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Abstract

Given two smooth and positive densities ρ0, ρ1 on two compact convex sets K0,K1, respec-
tively, we consider the question whether the support of the measure ρt obtained as the geodesic
interpolant of ρ0 and ρ1 in the Wasserstein space W2(R

d) is necessarily convex or not. We prove
that this is not the case, even when ρ0 and ρ1 are uniform measures.

1 Introduction

One of the main features of optimal transport theory (we refer to [16] and [15] for a general pre-
sentation) is the fact that it provides an original and efficient way to define interpolations between
probability measures.

Given a domain Ω ⊂ R
d (that we take compact for simplicity and convex for the sake of the

interpolation), we define the space W2(Ω) as the space of probabilities on Ω endowed with the
distance W2, defined through

W 2
2 (µ, ν) = min

{
∫

Ω×Ω

|x− y|2 dγ : γ ∈ Π(µ, ν)

}

,

where Π(µ, ν) is the set of the so-called transport plans, i.e.

Π(µ, ν) = {γ ∈ P(Ω ×Ω) : (πx)#γ = µ, (πy)#γ = ν, },

where πx(x, y) := x and πy(x, y) = y are the standard projections on the two factors of Ω× Ω.
It is possible to prove that the above minimization problem has a solution, which is unique and

of the form γ = (id, T )#µ (i.e. it is concentrated on the graph of a map T : Ω → Ω, called optimal

transport map) in many situations (in particular if µ ≪ Ld) and that W2, i.e. the square root of the
minimal value above, is indeed a distance on P(Ω).

The space W2(Ω) can be checked to be a geodesic space, where for µ, ν ∈ P(Ω) the (unique)
geodesic curve connecting them is obtained through

ρt := ((1− t) id+tT )#µ, (1.1)
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where T is the optimal transport map from µ to ν. This provides a useful interpolation between µ and
ν which is very different from the linear interpolation (1− t)µ+ tν. In particular, it is useful in many
applications, for instance in image processing: this is the case when doing histograms interpolations
(roughly speaking, the average between a distribution of pixel colors which are almost white and
another were they are almost black should be a a distribution with intermediate grey pixels, and
not one with half pixels which are white and half which are black), or when artificially creating
intermediate images between two pictures representing a same object which ahs moved (and the
goal is to find the same object in the middle, instead of two half objects at the starting and arrival
spots). But this very interpolation has also a lot of mathematical applications, as it was first
pointed out by McCann in [14]. Indeed, McCann found a class of functionals F : P(Ω) → R

which are convex along these geodesic lines (but not necessarily convex in the usual sense, think
for instance at µ 7→

∫ ∫

|x − y|2dµ(x)dµ(y)), thus making possible to obtain uniqueness results
or sufficient optimality conditions (see [4], for instance) for variational problems involving them.
Also, this notion of convexity, called displacement convexity (the above interpolation is also called
displacement interpolation) is an important notion in the study of gradient flows of these functionals
(see [2]). We also recall that the interpolation ρt can be found numerically via one of the most
classical algorithm for optimal transport, the so-called Benamou-Brenier method [3]. By solving the
kinetic energy minimization problem

min

{
∫ 1

0

∫

Ω

|vt|
2dρt dt : ∂tρt +∇ · (vtρt) = 0

}

,

among curves of measures with given initial and final data, one recovers the above interpolation,
and the optimal velocity field vt allows to find T (as we have vt(x) = (T − id) ◦ (Tt)

−1 with
Tt := (1− t) id+tT ).

Finally, let us remark that the interpolated measures ρt can also be considered as weighted
barycenters between ρ0 and ρ1, as they solve the minimization problem

min
{

(1− t)W 2
2 (ρ, ρ0) + tW 2

2 (ρ, ρ1) : ρ ∈ P(Ω)
}

,

a minimization problem which has ρt as unique solution (provided one of the measures ρ0, ρ1 is
absolutely continuous). This problem has also been considered when more than two measures are
given, in order to find the weighted barycenter of many of them, solving (see [1])

min

{

n
∑

i=1

λiW
2
2 (ρ, ρi) : ρ ∈ P(Ω)

}

(1.2)

(a minimization problem that can be also recast in the setting of multi-marginal problems, as in
[11]). Note that when n ≥ 3 this variational definition of the barycenter is the only possible one,
differentely from the case n = 2 where one can simply use the geodesic in W2.

In optimal transport theory, and in particular for regularity issues, the convexity of the support
of a measure is an important fact, and some results are only available under this assumption. In
particular, the optimal transport map between two smooth densities ρ0, ρ1 is smooth itself, provided
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their supports are convex (this theory was first developed by Caffarelli, [7, 9, 8], see [10] for a survey).
Since it is possible to write optimality conditions for the minimizers of (1.2) in terms of the optimal
maps Ti sending the optimal ρ onto the various ρi (which actually amounts to a system of Monge-
Ampère equations), one could imagine some boothstrap strategy to study the regularity of ρ using
that of the Ti. Yet, this requires as a preliminary fact to check the convexity of spt(ρ)! Note that
this is not needed for n = 2, since formula (1.1) allows to deduce the regularity of ρt from that of T ,
which is the optimal map from ρ0 to ρ1: in particular, only the convexity of the supports of these
two measures is needed. Anyway, the question whether the support of the barycenter is guaranteed
to be convex whenever the supports of the ρi are so is a very natural question. The case n = 2 is
the easiest to study and if the answer is no in such a case there is no hope to get yes in the case
n ≥ 3.

Moreover, independently of the regularity motivation, this question is very natural from a geo-
metric point of view, as a question on convex bodies. One can for instance insist on the case where
ρ0 and ρ1 are uniform measures on convex sets and look at spt(ρt) as an interpolation between
these sets. More generally, one could wonder if the interpolation between log-concave densities (of
the form ρ = e−V for a convex function V : Rd → R ∪ {+∞}) is still log-concave. This is true in
dimension 1 (and, contrarily to the question on the supports, it is non-trivial1).

Unfortunately, the present paper shows that the answer to these questions is no. More precisely,
we will see (Theorem 1) that on any smooth convex domain on R

2 we can find smooth and positive
densities ρ0, ρ1 such that the support of ρ1/2 is not convex, and that this can also be done with
uniform measures on (different, of course) convex sets.

2 The case of two segments or two curves

Consider two Lipschitz curves ω0, ω1 : [a, b] → R
d, and two measures ν0, ν1 ∈ P([a, b]). We need to

discuss the optimal transport between the measures ρ0 and ρ1, defined through µi := (ωi)#νi for
i = 0, 1, in connection with the optimal transport between ν0 and ν1. Note that, if d > 1, these
measures fall out of the usual assumptions for the existence of an optimal transport map between
them, as it is not true that µ0 does not give mass to “small” (i.e. (d− 1)−dimensional, or smaller)
sets (see [5, 13] and, more recently, [12], for the exact conditions for this existence result).

Yet, the fact that both measures are one-dimensional, allows to act differently (by the way, let
us mention a recent preprint, [6], on the case where optimal transport between measures in different
dimensions is considered). We will suppose that ω0 and ω1 are such that ω̇0(t) · ω̇1(s) > 0 for
a.e. (t, s) ∈ [a, b]2. In this case what happens is that optimal transport plans γ ∈ Π(µ0, µ1) for
the quadratic cost |x − y|2 are just obtained as the image of optimal transport plans in Π(ν0, ν1)
through the map (t, s) 7→ (ω0(t), ω1(s)).

Indeed, it is well-known that transport plans γ are optimal for the quadratic cost if and only if
their support is monotone, in the sense that (x, y), (x′, y′) ∈ spt(γ) implies (x − x′) · (y − y′) ≥ 0.

1This result has been proven by Young-Heon Kim via un-published computations, in the hope of generalizing to

higher dimensions.
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Yet, for (x, y) = (ω0(t), ω1(s)) and x′ = (ω0(t
′), ω1(s

′)), we have

(x− x′) · (y − y′) =

(

∫ t′

t
ω̇0(τ)dτ

)

·

(

∫ s′

s
ω̇1(σ)dσ

)

=

∫ t′

t

∫ s′

s
ω̇0(τ) · ω̇1(σ) dσdτ,

and, since the integrand in the last expression is positive, the sign of the integral is the same as
the sign of (t′ − t)(s′ − s). This proves that, if we write γ = (ω0 × ω1)#γ̃, the monotonicity of
the support of γ is equivalent to the 1D monotonicity of that of γ̃. In particular, when ν0 ≪ L1,
the optimal transport plan in Π(ν0, ν1) is unique and easy to find, and it is induced by a map, the
unique monotone increasing map T sending ν0 onto ν1; as a consequence, there is a unique optimal
transport plan from µ0 to µ1, and it is induced by the map ω1 ◦ T ◦ ω−1

0 .
We just point out that the situation is even simpler in case ω0 and ω1 are affine functions, i.e.

their images are two segments S0 and S1. Up to transations, we can suppose that S0 and S1 are of
the form Si = {tvi, t ∈ [0, 1]}, for some vectors vi ∈ R

d (i = 0, 1). Translating the segments is not
restrictive as we know that optimal transport and translations commute.

Then, we distinguish three cases: either v0 · v1 = 0, or v0 · v1 > 0, or v0 · v1 < 0. In the first
case it is easy to check that, for every x ∈ S0 and y ∈ S1, we have |x − y|2 = |x|2 + |y|2. This
implies

∫

|x− y|2 dγ =
∫

|x|2dµ0+
∫

|y|2dµ1 for every γ ∈ Π(µ0, µ1), and hence every transport plan
between these two measures is optimal (in particular, there is no uniqueness). In the case v0 ·v1 > 0,
we have, for x = tv0, y = sv1 and c = v0 · v1,

|x− y|2 = c|t− s|2 + (|v0|
2 − c)t2 + (|v1|

2 − c)s2,

where the first term in the right hand side is a positive multiple of the quadratic cost in the variables
(t, s) and the second term is separable. The case v0 · v1 < 0 can be reduced to the previous one
up to replacing v0 with −v0 and translating again. This means that, whenever v0 and v1 are not
orthogonal, the optimal transport between the two measures can be computed as if we were in
dimension one, i.e. it is the monotone increasing map. The orientation of the segments (which is
crucial to define the monotonicity of the map) has to be chosen so that the scalar product is positive.

With these considerations in mind, we consider the following esample.
Let S0 = {(t, at) : t ∈ [−1, 1]} and S1 = {(t,−at) : t ∈ [−1, 1]} be two segments in R

2 with
middle point at the origin, and connecting (−1,−a) to (1, a) and (−1, a) to (1,−a), respectively. We
select a ∈]0, 1[ so that the correct orientation of the two segments is the one based on the abscissas.
Then we consider a probability measure µ0 on S0 with linear density, proportional to 1− t, and µ1

a probability measure on S1 with density proportional to t+ 1. A simple calculation provides the
formula for the optimal trasnport map

T (t, at) = (−1 +
√

4− (1− t)2, a(1 −
√

4− (1− t)2))

and the shape of the interpolated measure is represented in the following figure. The fact that this
interplation is supported on a curve which is not a segment (it is actually part of the boundary of
an ellipse) will be the key point for our counter-examples.
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sptµ0 = S0

sptµ1/2

sptµ1 = S1
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•

•

•
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Figure 1: The support of µ1/2 when µ0 and µ1 have linear densities on the segments S0 and S1.

Figure 2: The supports of the interpolations µt for t = k/6.

3 Counterexamples with convex bodies

In this section we use the previous considerations to provide a wide class of cases where two measures
ρ0 and ρ1 have smooth and positive densities on their supports, their supports are convex sets, but
the support of the interpolant ρ1/2 cannot be convex.

Geometric setting We consider now a convex set Ω ⊂ R
2 and two portions Γ0 and Γ1 of its

boundary, and we suppose that, in suitable coordinates, we have Γ0 = {(t, f(t)) : t ∈ I} and
Γ1 = {(t, g(t)) : t ∈ J} for some disjoint intervals I = [a, b] and J = [c, d] and f : I → R, g : J → R

Lipschitz functions, with 0 < f ′ < λ and 0 > g′ > −λ for a suitable constant λ ∈ (0, 1). We
suppose f(b) = g(c) and f(a) = g(d). Let us call x = (a, f(a)) and x′ = (b, f(b)) the endpoints of
Γ0, and y = (c, g(c)) and y′ = (d, g(d)) those of Γ1. We also take two points x′′ ∈ Γ0 and y′′ ∈ Γ1,
with the same ordinate, smaller than (f(a) + f(b))/2 = (g(c) + g(d))/2. We consider two measures
µ0 ∈ P(Γ0) and µ1 ∈ P(Γ1) such that the optimal transport plan between them exists, is unique,
and is induced by a map T with T (x) = y, T (x′) = y′ and T (x′′) = y′′.

The situation is the one sketched in the picture below.
We now consider two sequence of densities ρn0 and ρn1 weakly converging to µ0 and µ1, respectively,

and concentrated on Ω (we will see different examples later where their support can be, or not, the
whole domain Ω). Let us call ρn

1/2 the interpolated density between them at time t = 1/2. We will
prove that, for n large enough, it is not possible that the support of ρn

1/2 is convex.

Lemma 1. Let Ω be a convex domain and µ0 and µ1 two measures on the segments S0 and S1 as

in the geometric setting above. Let ρn0 and ρn1 be smooth densities weakly converging to ρ0 and ρ1,
respectively, and concentrated on Ω. Let ρn

1/2 be the middle point of the geodesic in W2(Ω) between

them. Then, for n large enough, the support of ρn
1/2 is not convex.

Proof. Consider the optimal transport plan γn ∈ Π(ρn0 , ρ
n
1 ) for the quadratic cost. By uniqueness
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•
x

•
x′

•
y′

•
y

•
x′′

•
y′′

I J

Γ0 Γ1

Ω

Figure 3: The configuration of Ω, Γ0, Γ1.

of the optimal plan γ from µ0 to µ1, it is clear that γn ⇀ γ. From the fact that the support
of γ is included in the Hausdorff limit of the supports of γn, we deduce the existence of points
(xn, yn), (x

′

n, y
′

n), (x
′′

n, y
′′

n) ∈ spt(γn) converging to (x, y), (x′, y′) and (x′′, y′′), respectively. Since
((xn + yn)/2, (x

′

n + y′n)/2) belong to the support of ρn
1/2, if this support were convex, it should also

contain pn := (xn + yn + x′n + y′n)/4.
For simplicity, and without loss of generality, we will suppose that (x+ y + x′ + y′)/4 = 0 (this

is possible up to a translation).
Now, suppose pn ∈ spt(ρn

1/2). This means that there exist zn, wn ∈ Ω such that (zn+wn)/2 = pn
and (zn, wn) ∈ spt(γn). Note that the monotonicity of spt(γn) implies the inequality

(wn − y′′n) · (zn − x′′n) ≥ 0.

Up to subsequences, we can pass to the limit and obtain the existence of two points z, w ∈ Ω̄ such
that z + w = 0 and (w − y′′) · (z − x′′) ≥ 0.

Using w = −z this translates into z ∈ Ω̄ ∩ (−Ω̄) and

∣

∣

∣

∣

z −
x′′ − y′′

2

∣

∣

∣

∣

2

≤

∣

∣

∣

∣

x′′ + y′′

2

∣

∣

∣

∣

2

.

This means that z belongs to the intersection of Ω̄, −Ω̄, and a ball centered at q := (x′′ − y′′)/2
with radius |(x′′+ y′′)/2|. But it is possible to see that this intersection is empty, as one can observe
from the next figures.

Indeed, the closest point of Ω̄ ∩ (−Ω̄) to q is the point q̃ on the intersection of horizontal line
through 0 with ∂Ω, yet it does not belong to the required ball, as the segment [x′′,−y′′] is a diameter
of this ball, and q̃ sees both segments [x′′, q] and [q,−y′′] under an angle smaller than 45◦ because
of the derivative condition on f and g.

We can now provide our main counter-examples.

Theorem 1. For every smooth convex body Ω ⊂ R
2 there exist two smooth probability densities ρ0

and ρ1 in P(Ω), strictly positive on Ω, such that the support of their interpolation ρ1/2 is not convex.
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•
0 = x+y+x′+y′

4

•x′′+y′′

2•
x

•
x′

•
y′

•
y

•
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•
y′′

•
−y′′

•q = x′′
−y′′

2 Γ0 Γ1

Ω

−Ω

Figure 4: Ω, −Ω, and the reflected points.

•
q̃

•
x′′

•
−y′′

•q

Ω

−Ω

Figure 5: A zoom around q and q̃.

Proof. It is enough to notice that it is always possible to find two portions of boundary Γ0,Γ1 ⊂ ∂Ω
such that the assumptions of Lemma 1 (i.e. those of the above geometrical setting) are satisfied (it
is enough to choose Γ0 and Γ1 close enough to an extremal point of Ω, and orientate the coordinate
system so that this point is the unique point of Ω with maximal ordinate and to choose suitable
non-uniform probabilities µ0 and µ1 on Γ0 and Γ1). Then, we take any smooth and strictly positive
approximations ρn0 and ρn1 and choose ρ0 = ρn0 and ρ1 = ρn1 , for n large enough.

Remark 1. The same procedure can be applied to any convex domain Ω, provided that there exist
portions of its boundary sith tangent vectors forming angle strictly smaller than 90◦, which allows
to choose a suitable coordinate system and fit the geometrical setting. The only convex domains in
R
2 where this is not possible are the rectangles and the acute (or right) triangles.

Theorem 2. There exist convex sets A,B ⊂ R
2 such that, setting ρ0 = |A|−1L2 A and ρ1 =

|B|−1L2 B, the support of the middle point interpolation ρ1/2 is not convex.

Proof. It is enough to choose a ∈ (0, 1) and use, in Lemma 1, Ω = {(t, s) ∈ R
2 : s ≤ −a|t|, s ≥

−1, |t| ≤ 1}, Γ0 = [(−1,−a), (0, 0)], Γ1 = [(1,−a), (0, 0)], and measures µ0 and µ1 supported on Γ0

and Γ1 and constructed as in the example at the end of the previous section. Then we take An to
be the triangle with vertices (0, 0), (−1,−a) and (−1,−a− 1

n), Bn the triangle with vertices (0, 0),
(1,−a) and (1,−a− 1

n), ρ
n
0 = |An|

−1L2 An and ρn1 = |Bn|
−1L2 Bn. These measures converge to

µ0 and µ1, respectively. Hence, for n large enough we can take A = An and B = Bn.

Remark 2. Note that the domains An and Bn in the above proof can be smoothened, and made
strictly convex, with no extra difficulty.
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Ω
An Bn

Γ0 Γ1

Figure 6: Counter-example with uniform measures.
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