
HAL Id: hal-01214248
https://hal.science/hal-01214248v1

Submitted on 11 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-Tenancy in Decentralised IoT
Sylvain Cherrier, Zahra Movahedi, Yacine Ghamri-Doudane

To cite this version:
Sylvain Cherrier, Zahra Movahedi, Yacine Ghamri-Doudane. Multi-Tenancy in Decentralised IoT.
WFIoT, Dec 2015, Milan, Italy. �10.1109/WF-IoT.2015.7389062�. �hal-01214248�

https://hal.science/hal-01214248v1
https://hal.archives-ouvertes.fr


Multi-Tenancy in Decentralised IoT
Sylvain Cherrier∗, Zahra Movahedi∗, Yacine M. Ghamri-Doudane†

∗ Université Paris-Est , Laboratoire d’Informatique Gaspard Monge (CNRS : UMR8049)
† L3i Lab, University of La Rochelle, La Rochelle, France.

Abstract—Since the Internet of Things (IoT) has become more
and more important, new solutions should be proposed in order
to adapt the specificities introduced by this interconnection of the
physical world (Sensors and Actuators) and the public networks
(The Internet). Some of these solutions use a Cloud approach.
The amount of data collected by Things rises the interest of
the Big-Data community. The main design chosen for the IoT is
the centralisation of all data collected and a central treatment
of these data. But another approach is to decentralise the data
processing, in order to dramatically lighten the network and
limit the exchange to a reduced set of semantic messages. This
decentralised architecture has assets in term of confidentiality,
data ownership and energy saving. But then, how to share things
among users, and keep the control? If computing is done on
each object, how a user can integrate public objects in its own
application, as these objects are used by some other users? How
to organise access to the sensors and actuators provided by these
objects? This paper proposes an architecture that gives multi-
tenant capability to IoT decentralised applications, in which users
are using and sharing their objects. A generic architecture is
described, and integrated in our IoT platform as an example.

Index Terms—Multi-Tenancy; Internet of Things; Services
Oriented Computing; Virtual machine

I. INTRODUCTION

The Internet of Things is the result of the mix of new
capabilities added to everyday objects (communication, com-
putation), the increase usage of sensors and actuators (Wireless
Sensor and Actuators Network, WSAN), and the massive take-
up and use of the Internet. As soon as they can be connected
to the Internet, all these things send the data gathered from
their close environment to a central point, where computing is
done and actions can be decided. Then, this central point of
decision can send an order to an actuator in order to react to
the situation.

Some approaches have chosen a "Service" point of view.
Instead of manipulating data, the Service Oriented Computing
(SOC) in IoT represents each Thing (or group of Things) as a
service that can be accessible through the Internet [7]. In this
approach, two organisation are feasible [12]: A centralised one,
in which a unique central point interacts with all the services,
and a decentralised one, in which services interact with others,
depending on their own requirements.

The first approach is called "Services Orchestration". The
central point orchestrates the application, invoking services
following the need of its control flow. The second approach
is called "Services Choreography". In a Choreography, each
node reacts to its environment and to its partners. No one has
a complete view of the running application, each stakeholder
follows its own control flow.

In any case (Data approach, or Service approach) a cen-
tralised IoT raises possible issues such as data confidential-
ity, application security, data ownership, and also network
overload (due to the important number of nodes deployed
on WSANs, and the strong constraints of these networks).
Choreography reduces in a significant way the transmitted
volume of information from and to each node [5]. As data are
processed directly on the node, the only messages exchanged
are semantic informations describing the result of the data
computation. The local processing of data relieves the network
usage (and often objects networks are very constrained in
terms of bandwidth), the energy consumption (computing cost
is cheaper than transmitting) and does not raise the issue
of data ownership (data are not transmited). Even if Chore-
ographed IoT programming languages have limited processing
expressivity, they are sufficient to meet the needs of IoT
applications.

This architecture is able to give users the opportunity to
build versatile applications, adapted to theirs needs [7]. But
there are an issue when these applications grow, particularly
when users want to share objects with others, or use public
objects (in a smart city scenario, this could be public display
panels, a parking lot reservation system, etc). According to
the Choreography paradigm, each user wants his own control
flow, his own semantic messages and his own object’ reactions,
and/or integrate public object within his application (for exam-
ple, to be informed of one available location in a parking lot,
and automatically reserved it). In order to share objects among
users and still give them the ability to integrate them in their
own decentralised IoT applications, a multi-tenant architecture
must be provided.

A multi-tenant Choreographed architecture should solve the
following issues:

• How to handle multiple control flows on objects?
• How to define access and rights of each user over the

device?
• How to handle conflicts, particularly concerning the ac-

tuators usages, in case of receiving contradictory orders?

This paper is organised as follow: Section II presents related
works and some background for our solution. Section III
describes the foundation of a multi-Tenant architecture. The
integration of such an architecture on our IoT platform are
given in Section IV. Finally, concluding remarks end this paper
in Section V.



II. RELATED WORK AND BACKGROUND

A. Related work

This paper is about the extension of IoT architectures
in order to add a multi-tenancy layer that supports users
priority access for shared devices. Our IoT platform is based
on a virtual machine, D-LITe [4], that allows constrained
devices to realise Decentralized IoT applications. Several
virtual machines for resource constrained devices have been
implemented in the WSAN literature. In the following part,
we review these virtual machines and analyse the support of
multi-tenancy in their system.

The Wukong project [10] proposes a sensor profile frame-
work based on an object-oriented programming to create
virtualized sensor abstractions for low-level physical sensor
devices. WuKong Applications are designed as program com-
position using an abstract form of data flow programming
and event-driven control flow. In this sense, each device is
virtualized by a WuClass with a set of properties that describe
and allow access to the resource represented by the WuClass,
and an update() function to implement the class’ behaviour. In
this approach, even if there is a control access mechanism for
allowing/denying the access to an object. However the notion
of priority in control access is absent.

Maté [8] is the second VM presented here. Maté is a
domain specific bytecode interpreter running on TinyOS [9]
for programming sensor networks. Programs are small scripts
containing Maté VM instructions (capsules). The basic VM
template includes the scheduler, concurrency manager, and
capsule store. The scheduler executes runnable contexts in a
FIFO round-robin method. The concurrency manager submits
contexts to the scheduler based on whether they are ready to
run and can safely access the shared resources they require.
The capsule store manages capsule storage and loading; it
propagates capsules through the network and notifies higher
level components when it receives new code. Maté does not
support priorities.

Squawk [13] is a JVM developped by Sun Microsystems
that employs Split VM architecture to minimize resource
and memory consumption.In this approach, tasks of the VM
that require a large of resource consuming (such as class
file loading and verification) are performed on the desktop.
a preloaded and preverified file is generated and transferred
then to the motes. Squawk implements a compact garbage
collection, named Lisp 2, so that tasks are non-preemptible,
which has implication for handling interrupts in a device driver
written in Java. TakaTuka [2] is another example of JVM that
is similar to the Squawk reducing the usage of RAM and flash
using some optimization methods. The notion of priority is
lacking in Squawk and TakaTuka.

Darjeeling [3] is a JVM that provides a rich set of (Java)
features including light-weight threads, dynamic memory man-
agement (garbage collection), and exception handling, while
at the same time being optimised for resource-poor targets. At
the moment Darjeeling does not support priorities and threads
are simply scheduled in a round-robin fashion.

SwissQM [11] is an another example of virtual machine
for resource constrained devices that uses SQL query-like and
XQuery query to program a sensor networks. SwissQM is
composed of following components: an Operand Stack for the
stack-based virtual machine, a Transmission Buffer that is used
to store message data and can also serve as temporary storage
for programs, a Synopsis (a data structure) that is used for data
aggregation and for maintaining state over several invocations
of the program and a sensor Interface. SwissQM does not pro-
vide priority mechanism. The sensor nodes running SwissQM
form a tree topology rooted at a gateway node that provides
access to the sensor network. SwissQM is able to execute up
to six QM programs concurrently. No priority mechanism is
performed in this approach.

PyMite [1] is a flyweight Python interpreter written from
scratch to execute on 8-bit and larger microcontrollers with
resources as limited as 64 KB of program memory (flash) and
4 KB of RAM. PyMite supports a subset of the Python 2.5
syntax and can execute a subset of the Python 2.5 bytecodes.
PyMite can also be compiled, tested and executed on a desktop
computer.

B. D-LITe : a virtual machine for decentralized IoT applica-
tions

our own soution for IoT application is base on a virtual
machine called D-LITe [4]. D-LITe is a lightweight RESTful
virtual machine deployed on decentralised IoT devices (see
Figure 1). D-LITe provides a universal access to the function-
alities of heterogeneous devices. In D-LITe, a set of possible
device basic functionalities (called features) such as button,
switch, timer, led, etc. are firstly defined. Each feature is
driven by a set of potential small algorithms that specify the
device functionality and control its usage. These algorithms
are expressed through "Transducers"1 . A Transducer is a
advanced form of Finite State Machines; i.e. each Thing is
seen as a component with a current state, inputs, outputs,
and transitions. Inputs and outputs are the message events
exchanged by nodes through the network, and states are the
node’s reaction to received messages. A transition links two
states. A transition can be triggered by an input. States,
transitions, and inputs describes the algorithm to be executed.
Transducers add an output to the well-known Finite State
Machines description. The output is generated by the Tran-
sition when triggered. The transducer representations used in
D-LITe (and their specificities) are described with SALT [6], a
simple description language that limits bandwidth and memory
consumption.

D-LITe uses exchanged messages between devices in order
to compose devices interactions and to create IoT applications.
To control the correctness of a composition, typical messages
(called "Interaction Patterns") are exchanged. In this sense,
two devices A and B could connect to each other if and only
if the device A’ output matches with the device B’ input using

1These Transducers describe the control flow, the algorithm that defines the
object behaviour



Figure 1. A D-LITe Object, running a Transducer, interacts with the real world
and collaborates with other objects. The sensing and collaborating objects send
messages to the Transducer Analyser input. These messages contain measures
or actions to do. These messages trigger reactions from the transducer if a
Transition is found for the current state and the input. In that case, the
transducer changes its state, and sends an output message (if defined in
the transition). This output message is for actuating functionality or for
collaborating objects.

these Interaction Patterns. D-LITe allows an end-user to deploy
a specific behaviour on each device. Each D-LITe enabled
node contains a rules analyzer to execute the behaviour. D-
LITe devices also have a messaging service to interact with
each others using XMPP protocol. a standardized protocol
for real time communication. This protocol offers instant
messaging and presence management. Thus, the discovery of
new devices is dynamic and their integration in the global
structure is easy. The XMPP-REST (an extension we have
created for D-LITe, allowing to send REST commands through
XMPP) handles behaviours on each device using GET, PUT,
DELETE, and POST methods. GET RESTful method helps
to discover existing features supported by the device, PUT
method deploys a behaviour on a device, DELETE method
removes an existing behaviour from the device, and POST
method exchanges messages between two device’ behaviours.
The implementation of REST approach within XMPP allows
the use of the presence and chat mechanism offered by the
instant messaging protocol, while this extension mimics the
calls to a web service with the REST commands.

D-LITe follows an event-centric approach. An object (more
precisely the behaviour that the virtual machine is currently
running) reacts on received messages, as events. There are
different kinds of events: external events that make an object
collaborate with other objects, inside an IoT application;
hardware events that are used for sensing and actuating the
world; and logical events that define, alter, and test variables.

The transducer handles the received events and reacts
depending the behaviour deployed. the incoming message
comes from the hardware (a data has been gathered), or an
external message from another Object (the Choreography).
If a transition is triggered by this event (it match the event
and the current state), its output is sends it to the hardware
in order to actuate it, or/and to other nodes (in a case of an
external message), depending of its type (see [6] for more

details, and the use of variables).

III. MULTI-TENANT ARCHITECTURE OVERVIEW

To be able to handle multiples accesses on a single device,
the following points should be defined and analysed:

A. Impacts of multiple control over an IoT device

Since each IoT device can be a sensor or/and an actuator,
a multi-Tenant architecture has to cope with these two cases.

Sensing in a multi-tenancy architecture is not a very com-
plex issue to solve. Depending on the access rules, the gathered
data are accessible or not. The flow control will read (or not)
the data.

Actuating is more complex. In the IoT, every (public, or
personal and shared) device must be kept under its owner’s
control. For example, in smart cities, a public display panel,
or a parking lot, are accessible to everyone, but security agent
or public services have a priority access (police, hospital,
etc). In smart building domain, a fully operational desk (with
computer, phone etc) can be shared among several users, but
should be reserved to a privileged employee.

The multi-tenant architecture needs to set a shared func-
tionality under an access control mechanism. In this sense,
an access rights list for each type user should be provided.
Because of IoT devices versatility, the handled functionality
must be correctly defined, according to the user’s usage. For
example, the physical access control to a specific room can
be prioritised. In some cases, the usual user of the room is
able to allow other employees to access to his room. But he
must get a priority access to his own room when he is having
confidential meetings. In some other cases, an actuator of the
same kind can be used to give an employee the ability to limit
accesses to his room, while the security agents have the total
control over it. If they need it, they can force the opening of
the door.

A multi-tenant solution for the IoT should offer to set which
object’ functionalities are under control, and exactly which
commands have priority for each functionality. For the last
example above, we define that "opening" is the under-control
action for this door. Then, we can describe the access rules:
Security agents have priority on this action, then the employee
(owner of the room) has a lower priority, and finally the others.

B. Impacts of multi-tenant devices over the control flow

Our approach for Multi-Tenancy in the IoT is closed to
the access control used in operating systems (such as Linux,
Windows, etc). As incoming orders are not predictable, and
can be contradictory, the multi-tenancy system uses blocking
accesses. On one hand, the blocking mechanism controls the
access to a action or a data. On the other hand, when a conflict
is detected, the user that has the lower priority is informed that
the order has been refused. We propose to send notifications
to the device handler, so that a programmer could handle each
conflict, and react to an "access denied".

IoT devices have two major capabilities: Sensing the phys-
ical world, and/or actuating it. Multi-Tenancy conflicts have
different impacts for these two categories:



For the actuating category, there is 3 cases:
• First case, a user wants to trigger an action. The func-

tionality is not under control, or not shared, or the user
has the best priority. In that case, his control flow takes
control of the functionality, and uses it as long as it needs.

• Second case, a user wants to trigger an action, but this
action is already in use by another control flow with a best
priority. This is a blocking case. In that case, the control
flow is blocked and waits for the functionality to be freed.
It is also possible to execute an alternative in that case,
in order to bypass the blocking case by doing something
else. A specific "accessDenied" event is thrown to the
control flow, and the programmer can catch it and then
describe what to do.

• The last case appears when a control flow has taken the
control of a functionality, and then another control flow
(with better priority) asks for it. In that case, the prior
control flow loses its access, and the access is granted to
the second control flow. A specific "controlLost" event
is thrown to the control flow that has lost the access
(because of its lesser priority). It is possible to handle
this event, in order to describe an alternative control
flow when losing the access to a functionality while
processing.

For the sensing category, the control access grants or denies
access to the control flow, as defined by its rules. According
to the rules, the data is (or not) accessible, and there is no
more impact. For example, if the control flow of a given user
asks for humidity data but has no access to this sensor, it will
be blocked. In our approach, sensing a data is an incoming
event. If a transducer has no right to access the data, it means
that it will never receive the corresponding event. In facts, if
this data is important for the control flow, we can imagine that
the chosen control flow should not be executed on this device
because of the user’s low priority (i.e. in operating system,
when a not priority user tries a forbidden action, he can be
blocked).

The Figure 2 represents a control flow with alternatives as it
tries to lock a door. The different events (A and B) are the main
flow. Event A leads to a door locking, then event B unlocks it
(the second part of each transition is the output message of the
transducer. In D-LITe, they are actuating orders for hardware,
or messages for other object). But if a priority conflict results
in an access denied, an alternative control flow ("case 2") is
proposed (triggered by "accessDenied" event). This solution
gives the opportunity to avoid the lock by giving alternate
tasks to do. An access lost lately in the process is handled
(see Figure 2) by the "controlLost" event catch in the "case
3" branch of the control flow.

C. Security Layer

In order to realise an access control for sensing and actuat-
ing capabilities of the object while it runs several control flows,
a security layer is installed between the hardware drivers and
the process manager. In the case of our project, we have added
it between the operating system and the transducers analyser.

Figure 2. The control flow running in the object tries to lock a door. The
main flow receives an eventA, then tries to lock the door. If it succeeds, it
waits for eventB to unlock, and then follow this main control flow. In the
case the access to the door lock is not granted, the programmer has described
an alternative action (alt1), that will then follow its own logic. If access to
the door lock is given by the security manager, but that an higher-priority
user request the door usage before our eventB frees the access, an alternative
is described ("controlLost" event). The other control flow can have its own
actions, and then goes back to the main control flow.

The security layer executes access controls each time any
transducer sends or receives an event to/from the hardware.

From outside the object, the access to the security layer
is cyphered. An object is owned by a user and must be
controlled only by him. The owner defines remotely for each
functionality the orders’ priority. As seen above, for a given
functionality, each user may prefer to control a specific order
(for the smart building example, opening the door if the user
aims to prioritise security, or closing the door if confidentiality
is the main concern).

Priority levels are:
1) private: reserved to the owner
2) priority: from 1 (the higher) to 4 (the lower). The owner

can set the priority for each user, each functionality and
each order.

3) free: total access to the functionality.
Once the owner has defined his priority access list, all

users accessing the device can deploy a transducer (a control
flow) on it, and every access to the hardware will be evaluate
according to the access list.

IV. IMPLEMENTATION

This section describes the multi-tenant extension to our
platform for the IoT. A Security layer is added to every object,
placed between the Transducer analyser and the operating
system (see Figure 3).

A. Security service

The deployment of transducer is unchanged. An authen-
ticated user (D-LITe use XMPP, but this is not mandatory)
accesses to an object through the network. He uses the PUT
order (XMPP-REST in our case, but this can be modified if
needed) to deploy a new transducer. Then, objects exchange
events through the XMPP pub-sub mechanism (See Figure 3).

When a new user accesses an object (authorized because the
owner has shared this object to him, or because it is a public
object such as in the smart city scenario described above),



Figure 3. The Security layer controls all access to and from the transducer
analyser. The object’s owner has a secured access to the Security layer, in
order to set rules and users’ priority. Then, each time a transducer (installed
by any user on this object) tries to access a actuating functionality or wait for
an incoming message from a sensor, the security layer checks his priority. It
can then grant/deny access and forward/destroy the message.

a new REST endpoint is created for him. When this user
DELETE his transducer, the REST endpoint is removed.

Accessing the security service is done through a specific
REST endpoint as illustrated in Figure 3, and reserved to
the object owner (authenticated by his XMPP credentials).
The owner will DELETE rules and PUT new access rules
describing his settings.

Table I shows an example of a classification defined by
the object’s owner. Each user of this Object is categorised
and his priority is set. For example, Alice and Carol have
an higher priority than Denis. These rules are defined by the
object’s owner, can be modified at any time, and are used by
the security layer in order to grant or deny access to each
functionality. The access rules are defined in Table II for
object’ functionalities. Each authorised order is indicated for
each priority level.

According to Table I and Table II, locking the door can be

Table I
USERS’LIST AND PRIORITY

Owner Priority 1 Priority 2 Priority 3 Priority 4
Bob — Alice, Carol Denis —

This object is owned by Bob. Bob has given priority 2 to Alice and Carol,
and priority 3 to Denis. All others will have no access at all, except for free
functionalities.

Table II
ACCESS RULES

Function Level 1 Level 2 Level 3 Level 4 Free
Door lock close, lock close,lock close — —
Displayer clear, display display — — display

The door lock is under the control of the security layer. Depending of the
transducer’s owner, the priority is set for the different actions (lock the door,
or display a message in the door’ displayer) described for each level. Users
priority is defined in Table I.

invoked by all users of priority 1 and 2. Carol and Alice can
lock and unlock the door while Denis can not. Denis has the
right to close the door, but Alice and Carol overtake Denis’
order. The door’ displayer gives an example of a free access
to a functionality. Any user can display a message on the door.
Only high priority users (priority 1) can clear the displayer,
while other users can only add new messages. Level 3 and
4 users can also display messages, but they have no higher
priority than free users: the cells for this functionality and these
priority levels (3 and 4) are empty, so they can’t overtake the
access from the free users. On the contrary, free users can’t
use the door lock (their cell is empty), so Denis can do actions
(close the door) that free users can’t do.

B. SALT

SALT [6] is our modified transducer-based language used
to describe the control flow running on an object. SALT is
now version 2 in order to take into account the new events
that may occur because of the multi-tenancy extension. Legacy
transducers, written in SALT version 1 (as defined in previous
papers), must still be executable on the new version of our
virtual machine D-LITe. The orders to access functionalities
are still the same. Legacy SALT transducers can access orders
under the control of the new access control Security Service.
But in the case of a blocking order, the legacy transducer stays
stuck until the higher-priority user release the functionality.

In SALT version 2, the blocking state can be avoided by the
introduction of two new events. The "accessDenied" event is
generated when a transducer invokes an order protected by the
access control list and already in use by a higher-priority user.
The transducer can describe what to do when receiving this
event (see Figure 2), so the control flow will not be blocked in
this state. The "ControlLost" event is automatically generated
by the security layer when an higher-priority user takes control
of a functionality that was previously under the control of this
transducer. For example, an employee has closed his door,
but the fire alarm (with higher priority) starts an evacuation
exercise. The "ControlLost" event describes the alternative
control flow to be executed by the Transducer.

These two new events give our virtual machine an upward
compatibility. New transducers handle blocking case a-priori
(when the access is denied to the control flow). Losing
the control of a functionality is proposed as an a-posteriori
handler, in order to inform the user of that lost, for example.
The multi-tenancy extension has a limited impact over the
language, as it respects the previous event-centric approach.
The addition of a limited number of new events gives a simple
solution to integrate new and improved transducers, taking into
account the Security layer responses.

C. Hardware interactions with the Virtual Machine

Extending our Virtual Machine D-LITe [4] to cope with
Multi-tenant has some impacts over it. First, new users must
be able to deploy their transducers in the object. The access
control is done through XMPP. In facts, the user get an access
to an object through its pub-sub XMPP account. That access



is given by the XMPP server, following the identification of
the requester and the friendship with the object’s owner. Each
time a new user gets an access to the object, a new endpoint
is created for him. Then, he can deploy his transducer, and
the transducer can be discovered by any other object of his
application.

Incoming messages (the input alphabet of the transducer)
are hardware sensing message or event sent by other objects
of the whole application. These other objects send event
trough the pub-sub XMPP account, so they arrive on the right
endpoint. For hardware incoming messages, they are sent by
the security service to all the transducers that are authorized
to access them. Depending on the transducer running at the
moment, action are executed if a transition for this event has
been set for the current state of the transducer.

Output messages are generated by the transducer, and are in
destination of the hardware (for actuation) or to other objects
(to make them react). Hardware messages are controlled by the
security layer before their real transmission to the hardware.
If they are not authorised (because of the control access rules,
or because the functionality is currently used by a higher-
priority user), the order is blocked. A "accessDenied" event is
sent to the input of the transducer, in case it has a transition to
handle blocking case. If the access is granted, then the security
service stores the user’s id and the order currently controlling
the functionality. This is useful when the transducer frees
the resource, or if another access is requested from another
transducer running in the same object. In that case, the rules
of the order, the priority of each user are compared, and a
decision is taken by the security layer. If our current transducer
loses its access, a "controlLost" event is sent to its input. The
user’s id and the order of the higher-priority user are stored
in the security layer.

V. CONCLUSION

In our decentralised architecture, users or organisations can
propose an access to their objects and give their friends,
citizens or employees the ability to integrate shared things in
their own applications. Sharing Things in such an architecture
leads to conflicts between all the users that interact with the
hardware. In this paper, we propose an architecture that is able
to solve these issues. Using the user credentials, a priority
definition, and an access list, each object grant or deny access
to the different users in regard of the owner definition. In case

of conflict, events are sent and help to program alternatives for
each user. This paper describes our modified architecture for
this purpose, with an upward compatibility with the previous
work. In future works, we will concentrate on the different
ports of the virtual machine and the impact in term of memory
and processing overhead.

REFERENCES

[1] Python-on-a-chip. https://code.google.com/p/python-on-a-chip/.
[2] F. Aslam, C. Schindelhauer, G. Ernst, D. Spyra, J. Meyer, and M. Za-

lloom. Introducing takatuka: A java virtualmachine for motes. In
Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, SenSys ’08, pages 399–400, New York, NY, USA, 2008. ACM.

[3] N. Brouwers, K. Langendoen, and P. Corke. Darjeeling, a feature-rich
vm for the resource poor. In Proceedings of the 7th ACM Conference
on Embedded Networked Sensor Systems, SenSys ’09, pages 169–182,
New York, NY, USA, 2009. ACM.

[4] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel. D-lite :
Distributed logic for internet of things services. In IEEE International
Conferences Internet of Things (iThings 2011), pages 16–24. IEEE,
2011.

[5] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel. Services
Collaboration in Wireless Sensor and Actuator Networks: Orchestration
versus Choreography. In 17th IEEE Symposium on Computers and
Communications (ISCC’12), page 8 pp, Cappadocia, Turquie, July 2012.

[6] S. Cherrier, Y. Ghamri-Doudane, S. Lohier, and G. Roussel. SALT:
a simple application logic description using transducers for internet
of things. In IEEE International Conference on Communications
- Communication Software and Services Symposium (ICC’13 CSS),
Budapest, Hungary, June 2013.

[7] S. Cherrier and Y. M. Ghamri-Doudane. The "object-as-a-service"
paradigm. In Global Information Infrastructure and Networking Sym-
posium (GIIS), 2014, pages 1–7. IEEE, 2014.

[8] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor networks.
In ACM Sigplan Notices, volume 37, pages 85–95. ACM, 2002.

[9] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An operating system
for sensor networks. In Ambient intelligence, pages 115–148. Springer,
2005.

[10] K.-J. Lin, N. Reijers, Y.-C. Wang, C.-S. Shih, and J. Y. Hsu. Building
smart m2m applications using the wukong profile framework. In Green
Computing and Communications (GreenCom), 2013 IEEE and Internet
of Things (iThings/CPSCom), IEEE International Conference on and
IEEE Cyber, Physical and Social Computing, pages 1175–1180. IEEE,
2013.

[11] R. Müller, G. Alonso, and D. Kossmann. A virtual machine for sensor
networks. In Proceedings of the 2Nd ACM SIGOPS/EuroSys European
Conference on Computer Systems 2007, EuroSys ’07, pages 145–158,
New York, NY, USA, 2007. ACM.

[12] C. Peltz. Web services orchestration and choreography. Computer, pages
46–52, 2003.

[13] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White. Java&#8482;
on the bare metal of wireless sensor devices: The squawk java virtual
machine. In Proceedings of the 2Nd International Conference on Virtual
Execution Environments, VEE ’06, pages 78–88, New York, NY, USA,
2006. ACM.


