Center Fixed Magnetic Monopole and Free Electron System's Eigenstates Ze-Yang Li This article review several important methods and calculation and results in dealing with Magnetic Monopole and spineless electron system. Firstly, we derived the quantization condition for magnetic monopole's 'magnetic charge'. Then, we try to solve Magnetic Monopole as a 'center potential' and notice that there is not any sort of physical or meaningful solution for bounded way (E < 0 solution). There are two similar in technique but physically distinct ways to treat such a system: global vector potential left a string of singularities and piecewise but connecting vector potential with no singularities. Further, we discuss the numerical calculation of this problem, and some attempts to deal with the spin-1/2 system and develop a perturbation method (though not complete yet for this version).

I. QUANTIZATION, A TRANSLATION APPROACH

Under the framework of Heisenberg equation of an operator, with a quite plausible corresponding to classical version of equation of motion, we can write done the single electron gauge-invariant Lorentz-Heisenberg equations:

ṙ(t) = v (1) 
m v = e 2c [v × B -B × v] (2) 
where we carefully consider the symmetrization of the two distinguished operator v, B.

If we define π = mv, we can then have the form of a single-electron Hamiltonian in pure magnetic field

H = π 2 2m (3) 
With the presence of magnetic field, the commutation relation between position operator remains unchanged while the momentum (not canonical momentum)'s commutation relationship should be slightly replaced by the following:

[π i , π j ] = ie c arepsilon ijk B k (r) (4) 
We are all familiar with how the momentum operator generates the translation operator with the naive form in the magnetic-free case

T (a) = exp(- i a • p)
however, in this time, the case is slightly changed for the following property is no longer hold

T (a 1 ) T (a 2 ) = T (a 1 + a 2 ) (5) but a much more complicated form T (a 1 ) T (a 2 ) = exp - ie c Φ(r; a 1 , a 2 ) T (a 1 + a 2 ) (6)
where Φ(r; a 1 , a 2 ) is the magnetic flux through the triangle with vertices (r; r + a 1 , r + a 1 + a 2 )(in the direction a 1 × a 2 ). Now, with some detailed computation (See Appendix Ap-I of this article) 

T (a 1 ) T (a 2 ) T (a 3 ) = exp - ie c d 3 r∇ • B T (a 1 ) T (a 2 ) T (a 3 ) (7) 
There exists a straightforward idea that a wave function under translation through a closed loop should remains unchanged, which indicates that the phase difference should be some integers times 2π, i.e.,

e c d 3 r∇ • B = N 2π (8) 
In the form of Maxwell equation with non-zero magnetic source, the term ∇ • B generally is integer times its unit, g. I.e., the most universal case requires

eg c • 4π = N 2π, N = 1, 2, • • • (9) ge = N • c 2 (10) 
Another way to derive (10) is In monopole case,

B = g r r 3
And apply this to (8) gives

e c 4π = N • 2π which yields ge = N • 2π c (10)
This method is firstly generated in [START_REF] Jackiw | Proceedings of the Dirac Centennial Symposium[END_REF] and summarized for a more clear and precise form in this article. For a more classical approach, see Dirac's master piece in 1931 as [START_REF] Dirac | [END_REF].

II. ANALYTICAL EIGENVALUES AND EIGENSTATES FOR SPINLESS CASE

The Hamiltonian of this case is

H = 1 2m p + e c A 2 ( 11 
)
where A is the vector potential of magnetic field

∇ × A = B = g r r 3
We all know that a vector's curl cannot have a non-zero divergence; however, in this case, the curl of A, i.e., B has a divergence for a closed surface covered the center of magnetic monopole. To solve this, we have two method: first, to agree that there are a string of singularities of A, and second, to get a piecewise description of potential bmA and for distinct region, the potential doesn't show any singularities.

A. Singularity

We choose the potential to be

H = p 2 r 2m - 2 2mr 2 1 sin θ ∂ ∂θ sin θ ∂ ∂θ + 1 2mr 2 sin 2 θ l φ + ge c (1 -cos θ) 2 (12) 
Straightforward, the l φ commutes with the Hamiltonian hence can be considered as a good quantum number m. Another quantum number is derived when we dealing with the equation. By method of variables separation, we suppose the eigen wave function to be R(r)Θ(θ)e imφ , and, by the help of Schrdinger equation, we have the equation of radial and angular(θ, actually, for the φ components is simply a trivial solution):

1 r 2 ∂ ∂r r 2 ∂R ∂r + 2µE 2 - λ r 2 R = 0 (13) 1 sin θ ∂ ∂θ sin θ ∂ ∂θ Θ + λ - 1 sin 2 θ m + ge c (1 -cos θ) 2 Θ = 0 (14) 
Radius part can be easily solved based on our knowledge about Spherical Bessel equation, for E > 0 unbounded state and E < 0 bounded state. On the other hand, (14) can solved due to its extreme similarity to Legendre equation (g = 0 case), which makes sense because without the monopole there should be a simple spherical symmetry and reduced the trivial situation. Without g = 0, we can firstly check the so-called 'singular points' at first glance -which should be reduced for a real physical solution. The singularity takes place at θ = 0, π and x = ∞, where the last one is not what we focus here. With several calculations, the eigenvalues problem reduced to the following form:

Θ + 2(1 -z) z(2 -z) Θ + λ z(2 -z) - [m + ge/ c(2 -z)] 2 (2 -z)z Θ = 0 ( 15 
)
where z = 1 + x, x = cos θ. According to the quantization problem as we discussed in section I, we define n = 2ge/ c for simplify the following discussion. It's straightforward to take the following form of the final solution Θ due to the critical index of singularity at z = 0, 2:

Θ = z m+n 2 (z -2) m 2 ω(z) (16) 
By substituting ( 16) into (15), we have

z(2 -z)ω + 2[1 + n + m -(1 + n/2 + m)z]ω + [λ -(m 2 + m + nm + n/2)]ω = 0
which is slightly deformation of Hypergeometric Equation, which yields solution for finite terms cut-off (ensure the non-singularity)

1 + 2m + n - √ 4λ + n 2 + 1 2 = -k, k = 0, 1, 2 • • • or similar λ = k + m + n + 1 2 2 - n 2 + 1 4
When, for a special case, n = m = 0, λ = k(k + 1) just as expected as Legendre equation's solution. Hence,

Θ = cos θ 2 |m+n| sin θ 2 |m| F α, β, γ, 1 + cos θ 2 e imφ (17) 
where

                         γ = 1 + |n + m| α = 1 + n + 2m 2 + 1 + n + 2m 2 2 + k(k + 2m + n + 1) β = 1 + n + 2m 2 - 1 + n + 2m 2 2 + k(k + 2m + n + 1)
with the knowledge of λ, we consider the radial function

1 r 2 ∂ ∂r r 2 ∂R ∂r + 2µE 2 - λ r 2 R = 0
with substitution u = rR, we have a 1-dimension-like equation

- 2 2m 
d 2 u dr 2 + 2 2m l(l + 1) r 2 -E u = 0 ( 18 
)
For the Bessel equation j l (ka) = 0, with infinity a → ∞, has continuum solution, the final spectra of energy is also continuum.

B. Piecewise

The method is derived by [3] but I also come up with this idea independently. For the following, I just simply summarize the main idea, methods and result of that significant paper.

The main idea is that the wave function ψ of a particle of charge Ze (Z = -1 for electron) around a Dirac monopole of strength g should be regarded as a section rather than ordinary function. The section is without discontinuities and hence the strings of singularities (for a particular θ in previous discussion) doesn't exist. The section is characterized by a particular number q = egZ. In Dirac's unit, 2e -1 is unitary, a positive number D = 2eg = 2q is derived. Now let's talk about the wave function as a section in details. The cusps and discontinuities arise because any choice of the vector potential A around the monopole must have singularities. The situation is similar to that encountered in the choice of a coordinate system on the surface of a sphere, such as the longitude and latitude system. No choice is possible which does not have some singularities. This kind of idea is widely used in differential geometry, as taught in General Relativity courses for a detailed understanding of mapping from the manifold to coordinate system. To avoid introducing singularities in the coordinate system, one divides the sphere into more than one overlapping region and defines a singularity-free coordinate transformations between the different coordinate systems.

Initiating this method, we divide the space outside of a magnetic monopole into to regions R a , and R b , and define a vector potential (A µ ) a in R a and (A µ ) b in R b . Using spherical coordinates (r, θ, φ) with monopole at origin, we have

R a : 0 ≤θ < 1 2 π + δ, 0 < r, 0 ≤ φ < 2π, (19a) 
R b : 1 2 π -δ ≤θ ≤ π, 0 < r, 0 ≤ φ < 2π, (19b) 
R ab : 1 2 π -δ <θ < 1 2 π + δ, 0 < r, 0 ≤ φ < 2π (19c)
The vector potential can be taken as a piecewise form: in the overlapping region R ab is called a section. ψ is thus a section. Hence, the Schrdinger equation is written like

A =                  1 -cos θ r sin θ êφ , R a Unknown, R ab -1 -cos θ r sin θ êφ , R b (20) 
1 2m (p -ZeA a ) 2 ψ a = Eψ a (21a) 1 2m (p -ZeA a ) 2 ψ b = Eψ b (21b)
It is clear that if ξ is a section, xξ is also a section, and relatively, r, p -ZeA are operators (of course Hermitian) on the Hilbert space of sections. In the overlapping region, the scalar product of two sections is well defined because

η b |ξ b = η a |ξ a

Define angular momentum operator by

L = r × (p -ZeA) - qr r (22) 
The commutator between components and position or momentum of same direction is zero, and for different it gives

[L i , x j ] = i ijk x k , [L i , p j -ZeA j ] = i ijk (p k -ZeA k )
and commutator between two components of angular momentum is same as expected. As we expected when construct such a description, there exists no singularities.

Since [r 2 , L] = 0, we can diagonalize r 2 and study operator L for a fixed r, which means we study the section's angular part only dependent on θ, φ.

For the following until the end of this subsection, we will deal with the angular part only. It's easy to construct the following way to obey the angular momentum theory (where mathematical details can be seen in Ap-IV):

L 2 Y q,l,m = l(l = 1)Y q,l,m ; L z Y q,l,m = mY q,l,m , l = 0, 1/2, 1, • • • , m = -l, -l + 1, • • • , l (23) 
The Y q,l,m are the eigensections which we shall call monopole harmonies. We shall show later that the allowed values of l and m are

l = |q|, |q| + 1, • • • , m = -l, -l + 1, • • • , l
Let's go back to Schrdinger equation. Firstly, we take

(p -ZeA) 2 = - 1 r 2 ∂ ∂r r 2 ∂ ∂r + 1 r 2 [r × (p -ZeA)] 2 = - 1 r 2 ∂ ∂r r 2 ∂ ∂r + 1 r 2 [L 2 -q 2 ]
And obviously the Hamiltonian commutes with L 2 , L z . We take ψ(r) = R(r)Y q,l,m (θ, φ) and hence have

- 1 2mr 2 ∂ ∂r r 2 ∂ ∂r + l(l + 1) -q 2 2mr 2 -E R = 0 ( 24 
)
this equation is solved by Tamm that R is simply a Bessel function for unbounded case with continuous spectrum

µ = l(l + 1) -q 2 + 1/4 = (l + 1/2) 2 -q 2 > 0 (25) k = √ 2mE (26) R(r) = 1 √ kr J µ (kr) (27) 
For bounded, there is no meaningful solution as we expected from analyze of singularity case.

III. NUMERICAL SOLUTION OF THE SPINELESS CASE

This part is done collaborating with Zhao-Yu Han by Mathematica; I write another version of the code by C++, and is demonstrated at Appendix Ap-II. The main idea in simulating is to make the differential equation into linear equation where the Hamiltonian for continuous configuration can be described a sparse matrix. The reduced eigenvalues problem is

λΘ = -(1 -x 2 ) d 2 dx 2 + 2x d dx + , 2 1 -x 2 + nm 1 + x + n 2 (1 -x) r(1 + x) Θ (28)
Discrete x into several pieces, Θ(x) → Θ x , where a gap δ x is defined. Under this framework,

Θ → Θ x+1 -Θ x-1 2δx , Θ → Θ x+1 + Θ x-1 -2Θ(x) δ 2 x
The result, as expected, is in accordance with ZYH's result.

IV. ABNORMAL ZEEMAN TERM FOR SPIN-1/2 CASE BASED ON PERTURBATION

The Hamiltonian in this case is not too-much different except additional Zeeman term which, in this section, will be treated as perturbation [4]. Firstly, we write done the Hamiltonian

H = H 0 + e 2m σ • B (29) 
Of course the H 0 is expanded into a double space by direct product with I 2 :

H = H 0 ⊗ I 2 + e 2m σ • B
or, by expanding the Zeeman term,

H = H 0 ⊗ I 2 + g e 2mr 2
cos θ sin θe -iφ sin e iφ -cos θ Straightforwardly, the radial part is still Spherical Bessel function while the angular part is what really take spinor into consideration.

As expected, the final solution should be in such a spinor form:

χ =     Θ 1 e i(m-1)φ Θ 2 e imφ     (30) 
for the dimension of angular momentum (generator of rotation). By some calculation, we derived a coupled second order equations:

λΘ 1 = -(1 -x 2 ) d 2 dx 2 + 2x d dx + (m -1) 2 1 -x 2 + n(m -1) 1 + x + n 2 (1 -x) 4(1 + x) + n 2 x Θ 1 + n 2 1 -x 2 Θ 2 (31a) λΘ 2 = -(1 -x 2 ) d 2 dx 2 + 2x d dx + m 2 1 -x 2 + nm 1 + x + n 2 (1 -x) 4(1 + x) - n 2 x Θ 2 + n 2 1 -x 2 Θ 1 (31b)
There is a method of recursion that, we suppose the coupling term is relatively small (which is true for relatively small n, but not true for larger one). Hence, we can divide the Θ 1/2 into where

Θ 1 = Θ 0 1 + Θ * 1 , Θ 2 = Θ 0 2 + Θ *
λΘ 0 1 = -(1 -x 2 ) d 2 dx 2 + 2x d dx + (m -1) 2 1 -x 2 + n(m -1) 1 + x + n 2 (1 -x) 4(1 + x) + n 2 x Θ 0 1 (32a) λΘ 0 2 = -(1 -x 2 ) d 2 dx 2 + 2x d dx + m 2 1 -x 2 + nm 1 + x + n 2 (1 -x) 4(1 + x) - n 2 x Θ 0 2 (32b)
and, an approximation of Θ * 1/2 is given by

λΘ * 1 = -(1 -x 2 ) d 2 dx 2 + 2x d dx + (m -1) 2 1 -x 2 + n(m -1) 1 + x + n 2 (1 -x) 4(1 + x) + n 2 x Θ * 1 + n 2 1 -x 2 Θ 0 2 (33a) λΘ * 2 = -(1 -x 2 ) d 2 dx 2 + 2x d dx + m 2 1 -x 2 + nm 1 + x + n 2 (1 -x) 4(1 + x) - n 2 x Θ * 2 + n 2 1 -x 2 Θ 0 1 (33b)
where, instead of a full Θ 2/1 on the right side, the zero-th order Θ 0 2/1 is shown. And, to derive a more precise answer, a possible way is to recursion, i.e., continuously use high order correction to a higher order answer, which is the essential point of perturbation theory. Here, however, due to the limit of time and space, I don't go any further and left this for future.

V. NUMERICAL SOLUTION OF THE SPIN-1/2 CASE

This part is also done by C++, where the code can be seen at Appendix Ap-III. The result is shown in Fig. 2 Ap-III. CODE OF PART B Ap-IV. EXPLICIT EXPERSSIONS OF Y q,l,m Notice: for a particular q, different l, m construct a set of orthonormal eigensections. For specific, to eliminate the freedom, we choose such a way that (L x + iL y )Y q,l,m = (l -m) 1/2 (l + m + 1) 1/2 Y q,l,m+1

(Ap-6)

From ( 22), we can easily have

L 2 = [r × (p -ZeA)] 2 + q 2 (Ap-7)
The function Y q,l,m should obey mY q,l,m = L z Y ql,lm = (-i∂ φ -q)Y q,l,m , in R a mY q,l,m = L z Y q,l,m = (-i∂ φ + q)Y q,l,m , in R b which shows that

Figure 1 :

 1 Figure 1: Illustration of a closed loop with (8)'s covering

  And hence on can has(A µ ) 1 = (A µ ) b + i Ze S ab ∂S -1 ab ∂x µ , S = S ab = e i2qφ = transition function S is the gauge transformation phase factor for changing from (A µ ) b to (A µ ) a in the overlapping region R ab , ψ a = S ab ψ b where ψ a/b is wave function of a particle of charge Ze in region R a and R b , respectively. A function ξ wit assumes values ξ a and ξ b in R a , and R b satisfies ξ a = S ab ξ b = e 2iqφ ξ b
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 2 Figure 2: A result of angular distribution.
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Appendix

Ap-I. CALCULATION OF (7)

We first have a look at (6) and (7): T (a 1 ) T (a 2 ) = exp -ie c Φ(r; a 1 , a 2 ) T (a 1 + a 2 ) (Ap-1)

T (a 1 ) T (a 2 ) T (a

Firstly, we define

Now, followed by definition

Hence, the ω can be written by

which, for a carefully look at Fig I, is just the cover surface of the tetrahedron. And, we all know the magnetic flux is defined by

For a closed surface, with Gaussian law, it also equals to

while just yields (7).

Y q,l,m = Θ q,l,m (θ)e i(m+q)φ , inR a Y q,l,m = Θ q,l,m (θ)e i(m-q)φ , inR b (Ap-8)

In the overlap,

writing x = cos θ to simplify, we have

From (Ap-8), we have that m -q is an integer, hence l -q either. While (Ap-7) also indicates l(l + 1) ≥ q 2 . These two conditions show that the allowed value of l is as we listed in the main text.

As what we did in case with singularities, we can expect the function has form of

where

and other series can be derived by (Ap-6). Now, let's check its completeness by expand section with a particular p and its Y q,l,m :

l,m a l,m Y q,l,m