in the sensitivity
analysis.

Parameter name Description Nominal value and
range

References

Reproduction

repSeason Season of the reproduction Spring [29]

Δtrec Assumed age of juveniles produced by the reproduction (year) 0.33 [30]

η Parameter to relate S95,j and the surface of a spawning place (ind./km2) 2.4 [31]

*θ Ratio between S95,j and S50,j in each spawning place [1.8–2.2] [31]

a Fecundity of the species (eggs/ind.) 135 000 [32, 33]

*survoptRep Optimal survival rate of an individual from eggs to the age Δtrec [1*10−3–5*10−4] [31]

*TminRep, ToptRep, TmaxRep Water temperature (°C) regulating survival of an individual from eggs to
the age Δtrec

[9–12], 20, 26 [32, 34]

*λ Parameter to relate cj and the surface of a spawning place [3*10−4–5*10−4] [31]

σrep Standard deviation of log-normal distribution of the recruitment 0.2 Expert
opinions

Spsp Survival probability of spawners after reproduction 0.1 [29]

Downstream migration

downMigAge Age of individual when it runs toward the sea (year) 0.33 [30]

downMigSeason Season of the run toward the sea Summer [32]

Growth

Lini Initial length of juveniles in estuary (cm) 2 [30]

σΔL Standard deviation of log-normal distribution of the growth increment 0.2 Expert
opinions

L1 Asymptotic length of an individual (cm) 60 [35]

TminGrow, *ToptGrow,
TmaxGrow

Water temperature (°C) regulating the growth 3, [15–19], 26 [35]

*koptGrow Optimal growth coefficient (cm/season) [0.2–0.5] [36, 37]

Survival

*Zsea Annual mortality coefficient at sea (year-1) [0.2–0.6] [31]

Hriv Annual mortality (different from natural) coefficient in river (year-1) 0 Expert
opinions

*TminSurvRiv, ToptSurvRiv,
TmaxSurvRiv

Water temperature (°C) regulating survival of individuals in river [8–11], 20, 30 [32, 34]

survoptRiv Optimal natural survival rate of individuals in river (year-1) 1 [32]

Maturation

*Lmat Length at the first maturity (cm) [36–44] [32, 38]

Upstream migration

upMigAge Age of an individual when it runs toward the river (year) - [29]

upMigSeason Season of the return of spawners in river for spawning Spring [29]

*phom Probability to do natal homing behavior [0.6–0.9] [39]

αconst, αdist, αTL, αWA Parameters of the logit function used to determine the weight of each
accessible basin for dispersers/strays

-2.9, 19.7, 0, 0 Expert
opinions

Dj�birhtPlace , σj−birthPlace, TL, σTL,
WA, σWA

Mean and standard deviation used for standard core values in the logit
function

300, 978,-,-,-, - Expert
opinions

wdeathBasin Weight of the death basin used to introduce a mortality of dispersers/strays [0.2–0.6] Expert
opinions

* model parameters that were used in the global sensitivity analysis according to [26]. In bold were given the two most influential parameters according to

the global sensitivity analysis. Complementary remarks regarding as to why nominal values and ranges were retained during model parameterization were

given in [26].

doi:10.1371/journal.pone.0139194.t001
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Individual survival at sea depends on a fixed annual mortality coefficient Zsea and survival
in rivers depends on temperature, and is age-dependent.

While downstream migration is dependent on season and age, upstream migration is
dependent on season and size. Upstream migration includes an original dispersal process
which has been modelled as a three-stage process with emigration, transfer and settlement
phases [43, 44]. During the emigration phase, individuals have a probability phom of adopting a
homing behavior or 1−phom of adopting straying behavior. During the transfer phase, individu-
als that do not become strays migrate to their natal river. For strays, the probability to migrate
in each river basin is assumed to be a function of its accessibility and its attractiveness. Accessi-
bility is assumed to depend on dispersal distance and on the size of the individual. The basin
attractiveness is assumed to be a function of its watershed area. Then, relatively to an individ-
ual, a weight is calculated for each river basin. Assuming that the individual may not find any
basin and simply die during transfer, a virtual ‘death basin’ with a fixed weight in the environ-
ment is also introduced. Standardizing all the weights so that their sum equals 1, we provided a
probability to choose each river basin (including the death basin) and we modelled the choice
by a simple multinomial process. Then, during the settlement phase, individuals enter in the
selected destination basin, survive if conditions are suitable and reproduce if they find mating
requirements (see [26] for details).

Correlative model description. Full details of correlative SDM construction for European
diadromous fishes are provided in [28]. In correlative SDMs, modelers search for the linear
combination of environmental predictors that best reproduce the observed species distribution
[5]. Then, these multiple correlations between realized species distributions and mostly abiotic
predictors (e.g. climate) are used to assess habitat suitability under changing environmental
conditions and with various purposes in ecology and conservation biology [45]. For the con-
struction of diadromous fish SDMs, generalized additive models (GAMs; [46]) were used to
relate presence-absence data of these species to a maximum of three biogeographic, geomor-
phologic, and climatic variables. The number of explanatory variables was limited to enhance
the model accuracy and predictive power [5], the maximum of three variables being derived

Fig 1. Conceptual diagram of the life cycle of anadromous species (adjusted to allis shad)
represented in the GR3Dmodel.Red boxes depicted the processes in GR3D that were influenced by
temperature and orange boxes the ones that were linked to the surface area of the drainage basin. The figure
was adapted from [26] for illustrative purpose only.

doi:10.1371/journal.pone.0139194.g001
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from [47]. All potential explanatory variables were carefully selected in accordance with major
ecological theories, and the current understanding of diadromous fish biology and ecology
[48]. These logistic regressions were fitted using a maximum likelihood method. Non-paramet-
ric smoothing functions with a degree of freedom restricted to two were used to test for linearly
decreasing, increasing or dome-shaped response curves and to avoid model overfitting. The
allis shad SDM presented in [28] had high performances in terms of reproducing past observed
distributional patterns. It explained half of the deviance in the distribution data used during
calibration and, the Kappa and AUC (Area Under the Curve) metrics categorized this model as
‘substantial’ to ‘good’, both during the calibration and validation phases. It was finally com-
posed of three explanatory variables (i.e., longitude of the river basin outlet, summer air tem-
perature at the basin outlet, and the surface area of the drainage basin). Allis shad thermal
requirements in shape, range and optimum were in accordance with an experimental study on
juvenile survival (Ph. Jatteau, pers. comm.).

Biological and environmental data availability
Studied species. Allis shad (Alosa alosa) is an anadromous clupeid that spawns in the

main stem of rivers. Fish migrate to sea during their first year where they grow and then return
to fresh waters to spawn between 3 and 6 years old [49]. The species distribution (originally
along the Atlantic coast from Norway to Morocco; Fig 2) has decreased considerably since the
middle of the 20th century, mainly because of overfishing, dam constructions, water quality
degradation and deterioration of spawning habitats [22]. Currently, populations of allis shad
exist along the northeastern Atlantic coast in some large rivers of France (i.e., Loire, Gironde-
Garonne-Dordogne, and Adour) and Portugal (i.e., Minho and Lima) [38]. Despite the imple-
mentation of protective measures, this species appears to have been in serious decline for a
number of years [22, 31]. Allis shad has lost nearly half of its populations in Europe since the

Fig 2. The geographical extent of the correlative andmechanistic modelling approaches with the allis
shad historical distribution. Light grey and dark grey polygons corresponded to the 197 basins of EuroDiad
3.2 considered in the correlative SDM. Light grey and dark grey polygons represented also the allis shad
former absences and presences around 1900, respectively. The area delineated by a solid black line denoted
the 73 basins taken into account in the GR3Dmodel application.

doi:10.1371/journal.pone.0139194.g002
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mid-20th century [50] and, for the Gironde population, long considered as the reference, a total
fishing moratorium was implemented since 2008 due to a dramatic drop in landings [31]. Biol-
ogy and ecology of allis shad have therefore received a great deal of attention in the last 30
years [30, 37, 51–56] and several studies also dealt with its population dynamics [31, 57]. This
species is the focus of an ongoing stocking program (started in 2008) in the Rhine River (Ger-
many) with juveniles coming from assisted reproduction of wild spawners from the Gironde-
Garonne-Dordogne basin (France) [33]; http://www.lanuv.nrw.de/alosa-alosa/en/.

Biological data. Life history traits of allis shad required for the parameterization of the
GR3D model were either obtained from the literature, or based upon expertise (see references
mentioned in Table 1).

Data regarding the distribution of allis shad were obtained from the EuroDiad 3.2 database
(Irstea, Cestas, France; available at http://www.diadfish.org/; see S1 Table). EuroDiad 3.2
describes the distribution of European diadromous fishes at three time steps (i.e., 1750–1850,
1851–1950 and 1951–2010). This database covers the Western Palearctic region including
Europe, North Africa and the Middle East, with 197 river basins describing inland waters of
those regions (Fig 2). The database records the presence or absence of European diadromous
fishes in every basin. Allis shad were recorded ‘present’ in 79 basins in the first two time peri-
ods. Historical suitable basins were mainly in Western Europe, with a few being located in
North Africa (Fig 2).

Physical environment and environmental data. The 197 river basins included in Euro-
Diad 3.2 were also described by key geomorphological attributes such as the coordinates at the
outlet, the altitude of the source, the surface area of the drainage basin, and the length of the
main watercourse (see S1 Table). Basins were also characterized by their climatic conditions
averaged across the period 1901–1910 by seasons (i.e., winter: January, February and March;
spring: April, May and June; summer: July, August and September; fall: October, November
and December) and for the whole year. Historical near-surface atmospheric temperature at the
outlet and precipitation across the whole basin were extracted from the recently up-dated CRU
TS 3.22 database [58] which comprises monthly grids of observed climate for the period 1901–
2013, covering the global land surface at 0.5 degree resolution (freely downloadable at http://
www.cru.uea.ac.uk/cru/data/hrg/). Seasonal and annual mean air temperatures were converted
into water temperatures by assuming a basic linear relationship between these two variables
with water temperatures being 2°C lower than air temperatures.

For the mechanistic approach, all the basins in EuroDiad 3.2 could not be taken into
account because of the time consuming computational processes required. Instead, 73 basins
corresponding to the core distribution range of allis shad in northwestern Europe were retained
to define the physical environment of GR3D. Retained basins were located along a latitudinal
gradient between the Guadalquivir River in Spain (37°N) and the Drammenselva basin in Nor-
way (59.80°N) along the North-Atlantic coast. Islands such as UK and Iceland were not
included in this first mechanistic modelling attempt (Fig 2). The 197 basins described in Euro-
Diad 3.2 were considered in the correlative approach. Correlative SDMs require taking into
account the entire biome to define proper species distribution edges (Fig 2).

Calibration of models
Mechanistic model calibration. The GR3D calibration was based on simulating a stable

allis shad distribution around 1900; consistent with the observed distribution of the species
over the 1851–1950 period as described in the EuroDiad 3.2. database (hereafter: ‘historical dis-
tribution’). From this, three simulation summary statistics were designed.

Correlative and Mechanistic Species Distribution Models
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The first two Summary Statistics (SS1 and SS2), were defined according to observed histori-
cal distribution patterns. In SS1, a predicted probability of each basin j to sustain a stable allis
shad population psust1900,j was recorded. This probability relied on the amount of reproduction
in the basin j, Nrep,j, over the last 10 years of simulation (1891–1900):

psust1900;j ¼
Nrep;j

10
: Eq3

Then, based on the observed historical allis shad distribution, SS1 was computed as the fol-
lowing log-likelihood function:

SS1 ¼
X

j2p
logðpsust1900;j þ dÞþ

X

j2a
logð1� psust1900;j þ dÞ; Eq4

with p referring to all the basins where the species was historically recorded as present, a refer-
ring to all the basins where the species was historically recorded as absent and δ a constant
fixed to 0.001 to avoid convergence problems.

In SS2, the latitude of the northernmost populated basin at the end of the simulation was
recorded. To be considered as populated by allis shad, the basin should have a mean recruit-
ment value over the last ten years of simulation above 50 juveniles. This criterion was based on
the model exploration. Basins with a mean recruitment exceeding this value were not
experiencing a crash of abundance at the beginning of the 20th century. SS2 was later compared
to the target value of 53.55 that corresponded to the latitude at the outlet of the northernmost
basin where the species was historically recorded present in EuroDiad 3.2, (i.e., the Weser
River in Germany).

The third summary statistic SS3 was defined according to an observed pattern since several
studies showed that the mean age of allis shad spawners was five years-old [35, 59–61]. As

such, the mean age of spawners (SpAgej ) was recorded for each basin j considering only first

mature spawners (i.e., not those which have previously spawned). SS3 was then computed as a
sum of square of deviations from the target value of five years-old:

SS3 ¼
X

j

ðSpAgej � 5Þ2: Eq5

From the definition of these three summary statistics, the calibration of GR3D was then run
in two steps: (1) a global sensitivity analysis, and (2) an optimization procedure. The global
sensitivity analysis was conducted to determine the two most influential model parameters on
the three summary statistics [62]. The optimization procedure was run to determine a posterior
distribution for these two influential parameters and to identify the influential parameter sets
(couples) that best reproduced the historical distribution of allis shad in the GR3D physical
environment [63]. Full details and outcomes of the calibration phase were given in S1
Appendix.

The GR3D global sensitivity analysis was performed on 11 uncertain parameters as identi-
fied by [26]. Maximum and minimum values for these parameters were determined with the
main prerequisite to not exceed the 20% deviation from the best estimates (Table 1), commonly
used in sensitivity analysis [64, 65]. A complete sampling was used meaning that all combina-
tions of minimum and maximum values of the 11 uncertain parameters were defined and then
run, resulting in 211 simulations. To take into account the model stochasticity, each combina-
tion was also simulated 10 times, multiplying by 10 the total number of simulations. Sensitivity
indices relative to a given parameter were calculated for each summary statistic. GR3D parame-
ters not considered in the global sensitivity analysis were fixed to their nominal values given in
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Table 1. Uncertain parameters were finally classified by decreasing order of variations they
caused on the three summary statistics. Two parameters were selected to be calibrated through
the optimization step. These parameters had high values of sensitivity indices and a low inter-
action between them for a same summary statistic to make result interpretation more reliable
and efficient.

The optimization procedure relied on a recent Approximate Bayesian Computation (ABC)
algorithm specifically adapted to complex models [63]. The objective was to search for the sets
of the two previous selected parameters within their min-max interval that maximized SS1 and
that minimized SS3 with both a target value of 0, and that permitted SS2 to get closer to its tar-
get value of 53.55°N. We also obtained a posterior distribution for the two parameters. At this
step, the nine other uncertain parameters were fixed to the central value of the min-max inter-
val tested during the global sensitivity analysis.

During the whole calibration phase, each simulation started with the 73 basins of the GR3D
physical environment characterized by their mean seasonal water temperatures for the period
1901–1910 and their surface area. They were all populated by 500 000 juveniles at the first time
step which was in summer. Simulations lasted 100 years with constant climatic (i.e., tempera-
ture) conditions mimicking the 1901–1910 period.

Correlative model calibration and validation. To enhance mechanistic and correlative
model joint analysis, the correlative model was calibrated and validated de novo with the same
climatic data as used for the mechanistic model, and following the procedure described in [28].
The surface area of the drainage basin was also log-transformed to account for extreme values
corresponding to large Middle Eastern basins (e.g., the Ural and Volga rivers).

Correlative model calibration and validation aimed at reproducing the historical species dis-
tribution. In this case, all linear combinations of one, two or three potential explanatory vari-
ables were compared against the Akaike Information Criterion AIC; [66]. The combination
with the lowest AIC value was retained and its ability to reproduce the historical allis shad dis-
tribution was evaluated with the Kappa coefficient which measures the proportion of species
entries correctly classified as presences (sensitivity) or absences (specificity) after the probabil-
ity of chance agreement has been removed [67], the Area Under the Curve (AUC) that relates
sensitivity and false positive proportion (1-specificity) over a wide and continuous range of
threshold levels, which makes it a threshold-independent measure [68], and the percentage of
deviance explained by the model calculated as follows:

ExpDev ¼ Null model deviance� Final model deviance
Null model deviance

� 100 Eq6

The Null model only contained the intercepts. For Kappa calculation, the probabilities of a
basin to be suitable to allis shad derived from the model needed to be transformed into pres-
ences-absences using a threshold comprised between 0 and 1. Here, the threshold maximizing
the Kappa value was the one applied. Historical allis shad distribution and potential environ-
mental explanatory variables were extracted from the EuroDiad 3.2 database. Among the 197
river basins describing inland waters of the Western Palearctic region in this database, the spe-
cies was recorded present in 79 basins and absent in 118 (Fig 2; see S1 Table). Seventy-five per-
cent of species entries from the database were used in model calibration and the remaining
part in model validation. Model validation consisted of evaluating model predictive perfor-
mances on data not utilized during model calibration using the Kappa and AUCmetrics.
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Projection of allis shad dynamics and habitat suitability for 2100
Future climatic conditions were obtained from dynamical downscaling of Global Climate
Model (GCM) projections performed in the scope of the fifth Intergovernmental Panel for Cli-
mate Change (IPCC) assessment report (AR5) [27]. EURO-CORDEX is the European branch
of the international CORDEX (Coordinated Regional Climate Downscaling Experiment) ini-
tiative, which is a program that aims at producing improved regional climate change projec-
tions for all land regions world-wide [69] (http://www.euro-cordex.net/). The outputs (2014–
2100) of monthly near-surface air temperature and precipitations from the RCA-4 regional cli-
mate model was used in this study, with the following available ‘Representative Concentration
Pathways’ scenarios: the medium RCP 4.5 and the high RCP 8.5. Downscaled projections were
limited to one GCM, the CNRM-CM5. Data at 0.5 degree resolution can be freely downloaded
at http://pcmdi9.llnl.gov/esgf-web-fe/.

For GR3D, a simulation lasting 300 years (i.e., 1200 seasonal time steps) was run. During
the first 100 years of simulation, water temperatures were fixed to the 1901–1910 mean (i.e.,
initialization of a stable allis shad distribution around 1900).Then, temperatures evolved
according to the CRU TS 3.22 database (i.e., reproduction of temperature evolution of the
1901–2013 period) and to the selected RCP scenarios (i.e., simulation of temperature evolution
for the 2014–2100 period). This 300 years simulation was run 100 times with 100 couples of
the two calibrated parameters; their values being randomly sampled in their posterior distribu-
tions. The predicted probability of a basin to sustain a stable allis shad population psust2100,j
over the 2070–2100 period was recorded in each basin j. This probability relied on the amount
of reproduction NrepFinal,j over the last 30 years of simulation:

psust2100;j ¼
NrepFinal;j

30
Eq7

For the correlative SDM, potential future basin suitability was projected by changing the cli-
mate as predicted by RCA-4 under the two available RCP scenarios. Temperatures were aver-
aged over thirty years from 2070 to 2100 to smooth inter-annual variability and were entered
in the model. These simulations provided a probability psuit2100,j for each basin j to be suitable
for allis shad at the end of the 21th century.

Joint analyses of SDM results: Guidelines
One objective of this paper was to enhance joint analyses of correlative and mechanistic SDMs
results when the two exist for a given species. As a first guideline regarding results representa-
tion, (1) a focus should be made on the geographic entities common to the two modelling
approaches, i.e. here the 73 basins that constituted the GR3D physical environment. (2) The
same evaluation metrics need to be calculated during both model constructions. The com-
monly-used Kappa coefficient, percentages of well-predicted presences/absences and AUC
metric were calculated for both the correlative SDM and the GR3D model. They were then
used to evaluate the models ability to reproduce the historical species distribution. In GR3D, a
basin was considered populated in 1901–1910 when the mean recruitment value over the final
ten year period of the first 100 years simulation was>50 juveniles, as described for the SS2
summary statistics. This binomial (populated/not populated) variable was used during the
GR3D Kappa calculation and psust1900 was used for the GR3D AUC calculation. As SDMs are
often developed to be used for more than one purpose, e.g. for diverse applications from con-
servation biology to invasion ecology [70], it is preferable to provide raw data (i.e., probabili-
ties) and to allow users to apply thresholds to produce binary or categorical outputs, if
necessary. (3) Simulations of the future species distribution have to be analyzed together using
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probabilities: probabilities for each basin j to be suitable in the correlative SDM (i.e., psuitFinal,j)
and probabilities for each basin j to sustain stable populations in the mechanistic SDM (i.e.,
psustFinal,j). Probabilities were also converted here into five classes (i.e., 0: null,] 0–0.25]: low,]
0.25–0.53]: moderate,] 0.53–0.75]: high and] 0.75–1]: very high). The limit 0.53 was retained
between the moderate and high classes as this value represented the threshold maximizing the
Kappa index in the correlative SDM. (4) We assumed that the representation and interpreta-
tion of probabilities on maps when the model units were not of fixed geographical area such as
pixels could be partly biased. For example, when representing surface area of the drainage
basins on maps, the importance of results in large entities could be over-interpreted. Therefore,
heat maps and bivariate plots were here proposed as complementary representations.

Regarding joint model interpretation, guidelines were centered on how similarities and dif-
ferences in models outputs can be interpreted in terms of research activities and conservation
planning (Table 2). Two basic patterns were addressed: (1) The overall trend in habitat suitabil-
ity and population dynamics in response to future climate change. Do the two approaches gave
the same broad picture? (2) The distribution range limits predicted under past and future cli-
mate conditions. Do the same geographical extent covered by the two approaches? The first
will contribute to the improvement of our knowledge on species climate change vulnerability
and conservation status [71, 72] while the second will help in enhancing our mechanistic
understanding of species distribution limits [73] and, by extension, the reliability of conserva-
tion measures.

Results
Compared to the first modelling attempt of [28], the use of the latest version of the CRU TS
database to construct the allis shad correlative SDM did not change the explanatory variables
retained in the model nor their response curves. Regarding climatic variables, summer air

Table 2. Guidelines for interpreting similarities and differences in SDMs outputs in terms of research activities and biological conservation. In
bold were given the categories to which the present study was finally assigned. Blank cells signified that preferentially no conservation planning recommen-
dations should be drawn. SDMC and SDMM were abbreviations corresponding to the correlative and mechanistic species distribution models, respectively.

Trend between predicted past distribution and predicted
future distribution (probabilities: increasing, decreasing,
stable)

Past and future predicted range limits

Robust forecasts of
climate change
response

Divergent forecasts
of climate change
response

Present study Congruent range
limits

Wider or narrower
range limits

Present study

Research
activities

Assessment of the
vulnerability to
climate change was
improved

A need for
comparing the
response curve to
the climate
component (e.g.
temperature in
SDMC) with the
functional
relationships linked
to climate (SDMM)

Low concern for
allis shad, at
least when
considering
temperature

Mechanisms
determining the
species range limits
in the SDMC were
most likely well-
known as explicitly
integrated in the
SDMM

A need for
clarifying the niche
most likely
modelled by each
SDM as the
interpretation will
be related [13, 73]

SDMC more closely
related to the
realized niche and
SDMM to the
fundamental niche.
Population local
adaptation is
suspected to be
required in the
SDMM and should be
tested before field or
experimental
validation

Conservation
planning

Revision of the
conservation status
in light with climate
change effect [71,
72]–Categorization
of threats

Climate change
alone (i.e.
temperature)
should not be
listed as a major
threat

Assessment of the
adequacy of key
conservation
measures to these
mechanistic
insights

doi:10.1371/journal.pone.0139194.t002
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temperature was also selected with an optimal value around 16°C. The sensitivity analysis per-
formed on GR3D identified two of the most influential model parameters which were associ-
ated with two distinct processes (i.e., survival and growth; Table 1), and which were directly
linked or influenced by climate. TminRep (the temperature below which the eggs and larvae sur-
vival was null) was an important factor in the capacity of GR3D to maintain populations at
northern latitudes. koptGrow (or the optimal growth coefficient) was crucial in mimicking the
observed pattern of first reproduction at 5 years-old (see S1 Appendix). Posterior distributions
of the two parameters were both unimodal curves with modal values consistent with the
knowledge regarding allis shad biology and ecology (see S1 Appendix). The generation of these
posterior distributions required 106 000 simulations and a computing time of c. 62 hours.

Models predictive performances evaluated on their ability to reproduce the historical species
distribution in terms of presences/absences were moderate for the mechanistic SDM and high
for the correlative SDM (Kappa values of 0.46 and 0.75, and AUC values of 0.75 and 0.95
respectively; Table 3). Both models correctly reproduced the observed presences of allis shad
around 1900 (63% and 94% respectively; Table 3). However, only the correlative model accu-
rately reproduced the known absences of the species (83% of absences well predicted versus
16% for the mechanistic model; Table 3). This percentage of absences well-predicted by the
correlative model was nonetheless reduced by more than three (i.e., 25%) when considering
only absences reported in the 73 basins that constituted the GR3D physical environment.
GR3D delineated a homogeneous historical distribution along the northern Atlantic coast with
few basins that did not exhibit a stable population in between.

Regarding trends in predicted probabilities (Table 2), one strong and common feature of
SDMs predictions was probabilities of basins to be suitable for allis shad (psuit2100,j predicted by
the correlative model) and to sustain stable population (psust2100,j predicted by the mechanistic
model) remaining high around 2100 under both RCP scenarios (Fig 3A and 3B). The average
probability of a basin to be suitable around 2100 (i.e., �psuit 2100 ) was 0.71 and 0.64 under RCP 4.5
and 8.5 respectively. The average probability of a basin to sustain a stable population (i.e.,

�psust 2100 ) was 0.76 and 0.80 under RCP 4.5 and 8.5 respectively (Fig 3A and 3B). In addition,
�psuit 2100 and �psust 2100 exhibited few changes compared to the 1901–1910 period as �psuit 1900 and
�psust 1900 equaled 0.74 and 0.69 respectively (Fig 3A and 3B). More specifically, for basins at the

core of the species distribution, the GR3D model showed probabilities remaining stable and
close to 100% under both RCP scenarios (Fig 3B and Fig 4). Up to the Sienne basin in France,
reproduction was predicted to occur every year over the 30-year period for the two RCP sce-
narios (Fig 3B and Fig 4).

Regarding the past and future predicted range limits (Table 2), the correlative SDM cap-
tured the full observed distribution range, whereas GR3D showed difficulties in correctly
reproducing the northern limit of the historical distribution (Figs 3A, 3B and 4), leading to the

Table 3. Predictive performances of the correlative andmechanistic SDMs. Values in brackets corre-
sponded to percentages when only basins from the GR3D physical environment were considered (73 over
197).

Correlative SDM (SDMC) Mechanistic SDM (GR3D / SDMM)

Number of basins 197 73

Explained deviance 54.0 -

Kappa statistics 0.75 0.45

AUC statistics 0.95 0.75

% of presences well-predicted 94.0 [98.0] 63.0

% of absences well-predicted 83.0 [25.0] 15.9

doi:10.1371/journal.pone.0139194.t003
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lower percentage of well-predicted presences (Table 3). For basins at latitudes higher than the
Seine estuary, GR3D predicted in 1901–1910 an average recruitment over the period systemati-
cally below the ‘50-juveniles’ threshold and a probability of sustaining a stable population
below 0.20 (Fig 3B). Nevertheless, false presences or absences in the correlative SDM also

Fig 3. Species distribution models outputs along the latitudinal gradient from southern Spain to
southern Scandinavia. (a) The upper panel represented outputs of the correlative SDM and (b) the lower
panel the outputs of the mechanistic SMD. Blue, green and pink circle symbols represented probability
outputs for 1901–1910, for 2070–2100 assuming the RCP 4.5 scenario and for 2070–2100 assuming the
RCP 8.5 scenario respectively. For the correlative model, probabilities corresponded to the probability for a
basin to be suitable at the given time period while for the mechanistic SDM, it represented the probability for a
basin to sustain a stable population.

doi:10.1371/journal.pone.0139194.g003

Fig 4. Heat map representing the probability classes for the 73 basins at the species historical core
distribution range for the two times steps, i.e. 1901–1910 and 2070–2100, and for the twomodelling
approaches, i.e. the correlative andmechanistic SDMs, and the two climate change scenarios, i.e.
RCP 4.5 and 8.5. Five classes 0,] 0–0.25],] 0.25–0.53],] 0.53–0.75], and]0.75–1] were represented by a
continuous grey gradient with black used for the highest probability class] 0.75–1]. Basins were
ordered along a latitudinal gradient (i.e., latitude at the basin outlet) from South (i.e., Guadalquivir) to
North (i.e., Drammenselva).

doi:10.1371/journal.pone.0139194.g004
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concerned northernmost basins. Under climate change, in a fringe composed of northern
French, Belgian, Dutch, and German basins (i.e., between the Yser basin and the Ems basin),
probabilities of basins to sustain stable reproductions were passing from almost zero in 1901–
1910 to intermediate values for the end of the 21st century (Figs 3B and 4). This highlighted an
additional important result emerging from the mechanistic SDM simulations which was that
allis shad dispersal capacities (as they are explicitly represented in the GR3D model) enabled
the species to colonize new suitable watersheds farther north during this 200-year period of
simulation. Secondly, at the southern edge of the distribution, a marked decrease in probability
was predicted under the RCP 8.5 scenario for the Guadalquivir basin (Figs 3B and 4), probabil-
ity being divided by a factor of two.

Discussion
In our application case, to further understand the relative roles of different parameters in the
mechanistic model outputs and to avoid misinterpretation of simulation results, we used a
global sensitivity analysis to identify two of the most sensitive model parameters that we then
calibrated using a recent ABC algorithm adapted to complex stochastic models [63]. As far as
we know, this is one of the first attempts to calibrate such a complex mechanistic SDM using
observed data (see [74] for a non-exhaustive list of fitted process-based models). Despite of the
recent works in the field of complex model calibration e.g., [63, 75, 76], this process remains
computationally heavy, but affordable in regards to the benefit of this paradigm, i.e. identify a
more realistic model structure and parameter sets.

To date, there have been few direct combined uses of correlative and mechanistic SDMs for
the same species, but the number of species with multiple opportunities of species distribution
modelling is increasing. In the present study, we argued that combining both modelling
approaches may improve the use of SDMs in conservation planning and management under
climate change [77]. We proposed a conceptual framework for the SDMs outputs representa-
tion and interpretation (following two main patterns summarized in Table 2), with particular
attention on insights that can be incorporated into conservation planning. From the present
joint modelling attempt, allis shad exhibited robust and optimistic responses to future climate
change under both moderate and pessimistic climate change scenarios: basins displaying suit-
able environmental conditions and basins with a high probability to support self-sustaining
populations (while other human-induced pressures were considered to their pristine level)
were predicted to remain quite stable according to the correlative and mechanistic SDMs,
respectively. In the latter approach, the number of basins with a moderate to high probability
of hosting a self-sustaining population was also increasing during the 21st century, with gains
at the northern species range. Indeed, the mechanistic SDM was parameterized with a homing
rate of 0.75 (i.e., straying rate of 0.25) allowing shads to explore the environment and to colo-
nize basins farther north than the 1900-calibrated northern edge. The homing rate used in the
model was the most probable estimate based on current knowledge and was in accordance
with a recent study on natal origin determination through otolith microchemistry analysis
[78]. Consequently, these modelling results strongly suggest that allis shad may be able to cope
successfully with ongoing climate change that should not be as such perceived as a major threat
to the species long-term persistence. This result is consistent with other statistical and model-
ling studies highlighting that no significant environmental effect in allis shad abundance time-
series has been identified in two major French basins still holding a self-sustaining allis shad
population [31, 79]. Moreover, for a sympatric species, A. fallax, future climate change is likely
to be beneficial to populations [28], and is further predicted to increase survival and population
persistence in U.K. rivers [80]. For another related species A. sapidissima, 21st century climate
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change is of great concern, as it is strongly suspected to favor population expansion of the spe-
cies in its introduced range along the American Pacific coast up to Alaska and beyond [81].
Secondly, jointly interpreting results in terms of predicted range limits raised, in the first place,
questions regarding the niche modelled by these two methods [82–84]. It is not possible to
make a definitive statement about exactly what niche is being model by correlative SDMs, espe-
cially when no biotic variables were tested or included in the model. Nonetheless, correlative
models statistically relate environmental variables directly to species occurrences or abun-
dance. Thus, it implicitly incorporates any biotic interactions that are dependent on the abiotic
variables considered [73]. In the present model, temperature is highly influencing the fish
metabolism but also e.g. the dynamics of their zooplanktonic prey. The surface area of the
drainage basin was associated to the species-area theory implying that species richness
increases as a power function of the surface area (see [28] for variables ecological interpreta-
tion). In this respect, the present correlative SDM was considered as more closely related to the
realized niche. In mechanistic SDMs, organisms are described as a set of behavioral, morpho-
logical and physiological traits. Mechanistic SDMs explicitly incorporate population dynamics
with special focus on processes that limit species distributions. This represents a mechanistic
depiction of a species fundamental niche which can then be used to infer distribution limits
[13]. In the present work, the fundamental niche predicted by the mechanistic SDM was
smaller than the potential observed/realized niche suggesting that within-species variability
was very likely at play at the northern range edge. Indeed, the limit position in GR3D simula-
tions was demonstrated to be particularly sensitive to the temperature parameter TminRep linked
to survival of eggs and larvae. We hypothesized that adaptation of local populations had
occurred across generations favoring the survival of shad young stages to lower temperatures
as it has been shown that local adaptation is frequent in salmonid populations [85]. Nonethe-
less, integrating all the processes involved in a species distribution in mechanistic SDMs still
remain challenging as it increases model complexity and makes it more difficult to calibrate,
and to extrapolate and analyze model outcomes [86, 87].

More specifically, when thinking about shad conservation, the present results bring new
insights on the relevance of assisted colonization [88] and stocking programs. Over the past
decade, a debate has evolved in the scientific community over the costs and benefits of such
management decisions as climate adaptation and species conservation strategies [89]. Some
authors have suggested that assisted colonization and stocking, when applied cautiously and
judiciously, could be an essential tool for species conservation in a changing climate [90–92].
Others argued that ecologists do not have the ability to determine when such programs will be
successful and whether translocated or rearing individuals will have negative or positive effects
on the recipient ecosystems [93, 94]. Regarding main potential drawbacks, it has been shown
that straying rates of hatchery fish are higher compared to wild fish, as imprinting may not
have been as effective and assisted recolonization can thus increase stray rates of wild popula-
tions [95]. As straying represents demographic losses from donor populations, many studies
report that large donor hatchery populations are a significant threat to recipient wild popula-
tions [96–100]. Concerning allis shad, there is an ongoing stocking program (started in 2008)
in the Rhine River (Germany) with juveniles coming from assisted reproduction of wild spawn-
ers from the Gironde-Garonne-Dordogne basin (France) [33]; http://www.lanuv.nrw.de/alosa-
alosa/en/. Monitoring in the Rhine River reported that spawners have been observed in the
river for the first time in more than a half century in 2013 and 2014, while juveniles are com-
monly caught in the estuary since the beginning of the stocking program [101]. These promis-
ing results are in line with the results of the current correlative modelling approach and those
of [28] in which the Rhine basin will be suitable for shads around 2100 under climate change
scenarios. However, results from the mechanistic SDM suggest that the Rhine basin could be
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‘reachable’ by the species from southern populations in timing compatible with the most pessi-
mistic rate of climate change as predicted by RCP 8.5. Applying the precautionary principle,
these results would have suggested conservation efforts acting for the recovery of existing pop-
ulations before trying to rebuild extirpated populations in catchments that could be recolo-
nized naturally by the species such as the Rhine River. Nonetheless, GR3D is a complex model
necessarily accompanied by substantial sources of uncertainty (e.g., uncertainties in model
parameterization or in modelling choices) and biases (e.g., the GR3D model does not take
either evolutionary processes or anthropogenic pressures into account). As such, the outputs of
the Rhine stocking program are providing useful and powerful data to improve allis shad
knowledge and indirectly the parameterization of the GR3D model. Moreover, considering the
poor conservation status of allis shad across its range, we argue that the stocking program in
the Rhine basin is a relevant way to improve the species status but that it should be sustained
by significant management decisions in neighboring source systems as identified by GR3D.

The mechanistic SDM also showed difficulties in reproducing the species absence in some
watersheds. Nevertheless, the correlative model also failed in reproducing species absences in
the environment reduced to 73 river basins (i.e., those included in the GR3D physical environ-
ment). Most of the watersheds where the species was historically absent were surrounded by
catchments with historically observed species presences. Difficulties for both SDMs in repro-
ducing species absences in those basins could be due to imperfect data used during calibration,
especially false absence data that require further investigations. As those basins are relatively
small, it is possible that allis shad were not surveyed or harvested around 1900. An ecological
hypothesis could also be advanced in which finer scale processes, not included in the mechanis-
tic SDM and not linked to one of the predictor variables selected by the correlative SDM, could
be involved in local extinction phenomena (e.g., a more successful competitor or predator in a
basin with particular environmental characteristics could lead to increase mortality). Local
extinction phenomena were demonstrated to play a critical role in species maintenance and it
has been demonstrated that increases in river flow amplitude or in river temperature could act
on the risk of local extinction for Atlantic salmon Salmo salar [102].

In conclusions, our study reveals that, when available, predictions from correlative and
mechanistic modelling approaches should be used in a complementary way instead of being
opposed. We showed how a combined used of correlative and mechanistic SDMs helps in guid-
ing conservation measures in the climate change context and in identifying data gaps and ori-
enting efforts in data collection (here, on population local adaptation and local extinction
phenomena in clupeids). Nonetheless, species for which a mechanistic model with an explicit
dispersal process was built and for which potential range shift was studied by combining SDMs
outputs remain rare examples. This constitutes a complex, costly and time-consuming work
flow that could not be routinely applied. Scientists are still lacking more operational tools to
assess whether species will track future climate change appropriately. In this sense, various
studies have demonstrated that species’ traits can be important predictors of response to cli-
mate change for different taxonomic groups [103–105]. In addition, large numerical databases
on species traits have been constructed and were made available online (e.g., FishBase [106];
FishTraits [107]). Building on this strong background, we are currently developing a generic
trait-based method to complement more elaborated modelling approaches such as the one pre-
sented here in predicting climate change effects on species assemblages.

Supporting Information
S1 Table. Extraction from the EuroDiad 3.2 database for allis shad. ‘Presences_absences’
corresponded to the species historical distribution, ‘Longitude’ and ‘Latitude’ provided the
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geographic coordinates (°) of the basin outlet, and ‘Surface_area’ was the surface area of the
drainage basin in km2. In blue cells were given the 73 basins retained in the GR3D physical
environment.
(XLSX)

S1 Appendix. Calibration of the GR3D model–Full technical details and outcomes of the
global sensitivity analysis and optimization steps.
(DOCX)
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