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Controllability Metrics on Networks with Linear Decision

Process-type Interactions and Multiplicative Noise

Tidiane Diallo∗ Dan Goreac∗†

October 12, 2015

Abstract

This paper aims at the study of controllability properties and induced controllability metrics
on complex networks governed by a class of (discrete time) linear decision processes with mul-
tiplicative noise. The dynamics are given by a couple consisting of a Markov trend and a linear
decision process for which both the ”deterministic” and the noise components rely on trend-
dependent matrices. We discuss approximate, approximate null and exact null-controllability.
Several examples are given to illustrate the links between these concepts and to compare our
results with their continuous-time counterpart (given in [16]). We introduce a class of back-
ward stochastic Riccati difference schemes (BSRDS) and study their solvability for particular
frameworks. These BSRDS allow one to introduce Gramian-like controllability metrics. As
application of these metrics, we propose a minimal intervention-targeted reduction in the study
of gene networks.

AMS Classification: 93B05, 60J05, 90C40, 93E03, 92C42
Keywords: linear decision process; null-controllability; backward stochastic Riccati difference

scheme; controllability metric; gene networks; phage λ

1 Introduction

We focus on a particular class of discrete-time decision processes described by a couple denoted
(L,X) and consisting of a Markovian trend and a linearly trend-based updated component. This
kind of processes naturally appear in the study of complex systems (such as regulatory gene net-
works). In this setting, the trend component corresponds to a finite family of DNA configurations
which induce regime changes on functional components (usual proteins) X. Decisions are assumed
to be made at expression level in order to obtain suitable behavior of X. We try to give a mathe-
matical answer to the following questions. Given a family of possible actions, what are the minimal
interventions to be selected in order to guarantee a targeted response. Second, how can this be
quantified through a metric at the level of biochemical reactions network ? To answer these ques-
tions, we envisage invariance and Gramian-type descriptions of controllability concepts. This paper
can be seen as a discrete-time counterpart of [16] in which piecewise deterministic Markov processes
of switch type are considered. Together, the papers cover the two usual points of view over con-
trolled switch processes with linear updating : the averaged, piecewise deterministic (macroscopic)
perspective (in [16]) and the marked point process (closer to microscopic perspective in this paper).

The process L is assumed to be a finite-state Markov process on a filtered probability space
(Ω,F,P) , with transition measure Q and taking its values in B = {e1, e2, ..., ep}, for some integer

∗Université Paris-Est, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, F-77454, Marne-la-Vallée, France,
Dan.Goreac@u-pem.fr

†Acknowledgement. The work of the second author has been partially supported by he French National Research
Agency project PIECE, number ANR-12-JS01-0006.

1



p ≥ 2. Without loss of generality, Ω is set to be the discrete sample space Ω = BN and we assume
the filtration F =(Fn)n≥0 to be the natural one associated to L. Following [5], [3] and without loss
of generality, we assume that B is the standard basis of vectors of Rp. We introduce the martingale
M by setting

Mn :=
n−1
∑

k=0

[Lk+1 − E [Lk+1/Fk]] ,

for 1 ≤ n ≤ N, with the obvious convention M0 = 0. As usual, we let ∆Mn := Mn − Mn−1,
for all n ≥ 1. We will be focusing on a class of decision processes X on some state space Rm, for
m ≥ 1 and controlled by d-dimensional processes, for some d ≥ 1. The evolution is given by linear
updating and multiplicative noise

(1)

{

Xx,u
n+1 (ω) = An (ω)X

x,u
n (ω) +Bun+1 (ω) +

∑p
i=1 〈∆Mn+1 (ω) , ei〉Ci,n (ω)X

x,u
n (ω) ,

Xx,u
0 = x ∈ Rm.

The process A is Rm×m-valued and F−adapted, the matrix B ∈ Rm×d, and Ci are Rm×m-valued
and F−adapted processes for all 1 ≤ i ≤ p. The Rd-valued control process u is taken to be square-
integrable F-predictable. The set of all F-predictable processes is denoted by Pred. Whenever no
confusion is at risk, we will drop the dependency on ω. The reader may want to note that this
provides a slightly more general framework than Markov decision processes since the coefficients
are adapted (i.e. functions of the time parameter n and the vector (L0, L1, ...Ln)). On the other
hand, the transition measure has a particular form.

The first aim of the paper is to characterize controllability properties for systems driven by (1)
i.e. the possibility to direct the process towards a coherent target. For controlled linear deter-

ministic systems
·
Xt = AXt +But, the controllability properties are summarized by the celebrated

Kalman criterion stating that Rank
[

B AB A2B ...Am−1B
]

= m. Similar assertions are valid for
discrete systems Xn+1 = AXn + Bun+1. This can equally be extended for Markov decision pro-
cesses driven by non-random coefficients and additive noise of type Xn+1 = AXn +Bun+1 + ξn+1.
However, for continuous-time controlled linear systems with multiplicative stochastic perturbations,
this condition is no longer sufficient. For examples pointing to this direction, the reader is referred
to [2] or [14] (for Brownian perturbations), [15] or [16] (for continuous-time switch processes).

One can, alternatively, study the dual notion of observability via Hautus’ test as in [18]. The
criteria involve algebraic invariance notions which are independent of the space on which they are
studied. For infinite-dimensional settings, the reader is referred to [28], [8], [27], [20], [19], etc.

In the continuous-time stochastic setting, duality techniques lead to backward stochastic dif-
ferential equations (BSDE introduced in [24]). With these tools, exact (terminal-) controllability
of Brownian-driven control systems is linked to a full rank condition in [25]. When the control
is absent from the noise term, one studies approximate controllability, resp. approximate null-
controllability. Invariance criteria are given in [2] for the control-free noise and [14] for the general
Brownian setting. In the case when the stochastic perturbation is of jump-type, exact controlla-
bility of continuous-time processes cannot be achieved. This follows from incompleteness (cf. [22])
and one has to concentrate on approximate controllability.

For continuous-time control systems with Brownian noise, approximate and approximate null-
controllability notions coincide (cf. [14]). This is no longer the case (see [12]) when an infinite-
dimensional component of mean-field type governs the Brownian-driven systems. Various methods
can be employed in infinite-dimensional state space Brownian setting leading to partial results (see
[9], [29], [1], [11]).

The main goal of the first part of our paper is to study the controllability properties of the
Markov decision process with linear updating and multiplicative noise perturbations. It can be
seen as a discrete-time counter-part of [16] and, to some extent, [29]. We begin with a duality re-
sult between controllability and observability in Section 2.1. This leads to considering some adjoint
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process satisfying a backward difference scheme. Its construction is close to backward stochastic
difference equations (see, for example, [5], [3], [4]). The first main result of the paper (Theo-
rem 2) gives two characterizations for approximate null-controllability and a duality criterion for
approximate controllability. It equally states the equivalence between approximate and exact null-
controllability. However, unlike the continuous-time frameworks (compare with [2] for Brownian
systems and [16, Section 4.1, Criterion 3] for jump-systems), in discrete-time, null-controllability
does not imply approximate controllability. This surprising behavior is illustrated in Example 5.

To construct a controllability metric, we concentrate on Gramian-inspired techniques in Sections

2.3 and 2.4. We show in Example 7 that the deterministic Gramian
N
∑

i=1

Ai−1BBT
(

AT
)i−1

does

not provide a null-controllability metric. We propose a backward stochastic Riccati difference
scheme (BSRDS) providing the adequate controllability metric. The link between this BSRDS
and null-controllability makes the object of our second main result (Theorem 8). To our best
knowledge, these particular schemes are new to the very rich literature on Riccati techniques. Let
us just mention that Riccati methods in connection to linear stochastic control problems have been
extensively employed in both continuous (cf. [31], etc.) and discrete setting (e.g. [6], [7], etc.). The
solvability of the BSRDS and explicit iterative constructions of the solution in particular frameworks
make the object of Section 2.5. We study the case of non-random coefficients in Proposition 10.
In Proposition 12, we state the solvability of BSRDS with random coefficients in the absence of
multiplicative noise. Finally, in Section 2.6, we show that the invariance techniques developed in [2]
for Brownian perturbations and adapted to trend-dependent jump-systems in [16] are not suitable
in discrete-time. For non-random coefficients, an invariance condition (similar to [16, Criterion
3]) is necessary to achieve null-controllability (cf. Proposition 17). However, it is not sufficient,
as shown in Example 19. Concerning the second framework, in absence of multiplicative noise,
the continuous-time condition provided in [16, Section 4.2, Criterion 4] is neither necessary (see
Example 20) nor sufficient (Example 21).

The aim of Section 3 is to provide a possible application of controllability metrics to biological
networks. The mathematical considerations are motivated by the notion of (sub)modularity (see
[23, Section 4], [21], etc.) as well as the recent applications to power electronic actuator placement
in the preprint [30]. We describe the optimization problems appearing when one works with sev-
eral (possible) control matrices and wishes to keep controllability features by selecting a minimal
dimension of the control space. To end the section, we give a toy model inspired by bacteriophage
λ in [17] and analyze different scenarios leading to null-controllability.

Finally, Section 4 gathers the proofs of our mathematical assertions.

2 The Main Concepts and Results

2.1 Controllability and Duality

We begin with recalling the following controllability concepts.

Definition 1 i. The system (1) is said to be controllable at time N ≥ 1 if, for every initial data
x ∈ Rm and every Rm−valued, FN−measurable square integrable random variable ξ, there exists a
predictable control process u ∈ Pred such that Xx,u

N = ξ, P−a.s.

ii. The system (1) is said to be null-controllable at time N ≥ 1 if the previous property holds
true for ξ = 0.

iii. The system (1) is said to be approximately controllable at time N ≥ 1 if, for every initial
data x ∈ Rm and every Rm−valued, FN−measurable square integrable random variable ξ and every

ε > 0, there exists a predictable control process uε ∈ Pred such that E

[

∣

∣

∣
Xx,uε

N − ξ
∣

∣

∣

2
]

≤ ε.
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iv. The system (1) is said to be approximately null-controllable at time N ≥ 1 if the previous
property holds true for ξ = 0.

To the decision process (1), one can associate an adjoint process (or an adjoint couple) as
follows. For every FN -measurable square integrable random variable ξ, we introduce the adjoint
couple

(

Y N,ξ, ZN,ξ
)

consisting in an Rm-valued (resp. Rm×p-valued) adapted process by setting

(2)















Y N,ξ
N := ξ,

Y N,ξ
n := AT

nE

[

Y N,ξ
n+1/Fn

]

+
∑p

i=1 C
T
i,nZ

N,ξ
n E [〈∆Mn+1, ei〉∆Mn+1/Fn] ,

where Y N,ξ
n+1 = E

[

Y N,ξ
n+1/Fn

]

+ ZN,ξ
n ∆Mn+1, for all 0 ≤ n ≤ N − 1.

The existence (and uniqueness up to an equivalence) of processes Z satisfying the last property is
standard. We refer the interested reader to [3, Corollary 1] or [5, Corollary 3.1.1] and references
therein.

The first result of our paper provides the following characterization of controllability.

Theorem 2 i) The system (1) is approximately null-controllable in time N > 0 if and only if

every solution
(

Y N,ξ
n , ZN,ξ

n

)

of the scheme (2) satisfying E

[

Y N,ξ
n /Fn−1

]

∈ ker
(

BT
)

, P-a.s., for all

1 ≤ n ≤ N, equally satisfies Y N,ξ
0 = 0, P-a.s.

ii) The system (1) is approximately controllable in time N > 0 if and only if every solution
(

Y N,ξ
n , ZN,ξ

n

)

of the scheme (2) satisfying E

[

Y N,ξ
n /Fn−1

]

∈ ker
(

BT
)

, P-a.s., for all 1 ≤ n ≤ N,

equally satisfies E [ξ/Fn−1] = 0, P-a.s.
iii) The system (1) is approximately null-controllable in time N > 0 if and only if it is (exactly)

null-controllable (in time N > 0). The necessary and sufficient condition for null-controllability is
the existence of some constant k > 0 such that

(3)
∣

∣

∣Y
N,ξ
0

∣

∣

∣

2
≤ kE

[

N
∑

n=1

〈

BBTE

[

Y N,ξ
n /Fn−1

]

,E
[

Y N,ξ
n /Fn−1

]〉

]

,

for all
(

Y N,ξ
n , ZN,ξ

n

)

satisfying (2).

The proof is postponed to Section 4. The first two assertions are proven by taking convenient
controllability operators and identifying their duals. The third assertion makes use of these duals
and of the finite-dimensional setting.

2.2 An Alternative Characterization and an Example

When the linear coefficient A is invertible, we are able to restate the null-controllability criterion
given in Theorem 2 iii) by interpreting the adjoint couple as a decision process (where the second
component of the couple is an arbitrary predictable control). We also give an example showing
that, in the context of discrete processes, null-controllability is, in all generality, strictly weaker
that approximate-controllability.

From now on, unless stated otherwise, the matrix An (ω) is assumed to be invertible for
P−almost all ω ∈ Ω and all n ≥ 0. The reader will note that

(

Y N,ξ, ZN,ξ
)

given by (2) can

be interpreted in connection to a (forward) decision process by picking vn+1 := ZN,ξ
n and setting

(4)

{

y0 := Y N,ξ
0 , yy0,v0 = y0,

yy0,vn+1 :=
[

AT
n

]−1
(

yy0,vn −∑p
i=1C

T
i,nvn+1E [〈∆Mn+1, ei〉∆Mn+1/Fn]

)

+ vn+1∆Mn+1,

for all 0 ≤ n ≤ N − 1.
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Remark 3 1. When A is not invertible, the admissible controls should be such that

yy0,vn −
p
∑

i=1

CT
i,nvn+1E [〈∆Mn+1, ei〉∆Mn+1/Fn] ∈ Im

(

AT
n

)

,

where Im stands for the image of the linear operator. Nevertheless, the connection is still preserved.
2. The adjoint process is motivated by the duality techniques in the Brownian case (e.g. in

[2]). These arguments concern backward stochastic differential equations. The specialization of this
concept to discrete-time processes is the notion of backward stochastic difference equation (e.g. [3],
[4]). In view of the essential bijection requirement (cf. [3, Theorem 2], [4, Theorem 1.2]), asking
for A to be invertible does not appear to be a drawback.

In this framework, the third assertion of Theorem 2 can be interpreted as follows.

Criterion 4 The system (1) is approximately (and exactly) null-controllable if and only if there
exists some k > 0 such that for every y0 ∈ Rm and every F−predictable, Rm×p-valued sequence
(vn)1≤n≤N , one has

|y0|2 ≤ kE

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

]

,

where yy0,v is the decision process defined by (4).

In the continuous-time framework, when the controlled linear systems are driven by non-random
and homogeneous coefficients (i.e. systems for which A and C are constant matrices independent
of n), it has been proven that approximate null-controllability and approximate controllability
are equivalent. The reader is referred to [2, Theorem 1.3] (for Brownian setting) and to [15,
Theorem 2.2] and [16, Criterion 3] for jump systems. The following example shows that, in the case
of discrete-time processes, one can have (exact) null-controllability without having approximate
controllability.

Example 5 To this purpose, let us take p = 2 and the transition matrix Q =

(

1
2

1
2

1
2

1
2

)

. We

consider the time horizon N = 2, the state space dimension m = 2 and the control space dimension
d = 1. Moreover, we consider

An =

(

0 1
1 0

)

, B =

(

0
1

)

, Ci,n =

(

0 (−1)i+1

0 0

)

, for i ∈ {1, 2} and n ≥ 0.

Then, the decision process (1) becomes

Xx,u
0 = x =

(

x1
x2

)

, Xx,u
1 =

(

(1 + 〈L1, e1 − e2〉) x2
x1 + u1

)

, Xx,u
2 =

(

(x1 + u1) (1 + 〈L2, e1 − e2〉)
(1 + 〈L1, e1 − e2〉) x2 + u2

)

.

We consider u1 = −x1 and u2 = − (1 + 〈L1, e1 − e2〉)x2 to conclude that the system is exactly

null-controllable in 2 steps. Nevertheless, by considering ξ :=

(

〈L2, e1 − e2〉
0

)

, one has

E

[

|Xx,u
2 − ξ|2

]

≥ E

[

[(x1 + u1) + (x1 + u1 − 1) 〈L2, e1 − e2〉]2
]

≥ 1

2
,

for all x ∈ R2 and all u1 ∈ R. The system turns out not to be approximately controllable at time
N = 2. (In fact, we have proven something stronger: the system is not even exactly terminal
controllable; see [25] for a comparison with the Brownian setting).

5



Remark 6 To prove null-controllability, one can, alternatively, rely on Criterion 4. For y0 =
(

y10
y20

)

∈ R2 and a family of F-predictable, R2×2-valued controls v1 =

(

v1,11 v1,21

v2,11 v2,21

)

, v2 =

(

v1,12 v1,22

v2,12 v2,22

)

, simple (yet fastidious) computations show that

E

[

1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

]

=
(

y10
)2

+ E





(

y20 +

(

〈L1, e1 − e2〉 −
1

2

)

v1,11 − v1,21

2

)2


 ≥ 1

2
|y0|2 .

One concludes to the exact null-controllability by applying Criterion 4.

2.3 The Deterministic Controllability Metric Is Insufficient

A simple glance at the inequality in Criterion 4 allows one to infer that the right-hand term

(i.e. E
[

∑N−1
n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2
]

) should provide a quadratic function of the initial data y0 which

is positive-definite when the initial system is null-controllable. In the deterministic framework
(C = 0 and non-random, constant A), the controllability criterion is given by the celebrated Kalman
condition

Rank
[

B AB A2B ...AN−1B
]

= m.

Then, a possible metric would involve the full rank matrix

(5) p0 :=
N
∑

i=1

Ai−1BBT
(

AT
)i−1

.

In this case, the controllability (pseudo)norm given by Rm ∋ y0 7→ (〈p0y0, y0〉)
1

2 is a norm. So
the obvious question one asks oneself is whether the same norm characterizes the stochastic null-
controllability. The answer is negative. Unlike the additive case, the presence of multiplicative
noise induces a change in the controllability condition. This is not surprising for our reader familiar
with the stochastic framework. Indeed, the invariance conditions characterizing approximate null-
controllability in [2, Theorem 1.3] or [16, Criterion 3] involve the stochastic component (i.e. C).
The following example shows that, in the discrete framework, one may have Kalman’s condition
and not achieve the null-controllability of the stochastic system.

Example 7 To this purpose, let us take p = 2 and the transition matrix Q =

(

1
2

1
2

1
2

1
2

)

. We

consider the time horizon N = 2, the state space dimension m = 2 and the control space dimension
d = 1. Moreover, we consider

An =

(

0 1
1 0

)

, Ci,n = (−1)i+1 An, B =

(

0
1

)

, for i ∈ {1, 2} and n ≥ 1.

We also drop the dependency on n in A and C. Then, Rank [B AB] = Rank

[

0 1
1 0

]

= 2.

However, by taking the initial condition x =

(

1
0

)

, one gets

Xx,u
2 =

(

(1 + 〈L2, e1 − e2〉) (1 + 〈L1, e1 − e2〉+ u1)
u2

)

.
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As consequence, for any (predictable) choice of the control u,

E

[

|Xx,u
2 |2

]

=
(

u21 + (2 + u1)
2
)

+ E
[

u22
]

≥ 2.

Therefore, independently of the predictable control we use, we are not able to drive the process X
from x to 0 even though Kalman’s condition is satisfied.

2.4 A Stochastic Controllability Metric

In view of Criterion 4, we associate, to every point y in Rm the controllability (pseudo)norm

(6) ‖y‖2ctrl := inf
(v)1≤n≤N F-predictable

E

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

]

.

The previous example shows that the associated metric is a stochastic one and, in general, it does
not reduce to the deterministic Gramian. Nevertheless, one would very much like to have something
which is close to the p0 matrix in (5). In this section, we thrive to provide a (pseudo)metric which
is more explicit than (6).

To this purpose, let us analyze the following matrix scheme. We set, for ε > 0, P ε
N = 0 ∈ Rm×m

and proceed by writing, for all 0 ≤ n ≤ N − 1,

P ε
n+1 = E

[

P ε
n+1/Fn

]

+Qε
n diag (∆Mn+1) ,

where, by convention,

(7) diag (∆Mn+1) =









∆Mn+1 0 ... 0
0 ∆Mn+1 ... 0
... ... ...
0 0 ... ∆Mn+1









∈ Rmp×m.

The existence and uniqueness of such Qε
n ∈ Rm×mp is obtained by applying the martingale repre-

sentation theorem (see, for example [3, Corollary 1] or [5, Corollary 3.1.1] and references therein)
to the columns of P ε

n+1. We proceed by setting

(8) P ε
n = A−1

n

(

E
[

P ε
n+1/Fn

]

+BBT
) [

AT
n

]−1 − αT
n,εη

−1
n,εαn,ε,

where αn,ε =





α1
n,ε

...
αp
n,ε



 ∈ Rmp×m, ηn,ε =









η1,1n,ε η1,2n,ε ... η1,pn,ε

η2,1n,ε η2,2n,ε ... η2,pn,ε

... ... ... ...

ηp,1n,ε ηp,2n,ε ... ηp,pn,ε









∈ Rmp×mp are given by

αj
n,ε := −Qε

nE [〈∆Mn+1, ej〉 diag (∆Mn+1) /Fn]
[

AT
n

]−1

+
∑

1≤i≤p

E [〈∆Mn+1, ej〉 〈∆Mn+1, ei〉 /Fn]Ci,nA
−1
n

(

E
[

P ε
n+1/Fn

]

+BBT
) [

AT
n

]−1
and

7



ηj,kn,ε :=

εδj,kIm×m +
1

2
Qε

nE [〈∆Mn+1, ek〉 〈∆Mn+1, ej〉 diag (∆Mn+1) /Fn]

+
1

2
E

[

〈∆Mn+1, ek〉 〈∆Mn+1, ej〉 (diag (∆Mn+1))
T /Fn

]

(Qε
n)

T

− 1

2

∑

1≤i≤p

Qε
nE [〈∆Mn+1, ei〉 〈∆Mn+1, ej〉 /Fn]E [〈∆Mn+1, ek〉 diag (∆Mn+1) /Fn]

[

AT
n

]−1
CT
i,n

− 1

2

∑

1≤i≤p

Ci,nA
−1
n E [〈∆Mn+1, ei〉 〈∆Mn+1, ek〉 /Fn]E

[

〈∆Mn+1, ej〉 (diag (∆Mn+1))
T /Fn

]

(Qε
n)

T

+ E [〈∆Mn+1, ek〉 〈∆Mn+1, ej〉 /Fn]E
[

P ε
n+1/Fn

]

+
∑

1≤i,i′≤p

(

E [〈∆Mn+1, ej〉 〈∆Mn+1, ei〉 /Fn]× E [〈∆Mn+1, ek〉 〈∆Mn+1, ei′〉 /Fn]×
×Ci′,nA

−1
n

(

E
[

P ε
n+1/Fn

]

+BBT
) [

AT
n

]−1
CT
i,n

)

,

for all 1 ≤ j, k ≤ p. Here, δj,k stands for the classical Kronecker delta (1, if j = k and 0, otherwise).
While it is clear that ηn,ε is symmetric , it is (a lot) less obvious to ask for ηn,ε to be positive. We
will show in some particular cases that this stochastic Riccati-type difference equation is solvable
and provide explicit construction for P and Q. For the time being, let us assume that, for every
ε > 0, such a solution exists. The second main result of our paper is the following characterization
of the null-controllability.

Theorem 8 i. The system (1) is (approximately) null-controllable if and only if

lim inf
ε→0+

P ε
0 is a positive-definite, symmetric matrix.

ii. The controllability (pseudo)norm given by (6) satisfies

‖y0‖2ctrl = lim inf
ε→0

〈P ε
0 y0, y0〉 .

The proof is postponed to Section 4. The construction of P ε is tailor-made to infer a recurrence
on the terms 〈P ε

ny
y0,v
n , yy0,vn 〉. To conclude, one applies Criterion 4.

Remark 9 i. This result is the discrete-time version of [29, Theorem 3.4].
ii. A simple look at the proof (see (24)) shows that

〈P ε
0 y0, y0〉 = inf

(vn)1≤n≤N F-predictable

(

ε

N−1
∑

n=0

E

[

|vn+1|2
]

+ E

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

])

and the optimal control realizing this minimum is given in feedback form by

voptn+1 = η−1
n,εδn,εy

y0,vopt
n .

Nevertheless, δ might not be a Markov process and, hence, a fortiori, neither would vopt.

2.5 Solvability of the Backward Stochastic Riccati Difference Scheme (BSRDS)

The aim of this subsection is to provide two simple cases in which the backward stochastic Riccati
scheme admits explicit solutions. One of the simplest frameworks for our trend component is the
one in which the martingale is generated by independent and identically distributed variables. In
other words, we assume Ln+1 to be independent of Fn for all n ≥ 0 and Ln has the same law as L0.
Then (〈Ln, ei〉)n≥1 are independent Bernoulli distributed with some parameter qi > 0 (independent
of n) and such that

∑p
i=1 qi = 1.

The first setting is when A and C consist in sequences of non-random matrices. In other words,
the randomness may only come from the martingale induced by the trend component L. In this
case, we get the following result of solvability of the BSRDS.
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Proposition 10 (non-random coefficients case) We assume that Ln are independent, identi-
cally distributed random variables on {e1, e2, ..., ep} and denote by

qi = P (L1 = ei) > 0, for every 1 ≤ i ≤ p.

Moreover, we assume that

An, Cn ∈ Rm×m, for all n ≥ 0

are sequences of (non-random) matrices. Then, for every ε > 0, the BSRDS (8) admits a (unique)
solution given by a positive-semidefinite sequence (P ε

n)0≤n≤N and Qε = 0. This solution is given by

(9)



















P ε
N = 0,

αn,ε = CnA−1
n

(

P ε
n+1 +BBT

) [

AT
n

]−1
,

ηn,ε = εImp×mp +
(

qj (δj,k − qk)P
ε
n+1

)

1≤j,k≤p
+ CnA−1

n

(

P ε
n+1+BBT

) [

CnA−1
n

]T
,

P ε
n = A−1

n

(

P ε
n+1 +BBT

) [

AT
n

]−1 − αT
n,εη

−1
n,εαn,ε,

where Cn : =









∑p
l=1 (δ1,l − q1) qlCl,n

∑p
l=1 (δ2,l − q2) qlCl,n

...
∑p

l=1 (δp,l − qp) qlCl,n









.

The proof follows by (descending) induction and is postponed to Section 4.

Remark 11 i. We emphasize that we deal here with a difference equation and not with an algebraic
Riccati equation and this is why one does not need further conditions on the Popov matrix.

ii. The Riccati difference equation given by (9) is obviously deterministic. Then, a glance

at the optimal control in Remark 9 shows that voptn+1 = η−1
n,εδn,εy

y0,vopt
n is not only predictable but

a deterministic function of time n and the state of the process yn. Therefore, the infimum in
〈P ε

0 y0, y0〉 can be taken over open-loop control strategies. Of course, similar assertions hold true for
the controllability (pseudo)norm. As a by-product the process y constructed with open-loop controls
is Markovian.

The second case in which solving the backward stochastic Riccati difference equation is reduced
to deterministic arguments is when C = 0. Under this assumption, the BSRDS becomes

(10)











































P ε
n := A−1

n

(

E
[

P ε
n+1/Fn

]

+BBT
) [

AT
n

]−1 − αT
n,εη

−1
n,εαn,ε,

αj
n,ε := −qjQ

ε
ndiag

(

p
∑

k=1

(δj,k − qk) ek

)

[

AT
n

]−1
,

ηj,kn,ε := εδj,kIm×m + (δj,k − qk) qjE
[

P ε
n+1/Fn

]

+ 1
2Q

ε
ndiag

(

p
∑

l=1

mj,k,lel

)

+1
2

(

diag

(

n
∑

l=1

mj,k,lel

))T

(Qε
n)

T .

for all 1 ≤ j, k ≤ p. Here,

mj,k,l = ql (qj − δj,l) (qk − δk,l)− ql (δj,k − qj) qk.

Let us recall that the diag matrices are of type Rmp×m and are constructed as in (7).

The main result in this framework gives the solvability of the BSRDS (10).
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Proposition 12 (the case without multiplicative noise) We assume that Ln are independent,
identically distributed random variables on {e1, e2, ..., ep} and denote by

qi = P (L1 = ei) > 0, for every 1 ≤ i ≤ p.

Moreover, we assume that An = A (n,Ln) where A is some Rm×m-valued deterministic function of
time and trend.

Then, for every ε > 0 there exist two sequences of positive-semidefinite matrices (pεn)0≤n≤N and
(qεn)0≤n≤N such that

(11) pεn ≥ qεn, for all 0 ≤ n ≤ N

and the couple (P ε, Q) ∈ Rm×m × Rm×mp defined by P ε
N = 0 and QN−1 = 0

(12) P ε
n = A−1 (n,Ln)

(

pεn+1 +BBT − qεn+1

) (

A−1 (n,Ln)
)T

, for all 0 ≤ n ≤ N − 1

and

Qn−1 =
[

Q·,·
n−1,1, Q

·,·
n−1,2, ..., Q

·,·
n−1,m

]

∈ Rm×p × Rm×p × ...× Rm×p, where(13)
[

Q·,l
n−1,1, Q

·,l
n−1,2, ..., Q

·,l
n−1,m

]

= A−1 (n, el)
(

pεn+1 +BBT − qεn+1

) (

A−1 (n, el)
)T

,

for all 1 ≤ l ≤ p, 1 ≤ n ≤ N − 1 is the solution of (10).

Remark 13 i. As we will see in the proof, p and q are explicitly given by setting

(14)







pεn+1 :=
p
∑

l=1

qlA
−1 (n+ 1, el)

(

pεn+2 +BBT − qεn+2

) (

A−1 (n+ 1, el)
)T

,

qεn+1 = αT
n,εη

−1
n,εαn,ε,

where
(15)


































αj
n,ε =

[

p
∑

l=1

ql (δj,l − qj)A
−1 (n+ 1, el)

(

pεn+2 +BBT − qεn+2

) (

A−1 (n+ 1, el)
)T
]

,

αj
n,ε = −αj

n,ε

[

AT
n

]−1
.

ηj,kn,ε = εδj,kIm×m

+
p
∑

l=1

ql (qj − δj,l) (qk − δk,l)A
−1 (n+ 1, el)

(

pεn+2 +BBT − qεn+2

) (

A−1 (n+ 1, el)
)T

,

for all 1 ≤ j, k ≤ p.
ii. When one further assumes that A is non-random, the elements Q·,l

n−1,k are independent of l.
Hence,

Q·,·
n−1,k∆Mn+1 = Q·,1

n−1,k

p
∑

l=1

(〈Ln+1, el〉 − ql) = 0m×1 = 0m×p∆Mn+1,

i.e. Qn−1 is equivalent (see, for example [3, Definition 2]) to 0m×mp. This is consistent with the
results in our non-random framework.

To end this subsection, let us take a look at the case when C (·) = 0 and An is a non-random
matrix. Using the second point of the previous remark, one gets α = 0m×mp and ηn,ε = εImp×mp.
Hence, one only has to solve the following (deterministic, ε-independent scheme) :

pn = A−1
n

(

pn+1 +BBT
) (

AT
n

)−1
, pN = 0m×m.

In this framework, we get the following criterion.
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Criterion 14 Let us assume that C (·) = 0 and An is a non-random matrix, for all n ≥ 1. Then,
the system (1) is null-controllable in time N > 0 if and only if the matrix

pN0 =
N−1
∑

n=0

[

(

n
∏

k=0

A−1
k

)

BBT

(

n
∏

k=0

A−1
k

)T
]

has full rank.

Remark 15 If A does not depend on n, p0 is of full rank if and only if ANp0
(

AT
)N

is of full rank

and one gets the classical condition p0 =
N−1
∑

n=0
AnBBT

(

AT
)n

is of full rank.

2.6 When Continuous-time Intuition Fails to Work

As we have seen in Example 5, the null-controllability metric is given by a strictly weaker condition
than that of controllability. The reader acquainted with the continuous-time characterizations of
approximate controllability ([2] or [14] for Brownian perturbations, [15] or [16] for continuous-time
jump processes) may wonder whether alternative approaches based on invariance concepts can be
adapted to this discrete framework. The aim of this section is to compare our approach with the
algebraic conditions given in [16] for continuous-time processes presenting a similar construction.
We will consider both the non-random coefficients setting and the behavior of the system lacking
multiplicative noise.

In the case of non-random coefficients, the method developed in [2] for Brownian perturba-
tions and adapted to trend-dependent jump-systems in [16] consists in obtaining invariance criteria
starting from (4). We will prove that the analogous condition is still necessary in order to have
null-controllability. Nevertheless, this condition is strictly weaker than the one exhibited in The-
orem 8 (see Example 19). Concerning the second framework, in absence of multiplicative noise,
the continuous-time condition provided in [16, Section 4.2, Criterion 4] is neither necessary (see
Example 20) nor sufficient (Example 21).

Throughout the subsection, we assume that Ln are independent, identically distributed random
variables on {e1, e2, ..., ep} and denote by qi = P (L1 = ei) > 0, for every 1 ≤ i ≤ p.

2.6.1 The Non-Random Coefficients Case

To simplify the arguments, we concentrate on the time-homogeneous framework (i.e. An = A ∈
Rm×m, Ci,n = Ci ∈ Rm×m, for all n ≥ 0). In this setting, the dual decision process (4) becomes

yy0,vn+1 :=
[

AT
]−1

(

yy0,vn −
p
∑

l=1

CT (l) vn+1el

)

+

p
∑

l=1

〈∆Mn+1, el〉 vn+1el, yy0,v0 = y0,

where

(16) C (j) : =
p
∑

k=1

(δj,k − qj) qkCk,

for every 1 ≤ j ≤ p.
In [16], the study of controllability properties is conducted using some invariance properties

with respect to the dual decision process. We recall the following invariance notions.

Definition 16 We consider a linear operator A ∈Rm×m and a family (Ci)1≤i≤t ⊂ Rm×m.
(a) A set V ⊂ Rm is said to be A- invariant if AV ⊂ V.
(b) A set V ⊂ Rm is said to be (A; C)- invariant if AV ⊂ V + ImC1 + ImC2 + ...+ ImCt, where

Im stands for the image of the linear operators.
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(c) A set V ⊂ Rm is said to be (A; C)- strictly invariant if

AV ⊂ V + Im (C1ΠV ) + Im (C2ΠV ) + ...+ Im(CpΠV ) ,

where ΠV denotes the orthogonal projection onto V .
(d) A set V ⊂ Rn is said to be feedback (A; C)- invariant if there exists a family of linear

operators (Fi)1≤i≤t ⊂ Rm×m such that
(

A+
∑t

i=1 CiFi

)

V ⊂ V (i.e. V is A+
∑t

i=1 CiFi- invariant).

The following condition is necessary in order to have null-controllability.

Proposition 17 If the system (1) is null controllable, then

(N1)
the largest subspace of the kernel ker

(

BT
)

which is
(

[

AT
]−1

;
(

C (1)A−1
)T

, ...,
(

C (p)A−1
)T
)

-strictly invariant is reduced to {0} .

The reader should compare this with [16, Section 4.1, Criterion 3]. The proof of this result is
very similar to that of [16, Section 3.1.2, Proposition 2] and is postponed to Section 4.

Remark 18 i. Both the assertion and the proof can be extended to non-homogeneous systems
providing the complete analogue of [16, Section 3.1.2, Proposition 2].

ii. Much as in the continuous-time framework (see [16, Section 4.1, Criterion 3]), one can
prove the equivalence between the following

(a) condition (N1) holds true;
(b) every solution of (4) satisfying BTyy0,vn = 0, P−a.s. for all n ≥ 0 is such that y0 = 0.

Nevertheless, unlike the continuous-time framework, the condition (N1) is weaker than the
null-controllability property. Let us, once again, look at the following example.

Example 19 We consider p = 2 and the transition matrix Q =

(

1
2

1
2

1
2

1
2

)

, the horizon N = 2,

the state space dimension m = 2 and the control space dimension d = 1. Moreover, we consider

A =

(

0 1
1 0

)

, Ci = (−1)i+1 A, B =

(

0
1

)

, for i ∈ {1, 2} .

Then, according to (16), C (i) = (−1)i+1

2 A, for i ∈ {1, 2} . Moreover, ker
(

BT
)

=

{(

x
0

)

, x ∈ R

}

.

If x ∈ R is such that, for some x′, x′′ ∈ R,

[

AT
]−1

(

x
0

)

+
(

C (1)A−1
)T
(

x′

0

)

+
(

C (2)A−1
)T
(

x′′

0

)

=

(

x′−x′′

2
x

)

∈ ker
(

BT
)

,

then it follows that x = 0. This means that condition (N1) is satisfied. However, as shown in
Example 7, the decision system driven by A,B and C is not null-controllable. Thus, in all generality,
for discrete-time processes, the condition (N1) does not guarantee null-controllability.

2.6.2 The Case Without Multiplicative Noise (C=0)

In the continuous-time framework, the necessary and sufficient condition for approximate null-
controllability of continuous switch systems (equally when C = 0, see [16, Section 4.2, Criterion 4])
reads

(17) (An, B) is controllable for all n.

Unlike the continuous-time setting, we will see that this condition is neither necessary nor sufficient.
We begin with an example showing that (17) may hold without implying the null-controllability

of the discrete system.
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Example 20 We consider the state space dimension m = 3 and the control space dimension d = 1.
Moreover, we consider

A2n+1 =





0 0 1
1 0 0
0 1 0



 , A2n =





0 1 0
0 0 1
1 0 0



 , B =





1
0
0



 .

It is obvious that Kalman’s condition is satisfied for both A2n and A2n+1. However, by computing
pN0 (see Criterion 14), one gets

pN0 =
N−1
∑

n=0

[

(

n
∏

k=0

A−1
k

)

BBT

(

n
∏

k=0

A−1
k

)T
]

=





⌊

N
2

⌋

0 0

0
⌊

N+1
2

⌋

0
0 0 0





which is obviously not invertible for any N ≥ 1. Here, ⌊·⌋ denotes the largest integer that does not
exceed the argument (floor function).

But null-controllability may hold without having (17) for any An.

Example 21 We consider the state space dimension m = 3 and the control space dimension d = 1.
Moreover, we consider

A2n+1 =





0 1 0
1 0 0
0 0 1



 , A2n =





1 0 0
0 0 1
0 1 0



 , for n ≥ 0, B =





1
0
0



 .

Then Rank
[

B A2n+1B A2
2n+1B

]

= 2 and Rank
[

B A2nB A2
2nB

]

= 1. Nevertheless, for N = 4,

p40 =
3
∑

n=0

[

(

n
∏

k=0

A−1
k

)

BBT

(

n
∏

k=0

A−1
k

)T
]

=





1 0 0
0 1 0
0 0 2





is of full rank such that, using Criterion 14, the system is null-controllable at time N = 4. The
reader may equally want to note that the controllability condition does not hold true at N ′ = 3 = m,
the dimension of our state space.

3 A Minimal Intervention-Targeted Application in Biological Net-
works

The aim of this section is to provide a possible application of the previous mathematical tools to bio-
logical networks. The mathematical considerations are motivated by the notion of (sub)modularity
(see [23, Section 4], [21], etc.) as well as the recent applications to power electronic actuator place-
ment in the preprint [30]. We describe the optimization problems appearing when one works with
several (possible) control matrices. To end the section, we give a toy model inspired by bacterio-
phage λ in [17].

3.1 Intervention Scenarios

Up until now, the control matrix B has been fixed. We are going to envisage some scenarios
translated by several control matrices. Each fundamental matrix allows one-dimensional controls.
By putting together some of these matrices (say d), we get an m × d control matrix taking into
account d-dimensional controls. Of course, in the case in which several configurations allow null
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controllability, it would be interesting if we were able to find a minimal d (lowest dimension for
control processes) giving the null controllability.

We begin with noting that the (pseudo)norm (6) will explicitly depend on the control matrix B
and will be denoted by ‖·‖ctrl,B. Similar, whenever P ε

0 given by (8) exists, it is written as P ε
0 (B).

We define

‖B‖specctrl := inf
y 6=0

‖y‖ctrl,B
‖y‖ and ‖B‖rankctrl := Rank

(

lim inf
ε→0

P ε
0 (B)

)

It is obvious that the system (1) is controllable usingB iff ‖B‖specctrl > 0 or, equivalently, iff ‖B‖rankctrl =
m.

A basic intervention scenario is a column vector b ⊂ Rm allowing one-dimensional controls
and specifying the weight of this control in the state component. In other words, we consider the
system controlled by B = b and with d = 1 in (1). Given a family of r ∈ N∗ intervention scenarios

{b1, b2, ..., br} ⊂ Rm, for every I =
{

i1, i2, ...i|I|
}

⊂{1, ...r} one constructs B (I) =
[

bi1 , ..., bi|I|

]

.

We introduce the following definition.

Definition 22 1) A set I is called minimal spectral-efficient intervention if the following assertions
hold simultaneously:

(i) one has ‖B (I)‖specctrl > 0;

(ii) for every J ⊂{1, ...r} such that |J | < |I| , one has ‖B (J )‖specctrl = 0;

(iii) for every J ⊂{1, ...r} such that |J | = |I| , one has ‖B (J )‖specctrl ≤ ‖B (I)‖specctrl .

2) A set I is called minimal rank-efficient intervention if the following assertions hold simulta-
neously:

(i) one has ‖B (I)‖rankctrl = m;

(ii) for every J ⊂{1, ...r} such that |J | < |I| , one has ‖B (J )‖rankctrl < m.

The reader is invited to note that any minimal spectral-efficient intervention is also minimal
rank-efficient. A condition of type (iii) has no meaning for the rank, being trivially satisfied as soon
as I is minimal rank-efficient.

To find minimal efficient intervention, one has to solve at most r set-function optimization
problems of type

max
I⊂{1,...r}

|I|=k

‖B (I)‖ctrl , 1 ≤ k ≤ r,

where ‖·‖ctrl denotes either ‖·‖
spec
ctrl or ‖·‖rankctrl . It is obvious that

min











k : 1 ≤ k ≤ r, max
I⊂{1,...r}

|I|=k

‖B (I)‖rankctrl = m











= min











k : 1 ≤ k ≤ r, max
I⊂{1,...r}

|I|=k

‖B (I)‖specctrl > 0











.

At this point, one may note that working with minimal spectral-efficient interventions gives more
information and may wonder why we have introduced the two concept. It turns out that, although
both set functions are non-decreasing, rank-based functions have another useful (submodularity)
property (cf. [23], [21]; see also [30]). Let us recall the definition of this concept.

Definition 23 Given a finite set S, a real-valued function f : 2S −→ R is said to be submodular if

f (S1 ∩ S2) + f (S1 ∪ S2) ≤ f (S1) + f (S2) ,

for all subsets S1, S2 ⊂ S.
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According to [23], submodularity is ”a combinatorial analogue of concavity” in the sense that
if the cost functional is submodular, although the problem is NP-hard, a greedy approach provides
good results. The paper [23, Section 4] equally provides greedy heuristics as well as relative error
bounds concerning the greedy solution.

A glance at [21, Example 1.2] shows that rank-based set functions are submodular. It turns out
that, although it provides more information, ‖·‖specctrl does not, in all generality, provide a submodular
application. For an example in this direction, the reader is referred to [30, III.F].

To sum up the considerations made so far, one should begin with solving the optimization
problem using ‖·‖rankctrl which is faster (using greedy heuristic as in [23, Section 4]). This will provide
a minimal k for which efficient interventions exist. Then, for this particular k, one may work with
‖·‖specctrl .

3.2 Hasty et al.-Inspired Toy Model

Description We start with a toy example concerning the temperate λ virus. The authors of [17]
propose a genetic applet consisting in a mutant system in which two operator sites (OR2 and OR3)
are present. The gene cI expresses repressor (CI), which dimerizes and binds to the DNA as a
transcription factor in one of the two available sites. The site OR2 leads to enhanced transcription,
while OR3 represses transcription. We let R1 stand for the repressor, R2 for the dimer, D for the
DNA promoter site, DR2 for the binding to the OR2 site, DR∗

2 for the binding to the OR3 site
and DR2R2 for the binding to both sites. We also denote by P the RNA polymerase concentration
and by r the number of repressors per mRNA transcript. The capital letters Ki, 1 ≤ i ≤ 4 for the
reversible reactions correspond to couples of direct/reverse speed functions ki, k−i, while Kt and
Kd only to direct speed functions kt and kd.The actual system of biochemical reactions that govern
the genetic applet is given by







2R1

K1

⇄ R2, D (+R2)
K2

⇄ DR2, D (+R2)
K3

⇄ DR∗
2,

DR2 (+R2)
K4

⇄ DR2R2, DR2 + P
Kt→ DR2 + P + rR1, R1

Kd→ .

The Trend Component L We consider the trend component given by the DNA mechanism
of the host E-Coli

(D,DR2,DR∗
2,DR2R2)

T which belongs to the basis B ⊂R4.

All the reactions concerning at least one of these components is considered to belong to the trend
mechanism. The remaining reactions

2R1

K1

⇄ R2, R1
Kd→

will be employed to describe the repressor’s updating. To simplify the arguments (recall that this
is a toy model), we consider that all the speeds in the trend mechanism are unitary (k±2 = k±3 =
k±4 = kt = 1). Whenever the system is at position e1 (unoccupied host DNA), two reactions are

possible D
k2→ DR2, respectively D

k3→ DR∗
2. We consider that transition probability is proportional

to the speed of reaction (similar to [10]) to get

P (Ln+1 = e2/Ln = e1) =
k2

k2 + k3
, respectively P (Ln+1 = e3/Ln = e1) =

k3
k2 + k3

.

Similar constructions are true for the remaining transitions. Obviously, this does not correspond
to the independent framework since the transition matrix

Q0=











0 k2
k2+k3

k3
k2+k3

0
k−2

k−2+k4
0 0 k4

k−2+k4

1 0 0 0
0 1 0 0











=









0 1
2

1
2 0

1
2 0 0 1

2
1 0 0 0
0 1 0 0









.
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Nevertheless, we shall assume that the host is at equilibrium prior to infection and it is easy to see
that the unique invariant measure is the uniform law given by

(18) q1 = q2 = q3 = q4 =
1

4
.

The updating matrices An To the transitions 2R1

K1

⇄ R2 and R1
kd→ one usually associates

the ordinary differential equations

dr1
dt

= −2k1r
2
1 − kdr1 + 2k−1r2,

dr2
dt

= k1r
2
1 − k−1r2.

By writing down the associated Jacobian matrix at some point r0 =
(

r01, r
0
2

)

, one gets a first-order

approximation ∆r =

(

−4k1r
0
1 − kd 2k−1

2k1r
0
1 −k−1

)

r. In other words, one constructs the matrix

A = I2×2 +∆r =

(

1− 4k1r
0
1 − kd 2k−1

2k1r
0
1 1− k−1

)

.

If r01 = 0, then the updating of the dimer is done independently of the repressor which is not very
realistic. For our toy model, we consider 2k1r

0
1 = kd = k−1 =

1
4 i.e.

(19) A =

(

1
4

1
2

1
4

3
4

)

.

In this framework, 25% of the repressor molecules are degraded (kd), 50% (i.e 4k1r
0
1) bind together

to produce a total of
4k1r01

2 r1 dimers and 25% remain unaltered. For the dimer, 25% (i.e. k−1)
break to produce 2k−1r2 repressors and 75% remain unaltered.

Remark 24 Another way of defining An would be to keep for ∆r the actual Jacobian evaluated

at the expectation of uncontrolled Xn i.e. An =

(

1− 4k1E
[

X1
n

]

− kd 2k−1

2k1E
[

X1
n

]

1− k−1

)

, then compute
(

E
[

X1
n

]

E
[

X2
n

]

)

= An−1

(

E
[

X1
n−1

]

E
[

X2
n−1

]

)

, etc.

The Multiplicative Noise Changes in the trend component have an effect on the couple

repressor/dimer in the transcription phase DR2 + P
Kt→ DR2 + P + rR1. A careful look at the

biochemical reactions shows that binding to the promoter site needs a dimer per binding. Since the
DNA mechanism is assumed to be at equilibrium, the number of ”averaged” occupied promoter
sites can be set proportional to R2. This reaction will result in a production of r copies per existing
dimer as soon as the trend is set to e2. This implies that

(20) C2,n =

(

0 r
0 0

)

.

The remaining states induce no noise i.e.

(21) Ci,n = 02×2, for i ∈ {1, 3, 4} .

Again, in to simplify the arguments, we assume r = 1. We also drop the dependency on n.
We deal with a scaled repressor/dimer component and this is why we add these as pure jump

zero-mean contributions. Alternate models are available (see, for example [13]).
Control vs. Controls At this point, we envisage four scenarios concerning the couple repres-

sor/dimer : no external control, control only the dimer, (same one-dimensional) control on both the

16



dimer and repressor or control (two-dimensional) on each state. To control the dimer, respectively

mutually control the couple repressor/dimer, one uses b1 =

(

0
1

)

, respectively b2 =

(

1
1

)

. To

control the two components independently, one uses [b1, b2] ∈ R2×2 (which is equivalent, up to
renaming the controls, to the use of B = I2×2). Note that these scenarios correspond to selecting
a subset of {1, 2}.

When B = b1, one computes
(

AT
)−1

=

(

12 −4
−8 4

)

and
(

AT
)−1

CT
2 =

(

−4 0
4 0

)

and notes

that kerBT is
(

AT
)−1

+2
(

AT
)−1

CT
2 -invariant and, thus,

(

(

AT
)−1

;
(

AT
)−1 CT

)

−strictly invariant

(with the notations of Proposition 17). Therefore, the system is not null-controllable according to
Proposition 17.

When B = b2, we compute the explicit solution of (1) associated to a particular choice of the

control as follows. For every x =

(

x1

x2

)

∈ R2, we set

u1 = −1

4
x1 − 3

4
x2 and u2 = −1

4

(

〈L1, e2〉 −
1

2

)

x2,

to get

Xx,u
1 =

( (

〈L1, e2〉 − 1
2

)

x2

0

)

, Xx,u
2 = 02×1.

Then, the system is null-controllable.

Remark 25 Alternatively, one can use Proposition 10 and compute lim inf
ε→0+

P ε
0 starting from P ε

2 =

02×2. For small values of ε ≃ 10−10, numerical values stabilize around

(

592 −192
−192 64

)

which is

positive-definite. Its minimal eigenvalue is ‖B ({2})‖specctrl = ‖b2‖specctrl ≃ 1.5647078.

The system is also controllable if B = [b1, b2] . In view of Definition 22, it follows that I = {2}
provides a minimal efficient intervention plan. In this case, rank and spectral control norms provide
the same (unique) answer.

Finally, let us mention that similar procedures can be envisaged for objective-based systems
reduction. In this case, the decision is made at subgraph selection level : what reactions to be
suppressed and what reactions to be added to preserve a given property. The aim in this framework
is to give the smallest set of reactions allowing to achieve the goal. This makes the object of on-going
research in both discrete and continuous framework.

4 Proofs of Theorems 2 and 8, Solvability Propositions 10 and 12

and Necessary Condition (Proposition 17)

4.1 Proof of the Main Results

We begin with the proof of the duality-based characterization of controllability concepts.

Proof of Theorem 2. The first two assertions are direct consequences of the duality properties.
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One easily notes that

E

[〈

Xx,u
n+1, Y

N,ξ
n+1

〉

/Fn

]

=
〈

AnX
x,u
n +Bun+1,E

[

Y N,ξ
n+1/Fn

]〉

+

〈

Xx,u
n ,E

[

p
∑

i=1

〈∆Mn+1, ei〉CT
i,nZ

N,ξ
n ∆Mn+1/Fn

]〉

=

〈

Xx,u
n , AT

nE

[

Y N,ξ
n+1/Fn

]

+

p
∑

i=1

CT
i,nZ

N,ξ
n E [〈∆Mn+1, ei〉∆Mn+1/Fn]

〉

+
〈

Bun+1,E
[

Y N,ξ
n+1/Fn

]〉

=
〈

Xx,u
n , Y N,ξ

n

〉

+
〈

Bun+1,E
[

Y N,ξ
n+1/Fn

]〉

.

Hence, by iterating, one gets

(22) E

[〈

Xx,u
N , Y N,ξ

N

〉]

=
〈

x, Y N,ξ
0

〉

+
N−1
∑

n=0
E

[〈

un+1, B
TE

[

Y N,ξ
n+1/Fn

]〉]

.

One proceeds in a classical manner by considering the two linear operators

R1
N : Pred−→L2 (Ω,FN ,P;Rm) , R1

N (u) = X0,u
N , for all u ∈ Pred,

R2
N : Rm−→L2 (Ω,FN ,P;Rm) , R2

N (x) = Xx,0
N , for all x ∈ Rm.

The reader is invited to recall that Pred stands for the family of Rd-valued, F-predictable controls.
(It is considered here as a subspace of product of L2

(

Ω,Fn,P;R
d
)

-spaces.) In view of (22), the
adjoints of the linear operators are given by

(23)
(

R1
N

)∗
(ξ) =

(

BTE

[

Y N,ξ
n /Fn−1

])

n≥1
,
(

R2
N

)∗
(ξ) = Y N,ξ

0 ,

for all ξ ∈ L2 (Ω,FN ,P;Rm) . Then, approximate null-controllability is equivalent to the image
(range) inclusion Im

(

R2
N

)

⊂ cl
(

Im
(

R1
N

))

, where cl is the usual Kuratowski closure operator.

Furthermore, this is equivalent to the kernel inclusion ker
((

R1
N

)∗) ⊂ ker
((

R2
N

)∗)
which leads

to the second assertion. Similar, approximate controllability is equivalent to cl
(

Im
(

R1
N

))

=

L2 (Ω,FN ,P;Rm) . Hence, it is equivalent to ker
((

R1
N

)∗)
= {0} which leads to the first assertion.

For the third assertion, since Ω is assumed to be the sample space, it follows that L2 (Ω,FN ,P;Rm)

can be seen as RmpN . Hence, the linear subspace Im
(

R1
N

)

is finite-dimensional and, thus, cl
(

Im
(

R1
N

))

=
Im
(

R1
N

)

. In this case, approximate null-controllability is written down as Im
(

R2
N

)

⊂ Im
(

R1
N

)

(i.e. one actually has exact null-controllability), or, equivalently (see, for example, [26, Appendix
B, Proposition B.1]),

∣

∣

∣

(

R2
N

)∗
ξ
∣

∣

∣
≤ k

∥

∥

∥

(

R1
N

)∗
ξ
∥

∥

∥

Pred
, for some k > 0.

The necessary and sufficient condition (3) follows from (23).

We now give the proof of the second main result of the paper providing the link between the
controllability (pseudo)norm and the backward stochastic Riccati difference scheme.

Proof of Theorem 8. For the first assertion, using the particular form of αn,ε and ηn,ε, one
simply writes down

〈P ε
ny

y0,v
n , yy0,vn 〉

= E

[〈

P ε
n+1

[

AT
n

]−1
yy0,vn ,

[

AT
n

]−1
yy0,vn

〉

/Fn

]

+
∣

∣

∣
BT

[

AT
n

]−1
yy0,vn

∣

∣

∣

2
−
〈

αT
n,εη

−1
n,εαn,εy

y0,v
n , yy0,vn

〉

= E
[〈

P ε
n+1y

y0,v
n+1, y

y0,v
n+1

〉

/Fn

]

+ ε |vn+1|2 +
∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2 −
∣

∣

∣η−1/2
n,ε αn,εy

y0,v
n − η1/2n,ε vn+1

∣

∣

∣

2
.
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By iterating and taking expectation, one gets

〈P ε
0 y0, y0〉 = ε

N−1
∑

n=0

E

[

|vn+1|2
]

+ E

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

]

−
N−1
∑

n=0

E

[

∣

∣

∣η−1/2
n,ε δn,εy

y0,v
n − η1/2n,ε vn+1

∣

∣

∣

2
]

.(24)

If the system (1) is (approximately) null-controllable, then there exists some positive constant c > 0
such that

inf
(vn)1≤n≤N F-predictable

E

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

]

≥ c |y0|2 .

In particular, by taking the feedback control vεn+1 := η−1
n,εδn,εy

y0,vε
n , one establishes that

〈P ε
0 y0, y0〉 ≥ c |y0|2

and the conclusion follows.
Conversely, if lim inf

ε→0+
P ε
0 ≥ cI, for some c > 0, then, for every ε > 0 small enough and every

predictable control v, one gets

ε

N−1
∑

n=0

E

[

|vn+1|2
]

+ E

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

]

≥ c

2
|y0|2

and the conclusion follows by letting ε → 0.
For the second assertion, one notes that (24) implies that

〈P ε
0 y0, y0〉 = inf

(vn)1≤n≤N F-predictable

(

ε

N−1
∑

n=0

E

[

|vn+1|2
]

+ E

[

N−1
∑

n=0

∣

∣BTE
[

yy0,vn+1/Fn

]∣

∣

2

])

and the conclusion follows by letting ε → 0.

4.2 Proof of the Solvability Results

We begin with the proof for the solvability of the BSRDS in the case of non-random coefficients.
Proof of Proposition 10. The proof is given by (descending) induction. For n = N, it is clear
that Qε

N−1 = 0. Since AN−1 and CN−1 are deterministic, it is clear that the iterative step defining
P ε
N−1 in scheme (8) reduces to (9). Let us assume that P ε

n+1 has been constructed according to
this deterministic scheme and is a positive-semidefinite (non-random)matrix. Then, Qε

n = 0. Since
An and Cn are deterministic, the definition of P ε

n according to scheme (8) reduces to (9). We only
need to prove that this latter scheme is consistent and provides positive-semidefinite matrices. One
begin with noting that as soon as P ε

n+1 is positive-semidefinite, the matrix

∆ε
n+1 :=

(

qj (δj,k − qk)P
ε
n+1

)

1≤j,k≤p
∈ Rmp×mp

is also positive-semidefinite. Indeed, it suffices to set DDT = (qj (δj,k − qk))1≤j,k≤p given by
Cholesky decomposition and Dj,k := Dj,kIm×m, for all 1 ≤ j, k ≤ p. Then

∆ε
n+1 = D













P ε
n+1 0m×m 0m×m ... 0m×m

0m×m P ε
n+1 0m×m ... 0m×m

0m×m 0m×m P ε
n+1 ... 0m×m

... ... ... ... ...
0m×m 0m×m 0m×m ... P ε

n+1













DT
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is obviously positive-semidefinite. It follows that ηn,ε given by (9) is positive-definite. Second, using
a classical intuition on feedback optimal control, one writes

A−1
n

(

P ε
n+1 +BBT

) [

AT
n

]−1 − αT
n,εη

−1
n,εαn,ε

=
[

A−1
n − αT

n,εη
−1
n,εCnA−1

n

] (

P ε
n+1 +BBT

)

[

[

A−1
n

]T −
[

A−1
n

]T Cnη−1
n,εαn,ε

]

+ αT
n,εη

−1
n,ε

(

εImp×mp +∆ε
n+1

)

η−1
n,εαn,ε.

This implies that P ε
n is positive-semidefinite whenever P ε

n+1 is positive-semidefinite and the induc-
tion step is complete.

The second proof concerns the solvability of the BSRDS in the absence of multiplicative noise
(i.e. C = 0).
Proof of Proposition 12. One begins with setting

pεN = 0 and qεN = 0

and notes that P ε
N−1 given by (10) satisfies

P ε
N−1 = A−1

N−1BBT
[

AT
N−1

]−1
= A−1 (N − 1, LN−1)

(

pεN +BBT − qεN
) (

A−1 (N − 1, LN−1)
)T

.

Next, one recalls that QN−2 = [QN−2,1 QN−2,2 ... QN−2,m] , where QN−2,j ∈ Rm×p. One easily
computes

[

Q·,l
N−2,1, Q

·,l
N−2,2, ..., Q

·,l
N−2,m

]

= A−1 (N − 1, el)
(

pεN +BBT − qεN
) (

A−1 (N − 1, el)
)T

,

for all 1 ≤ l ≤ p . Therefore, the conclusion holds true for n = N − 1. We proceed by (decreasing)
induction and assume the conclusion to hold true for n + 1 and prove it for n ≤ N − 2. One
easily notes that,due to the recurrence assumption, the following equalities hold true for α and η
computed as in (10).























αj
n,ε = −αj

n,ε

[

AT
n

]−1
, where

αj
n,ε =

[

p
∑

l=1

ql (δj,l − qj)A
−1 (n+ 1, el)

(

pεn+2 +BBT − qεn+2

) (

A−1 (n+ 1, el)
)T
]

and

ηj,kn,ε = εδj,kIm×m +
p
∑

l=1

ql (qj − δj,l) (qk − δk,l)A
−1 (n+ 1, el)

(

pεn+2 +BBT − qεn+2

) (

A−1 (n+ 1, el)
)T

,

for all 1 ≤ j, k ≤ p. We set

(25)







pεn+1 := E
[

P ε
n+1/Fn

]

=
p
∑

l=1

qlA
−1 (n+ 1, el)

(

pεn+2 +BBT − qεn+2

) (

A−1 (n+ 1, el)
)T

,

qεn+1 = αT
n,εη

−1
n,εαn,ε.

We will see in just one moment that η−1
n,ε (hence, qεn+1) is consistent. By (10), it follows that

P ε
n = A−1

n

(

pεn+1 +BBT − qεn+1

) [

AT
n

]−1
.

For Q, the assertion is obtained as in the first step. We come back to the quantities pεn+1 and
qεn+1 given by (25) and show that they are well-defined and satisfy (11). The induction assumption
pεn+2 ≥ qεn+2 implies that pεn+1 is positive-semidifinite. Second, with the notations

A : =
(√

q1A
−1 (n+ 1, e1) , ...,

√
qpA

−1 (n+ 1, ep)
)

∈ Rm×mp,

P : =
(

δj,k
(

pεn+2 +BBT − qεn+2

))

1≤j,k≤p
∈ Rmp×mp,

D : =
(√

qk (δj,k − qj)A
−1 (n+ 1, ek)

)

1≤j,k≤p
∈ Rmp×mp,
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one has

ηn,ε = εImp×mp +DPDT > 0 and αn,ε = DPAT .

For the inequality, we have used the induction assumption pεn+2 ≥ qεn+2. As consequence, qεn+1 is
well-defined and positive-semidefinite. Finally,

pεn+1 − qεn+1 = APAT −APDT
(

εImp×mp +DPDT
)−1 DPAT

=
(

A−APDT
(

εImp×mp +DPDT
)−1 D

)

P
(

A−APDT
(

εImp×mp +DPDT
)−1D

)T

+ εAPDT
(

εImp×mp +DPDT
)−1 (

εImp×mp +DPDT
)−1 DPAT ,

which is clearly positive-semidefinite. Our induction step is now complete and the conclusion
follows.

4.3 Proof of Proposition 17

Proof of Proposition 17. Let us denote by V the largest subspace of ker
(

BT
)

which is
(

[

AT
]−1

;
(

C (1)A−1
)T

, ...,
(

C (p)A−1
)T
)

−strictly invariant. According to [28, Theorem 3.2] (see

also [8, Lemma 4.6]), the set V is equally
(

[

AT
]−1

;
(

C (1)A−1
)T

ΠV , ...,
(

C (p)A−1
)T

ΠV

)

−feedback

invariant. Thus, there exists a family of linear operators (F (l))1≤l≤p ⊂ Rm×m such that V is
(

[

AT
]−1

+
∑p

l=1

(

C (l)A−1
)T

ΠVF (l)
)

- invariant. We consider the linear stochastic system







xy0n+1 :=
(

[

AT
]−1

+
∑p

l=1

(

C (l)A−1
)T

ΠVF (l)
)

xy0n +
p
∑

l=1

〈∆Mn+1, el〉ΠVF (l)xy0n ,

xy00 = y0.

Then xy0n+1 coincides with the solution of (4) associated to the feedback control vfeedback (n+ 1, y) =
[ΠVF (1) y, ...,ΠVF (p) y] , for all n ≥ 0. Moreover, whenever y0 ∈ V, one gets xy0n+1 ∈ V, P−a.s. for

all n ≥ 0. In particular, recalling that V ⊂ ker
(

BT
)

, it follows that BTE

[

yy0,v
feedback

n+1 /Fn

]

= 0,

P−a.s. for all n ≥ 0. By our controllability assumption and Criterion 4, one deduces y0 = 0 and
our Proposition is complete by recalling that y0 ∈ V is arbitrary.
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