Francis Wlazinski 
  

teaching and research institutions in France or abroad, or from public or private research centers.   Copyright Reduction in non-(k + 1)-power-free morphisms

Introduction

As many problems in combinatorics on words, the origin of which is our concern derives directly from the original problem that is to say, the construction of an infinite word without consecutive repetition of the same factor. Such a word is called a square-free word. Since [START_REF] Thue | Uber unendliche zeichenreihen[END_REF] (see also [START_REF] Berstel | Axel Thue's papers on repetition in words: a translation[END_REF]), we know how to build infinite square-free words on a three-letters alphabet but also infinite overlap-free words on a two-letters alphabet that is words that do not have any factor of the form auaua with a a letter and u a word.

Most explicitly built infinite square-free words or infinite overlap-free words (for instance in [START_REF] Thue | Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen[END_REF][START_REF] Pleasants | Non-repetitive sequences[END_REF][START_REF] Dejean | Sur un théorème de Thue[END_REF]) are obtained by iterating a morphism. They are generated as fixed points of free monoid morphisms. Indeed, a non-erasing (∀x ∈ A, f (x) = ε) endomorphism f on an alphaphet A such that f (a) = au with u = ε verifies f n+1 (a) = f n (a)f n (u) for any positive integer n. Consequently, f n (a) is a prefix of f n+1 (a) and we can define the infinite word a = lim n→+∞ f n (a). We say that a is the (infinite) word generated by f . The study of infinite of square-free words [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF][START_REF] Crochemore | Régularités évitables (thèse d'état)[END_REF] and overlap-free words [START_REF] Karhumäki | On strongly cube-free ω-words generated by binary morphisms[END_REF] generated by morphisms was extended to words avoiding other repetitions: cube u 3 [START_REF] Karhumäki | On cube-free ω-words generated by binary morphisms[END_REF] and more generally k-power u k [START_REF] Richomme | Conjectures and results on morphisms generating k-powerfree words[END_REF].

Although other ways have therefore been adopted, the most commonly used method to produce square-free words remains to iterate a morphism from a letter of the alphabet. Some type of morphisms appears: the morphisms that preserve the absence of the repetition. Note that if the morphism preserves the absence of square, that is to say if the image of a squarefree word by this morphism is also square-free, then the sequence that it will produce will be square-free. Two different definitions follows for the morphisms: those that generate squarefree words and those that preserve the absence of square simply called square-free morphisms. The study of square-free morphisms is thus a more specific part of the previous problem. This definition can be extended to the other k-powers with k ≥ 3 but also to sesqui-powers or to fractional powers.

Several methods exist to verify whether a morphism is square-free [START_REF] Crochemore | Sharp characterizations of squarefree morphisms[END_REF], overlap-free [START_REF] Berstel | A characterization of overlap-free morphisms[END_REF][START_REF] Richomme | Characterization of test-sets for overlap-free morphisms[END_REF], cube-free [START_REF] Richomme | About cube-free morphisms[END_REF] or k-power-free [START_REF] Leconte | A characterization of power-free morphisms[END_REF][START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Wlazinski | A test-set for k-power-free binary morphisms[END_REF]. In this search to verify whether a morphism preserves the absence of a repetition, the uniform morphisms that is whose where the images of the letters have the same length give specific results [START_REF] Currie | There are k-uniform cubefree binary morphisms for all k¿=0[END_REF][START_REF] Keränen | On k-repetition freeness of length uniform morphisms over a binary alphabet[END_REF].

In line with this approach, a natural question arises: is a k-power morphism also a (k + 1)power-free morphism? In other words, if the image of any k-power-free word by a morphism f is k-power-free, is the image of a (k + 1)-power-free word also (k + 1)-power-free? The answer already exists for the Thue-Morse morphism [START_REF] Brandenburg | Uniformly growing k-th power-free homomorphisms[END_REF]: it is k-power-free for every integer k > 2.

In the search for an answer, equations of words (Lemma 3.1) appears in the initial case of a non-(k + 1)-power-free morphism. We give some conditions (Lemma 3.9) where we can simplify the initial equations. We call this simplification a reduction of the initial word: we construct a new word whose image contains a (k + 1)-power but with a lower length. The fact that the powers are synchronised (Lemma 2.12) appears as a particular case and will allow us to conclude for uniform morphisms (Proposition 4.1).

Preliminaries

Let us recall some basic notions of Combinatorics of words.

Words

An alphabet A is a finite set of symbols called letters. A word over A is a finite sequence of letters from A. The empty word ε is the empty sequence of letters. Equipped with the concatenation operation, the set A * of words over A is a free monoid with ε as neutral element and A as set of generators. Since an alphabet with one element is limited interest to us, we always assume the cardinal of considered alphabets is at least two. Given a non-empty word u = a 1 . . . a n with a i ∈ A for any integer i from 1 to n, the length of u denoted by |u| is the integer n that is the number of letters of u. By convention, we have |ε| = 0. The mirror image of u, denoted by ũ, is the word a n ....a 2 a 1 . In the particular case of the empty word, ε = ε.

A word u is a factor of a word v if there exist two (possibly empty) words p and s such that v = pus. We denote Fcts (v) the set of all factors of v. If u ∈ Fcts (v), we also say that v contains the word u (as a factor). If p = ε, u is a prefix of v. If s = ε, u is a suffix of v. If u = v, u is a proper factor of v. If u, p and s are non-empty, u is an internal factor of v.

Two words u and v are conjugated if u = t 1 t 2 and v = t 2 t 1 for two (possibly empty) words t 1 and t 2 .

Let w be a non-empty word and let i, j be two integers such that 0 ≤ i -1 ≤ j ≤ |w|. We denote by w[i..j] the factor of w such that |w[i..j]| = j -i + 1 and w = pw[i..j]s for two words s and p verifiying |p| = i -1. Note that, when j = i -1, we have w[i..j] = ε. When i = j, we also denote by w[i] the factor w[i..i] which is the i th letter of w. In particular, w [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF] and w [|w|] are respectively the first and the last letter of w.

Powers of a word are defined inductively by u 0 = ε, and for any integer n ≥ 1, u n = uu n-1 . Given an integer k ≥ 2, since the case ε k is of little interest, we called a k-power any word u k with u = ε. Given an integer k ≥ 2, a word is k-power-free if it does not contain any k-power as factor. A primitive word is a word which is not a k-power of an another word whatever the integer k ≥ 2. A (non-empty) k-power v k is called pure if any proper factor of v k is k-power-free. In particular, we say that v k is a pure k-power of a word w if v ∈ Fcts (w) and v k is pure. Repeating the fact that a non-pure k-power contains a k-power which is itself pure or not, we obtain that any k-power contains a pure k-power. Moreover, if v k is a pure k-power then v is primitive but the converse does not hold. Let us also remark that a word can not start with two different pure k-powers.

The following proposition gives the well-known solutions (see [START_REF] Lothaire | Combinatorics on words[END_REF]) to an elementary equation in words and will be widely used in the following sections: Proposition 2.1 Let A be an alphabet and u, v, w three words over A.

1. If vu = uw and v = ε then there exist two words r and s over A and an integer n such that u = r(sr) n , v = rs and w = sr.

2. If vu = uv, then there exist a word w over A and two integers n and p such that u = w n and v = w p .

We also need three other properties on words. The first one is an immediate consequence of Proposition 2.1(2). Lemma 2.2 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If a non-empty word v is an internal factor of vv, i.e., if there exist two non-empty words x and y such that vv = xvy then there exist a non-empty word t and two integers i, j ≥ 1 such that x = t i , y = t j and v = t i+j .

We also use a well-known result on combinatorics on words: Proposition 2.3 (Fine and Wilf ) [START_REF] Lothaire | Combinatorics on words[END_REF][START_REF] Lothaire | Algebraic Combinatorics on words, volume 90 of Encyclopedia of Mathematics[END_REF] Let x and y be two words. If a power of x and a power of y have a common prefix of length at least equal to |x| + |y| -gcd(|x|, |y|) then x and y are powers of the same word.

As a consequence of Proposition 2.3, we get: Corollary 2.4 (Keränen) [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF] Let x and y be two words. If a power of x and a power of y have a common factor of length at least equal to |x| + |y| -gcd(|x|, |y|) then there exist two words t 1 and t 2 such that x is a power of t 1 t 2 and y is a power of t 2 t 1 with t 1 t 2 and t 2 t 1 primitive words. Furthermore, if |x| > |y| then x is not primitive.

Morphisms

Let A and B be two alphabets. A morphism f from A * to B * is a mapping from A * to B * such that f (uv) = f (u)f (v) for all words u, v over A. When B has no importance, we will say that f is a morphism on A or that f is defined on A. Given an integer L, f is L-uniform if for each letter a in A we have |f (a)| = L. A morphism f is uniform if it is L-uniform for some integer L ≥ 0. Given a set X of words over A, and given a morphism f on A, we denote by f (X) the set {f (w) | w ∈ X}.

A morphism f on A is k-power-free if and only if f (w) is k-power-free for all k-power-free words w over A. For instance, the empty morphism (∀a ∈ A, (a) = ε) or the identity morphism Id (∀a ∈ A, Id(a) = a) are k-power-free.

A non-erasing morphism is a morphism for which f (a) = ε for all letters a ∈ A. The empty morphism is the only morphism which is both erasing and k-power-free. Indeed, for any non-empty erasing morphism f , there exist two different letters a and b in A (remember Card(A) ≥ 2) such that f (a) = ε, f (b) = ε, and so f (aba k-1 ) contains a k-power.

A morphism on A is called prefix (resp. suffix ) if, for all letters a and b in A, the word f (a) is not a prefix (resp. not a suffix) of f (b). A prefix (resp. suffix) morphism is non-erasing. A morphism is bifix if it is prefix and suffix.

Given a morphism f on A, the mirror morphism f of f is defined for all words w over A, by f (w) = f ( w). In particular, f (a) = f (a), ∀a ∈ A. Note that f is k-power-free if and only if f is k-power-free.

Proofs of the three following lemmas are left to the reader.

Lemma 2.5 Let f be a bifix morphism on an alphabet A and let u, v, w and t be words over A.

The equality f (u) = f (v)p with p be a prefix of f (w) implies u = vw for a prefix w of w such that f (w ) = p.

And the equality f (u) = sf (v) with s a suffix of f (t) implies u = t v for a suffix t of t such that f (t ) = s.

Lemma 2.6 Let f be a prefix morphism on an alphabet A, let u and v be words over A and let p 1 and p 2 be respectively prefixes of images by f of some letters a and b in A.

If (p 1 ; p 2 ) = (ε; f (b)) and (p 1 ; p 2 ) = (f (a); ε) then the equality f (u)p 1 = f (v)p 2 implies u = v and p 1 = p 2 .
Lemma 2.7 Let f be a suffix morphism on an alphabet A, let u and v be words over A and let s 1 and s 2 be respectively suffixes of images by f of some letters a and b in A. If Obviously, taking c = b, s = ε in a first time and p = ε in a second time, we get that a ps-morphism is a bifix morphism. Lemma 2.9 [START_REF] Keränen | On the k-freeness of morphisms on free monoids[END_REF][START_REF] Leconte | Codes sans répétition[END_REF] If f is not a ps-morphism then f is not a k-power-free morphism for any integer k ≥ 2.

Lemma 2.10 Let f be a ps-morphism from A * to B * and let u, v and w be words over A such that f (u) = δβ, f (v) = αβ and f (w) = αγ for some non-empty words α, β, γ and δ over B. Then, it implies that v = v 1 av 2 , u = u 1 bv 2 and w = v 1 cw 2 for some words v 1 , v 2 , u 1 , w 2 and some letters a, b, c. Moreover, we have either b = a or c = a.

In particular, if

|δ| < |f (u[1])| then u 1 = ε and if |γ| < |f (w[|w|])| then w 2 = ε.
Proof.

Let us recall that, as any ps-morphism, f is bifix i.e. prefix and suffix.

Let v[1..i] be the shortest prefix of v such that α is a prefix of

f (v[1..i]). Since α = ε, we have v[1..i] = ε i.e. i ≥ 1. We denote v 1 = v[1..i -1], v 2 = v[i + 1..|v|] and a = v[i].
There exist two words p = ε and s ( = f (a)) such that f (a) = ps, α = f (v 1 )p and β = sf (v 2 ).

Let u[j..|u|]( = ε) be the shortest suffix of u such that β is a suffix of f (u[j..|u|]). There exist two words s 1 = ε and p

1 ( = f (u[j])) such that f (u[j]) = p 1 s 1 and β = s 1 f (u[j + 1..|u|]). In particular, if |δ| < |f (u[1])| then p 1 = δ( = ε) and j = 1.
Let w[1.. ] be the shortest prefix of w such that α is a prefix of f (w [1.. ]). We denote w 2 = w[ + 1..|w|] and c = w[ ]. There exist two words p 2 = ε and

s 2 ( = f (c)) such that f (c) = p 2 s 2 , α = f (w[1.. -1])p 2 and γ = s 2 f (w 2 ). In particular, if |γ| < |f (w[|w|])| then = |w|, s 2 = γ( = ε) and w 2 = ε. If s = ε, we denote u 1 = u[1..j -1] and b = u[j]. Let us note that, if |δ| < |f (u[1]
)|, we get u 1 = ε. Since f is bifix and by Lemma 2.7, the equality

(β =)sf (v 2 ) = s 1 f (u[j + 1..|u|]), with (s; s 1 ) = (ε; f (b)) implies u[j + 1.
.|u|] = v 2 and s = s 1 that is u = u 1 bv 2 . Furthermore, since p, p 2 = ε, we get (p; p 2 ) = (ε; f (c)) and (p; p 2 ) = (f (a); ε). By Lemma 2.6, the equality

(α =)f (v 1 )p = f (w[1.. -1])p 2 implies p = p 2 and v 1 = w[1.. -1] that is w = v 1 cw 2 . So, we have f (a) = ps, f (b) = p 1 s and f (c) = ps 2 . Since f is a ps-morphism, then b = a or c = a. If s = ε then β = f (v 2 ) = s 1 f (u[j + 1..|u|]) with s 1 = ε. By Lemma 2.5, we get s 1 = f (u[j]), p 1 = ε and v 2 = u[j..|u|]. Since δ = ε, it follows that j ≥ 2 and so |δ| ≥ |f (u[1])|. We denote u 1 = u[1..j -2] and b = u[j -1]. We have u = u 1 bv 2 but also p = f (a), f (v 1 a) = α = f (w[1.. -1])p 2 with p 2 = ε. Since f is bifix, by Lemma 2.5, we get s 2 = ε and w[1.. -1]c = v 1 a i.e c = a and w = v 1 aw 2 .
Definition 2.11 Let k ≥ 2 be an integer. Let f be a morphism from A * to B * , w be a word over A and u be a non-empty word over B such that f (w) contains the k-power u k . Let w be a shortest factor of w which image by f contains

u k i.e. f (w) = pu k s with |p| < |f (w[1])| and |s| < |f (w[|w|])|.
We say that f (w) and u k are synchronised if there exist three words w 0 , w 1 and w 2 such that |f (w 0 )| = |u| and w = w 1 w 0 w 2 with p = ε if w 1 = ε and s = ε if w 2 = ε.

In this situation, we also simply say that f (w) contains a synchronised k-power.

The following lemma and its proof are based on Reduction 2 of the proof of Theorem 5.1 in [START_REF] Wlazinski | A test-set for k-power-free binary morphisms[END_REF]. Lemma 2.12 Let k ≥ 2 be an integer. If f is a ps-morphism and if f (w) contains a synchronised k-power then w contains a k-power. Remark 2.13 More precisely, we prove that w starts or ends with a k-power which image by f is a conjugated of the synchronised k-power.

Proof.

Let u be the word such that f (w) and u k are synchronised, let w be the shortest factor of w which image by f contains u k and let w 0 be a factor of w such that |f (w 0 )| = |u|.

There exist a proper prefix p of f (w [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF]) and a proper suffix s of f (w[|w]|) such that f (w) = pu k s. Moreover, there exist two integers 0 ≤ < m ≤ |w| such that w[ + 1..m] = w 0 . If = 0 i.e. w starts with w 0 then p = ε and f (w) starts with u. By Lemma 2.5, we get that u = f (w 0 ) and w starts with w k 0 : w contains a k-power. If m = |w| i.e. w ends with w 0 then, in a similar way, w contains the k-power w k 0 . From now, let us assume that 0 < < m < |w| i.e. w 0 is an internal factor of w. It implies that f (w 0 ) is an internal factor of u k . In particular, it means that f (w 0 ) and u are conjugated.

For any integer j in [0, k], let i j be the smallest integer such that pu j is a prefix of f (w[1..

i j ]) that is |f (w[1..i j -1])| < pu j ≤ |f (w[1..i j ]
)| (except the special case j = 0 and p = ε where the first inequation is not strict). We have i 0 = 1 and i k = |w|. There exist words p j ( = ε when j = 0) and s j such that f (w[i j ]) = p j s j for any j ∈

[0, k], p = p 1 , s = s k and u = s j f (w[i j + 1..i j+1 -1])p j+1 for any j ∈ [0, k -1].
Let us first remark that |s q | = |s n | for two integers 0 ≤ q, n ≤ k -1 implies that |p q+1 | = |p n+1 | (the converse also holds using Lemma 2.7 and the fact that s q and s n are not images of a letter). Indeed, since u = s q f (w

[i q + 1..i q+1 -1])p q+1 = s n f (w[i n + 1..i n+1 -1])p n+1 , we get s q = s n and f (w[i q + 1..i q+1 -1])p q+1 = f (w[i n + 1..i n+1 - 1 
])p n+1 with p q+1 = ε and p n+1 = ε. Since f is bifix and by Lemma 2.6, it follows that w[i q + 1..i i+1 -1] = w[i n + 1..i n+1 -1] and p q+1 = p n+1 .

Let δ be the integer such that ∈ [i δ , i δ+1 [. We have the equality

|s δ f (w[i δ + 1.. ])| = |u|-|f (w[ + 1..i δ+1 -1])p δ+1 | = |f (w[ + 1..m])|- |f (w[ + 1..i δ+1 -1])p δ+1 | = |s δ+1 f (w[i δ+1 + 1..m])|(≤ |u|). But the words s δ f (w[i δ + 1.. ]) and s δ+1 f (w[i δ+1 + 1..m]) are both prefixes of u. Thus s δ f (w[i δ + 1.. ]) = s δ+1 f (w[i δ+1 + 1..m]). If δ = 0 and p 0 = p = ε then s δ (= s 0 ) = f (w[i δ ]) and f (w[i δ .. ]) = s δ+1 f (w[i δ+1 + 1..m]) with s δ+1 = f (w[i δ+1 ]). By Lemma 2.5, we get that s 1 (= s δ+1 ) = ε, p 1 (= p δ+1 ) = f (w[i δ+1 ]) and u = f (w[1..i 1 ]
). Again by Lemma 2.5 and by induction, it implies that w starts with (w[1..

i 1 ]) k with |f (w[1..i 1 ])| = |u| i.e. f (w[1..i 1 ]) is a conjugated of u.
From now let us assume δ = 0 or p = ε. Since f is bifix,

s δ = f (w[i δ ]
) and s δ+1 = f (w[i δ+1 ]), by Lemma 2.7, we get s δ = s δ+1 . Thus, we have p δ+1 = p δ+2 for an integer δ such that 0 ≤ δ ≤ k -2.

We will now show that for any integer r such that 1 ≤ r ≤ δ + 1, we necessarily have p r = p δ+1 . By contradiction, assume that there exists an integer r verifying 1 ≤ r ≤ δ + 1 and p r = p δ+1 and let us choose the greatest one. By this way,

p r+1 = p r+2 (= p δ+1 ). It follows that s r f (w[i r + 1..i r+1 -1]) = s r+1 f (w[i r+1 + 1..i r+2 -1]). Since s r = f (w[i r ]) and s r+1 = f (w[i r+1 ]
), by Lemma 2.7, we get s r = s r+1 . But p r and p r-1 are both prefixes of u thus one of the two different words p r or p r+1 is a suffix of the other. It means that one the two different words

f (w[i r ]) or f (w[i r+1 ]
) is a suffix of the other: a contradiction with f bifix.

In a similar way, we prove that, for any integer

r in [δ + 1, k -1], we have s r = s δ with s r = f (w[i r ]. And it follows that p r = p δ for any integer r in [δ + 2, k].
Thus we have p q = p δ = p 1 and

s 0 f (w[2..i 1 -1])p 1 = u = s q-1 f (w[i q-1 + 1..i q -1])p q for all integers q in [1, k]. If s 0 = f (w[1]
), since f is bifix and by Lemma 2.5, we get that w

[i q-1 + 1..i q ] = w[1..i 1 ] and s q-1 = ε for all 2 ≤ q ≤ k that is w starts with (w[1..i 1 ]) k with f (w[1..i 1 ]) a conjugated of u. If s 0 = f (w[1]
), since f is bifix and by Lemma 2.7, we get that w[i q-1 + 1..i q -1] = w[2..i 1 -1] and s q-1 = s 0 for all 2 ≤ q ≤ k. In particular, it means that

s 0 = s 1 . It follows that w = w[1](w[2..i 1 -1]w[i 1 ]) r-1 w[2..i 1 -1]w[|w|] with f (w[1]) = ps 1 , f (w[i 1 ]) = p 1 s 1 and f (w[|w|]) = p 1 s. Since f is a ps-morphism, it means that w[1] = w[i 1 ] or w[|w|] = w[i 1 ] i.e. w = (w[1..i 1 -1]) r w[|w|] or w = w[1](w[2..i 1 ]
) k : the word w starts or ends with a k-power which image is a conjugated of u. Lemma 2.14 Let k ≥ 4 be an integer. The image of a pure k-power by a k-power-free morphism is also a pure k-power.

Proof.

Let f be a k-power-free morphism from A * to B * and let v k be a pure k-power over A.

If f (v) k was not a pure k-power then there would exist a pure k-power

u k ∈ Fcts f (v) k such that |u| < |f (v)|.
Since f is k-power-free and since the three proper factors of

v k v[2..|v|]v k-2 v[1..|v| -1], v k-1 v[1..|v| -1] and v[2..|v|]v k-1 are k-power-free, we get that |u k | > |f (v[2..|v|]v k-2 v[1..|v| -1])| ≥ 2|f (v)| > |u| + |f (v)|. By Corollary 2.4, f (v)
and u are powers of conjugated words and f (v) is not primitive: a contradiction with the hypotheses.

3 Reduction of a power 3.1 About k-power-free morphisms Even if it seems not obvious, hypotheses of Lemma 3.1 appear almost immediatly when the image of a word by a contains a (k + 1)-power. Lemma 3.1 Let k ≥ 4 be an integer. Let f be a ps-morphism from A * to B * . Let v and T be non-empty words over A such that v k is a pure k-power. Let us assume that

f (T ) = π 1 f (v) k σ 2 with |π 1 | < |f (T [1])| and |σ 2 | < |f (T [|T |])|.
Then, we are in one of the following situations: • (P.1) : There exist a pure k-power x k , a word y over A and a word Z over B such that (P.1.1)

: T = x k y, |y| ≤ 1, f (y) = π 1 σ 2 , f (x) = π 1 Z and f (v) = Zπ 1 (P.1.2) : or T = yx k , |y| = 1, f (y) = π 1 σ 2 , f (x) = Zσ 2 and f (v) = σ 2 Z. • (P.
2) : There exist a pure k-power x k and a non-empty word y over A such that (P.2.1)

: T = x k y with |f (x k-1 )| < |π 1 f (v)| (P.2.2) : or T = yx k with |f (x k-1 )| < |f (v)σ 2 |. • (P.3) : f is not k-power-free.

Proof.

If T is k-power-free, it ends the proof: f is not k-power-free.

So T contains at least one k-power. Among the k-powers of T , we choose one which image by f is a shortest: we can write T = y 1 x k y 2 where |f (x)| = min{|f (x )| where x k ∈ Fcts (T )}. By this definition, since f is bifix (as any ps-morphism) and so non-erasing, x k is a pure k-power. Otherwise, x k (and T ) would contain a proper factor xk with f (x) k proper factor of f (x) k i.e. |f (x)| < |f (x)|: a contradiction with the definition of x.

Case 1: A power of f (x) and a power of f (v) have a common factor of length at least

|f (x)| + |f (v)|
In a first time, we are going to list two cases where this situation necessarily happens.

If

y 1 = ε and y 2 = ε since |π 1 | < |f (T [1])| ≤ |f (y 1 )| and |σ 2 | < |f (T [|T |])| ≤ |f (y 2 )|, we get that f (x) k is an internal factor of f (v) k . It follows that |f (x)| < |f (v)|. If |f (x) k | < |f (v) k-2 |, by a length criterion, we get that f (x) k is an internal factor of f (v) k-1 with v k-1 k-power-free: f is not k-power-free. Thus it is bound to |f (x) k | ≥ |f (v) k-2 | ≥ |f (v 2 )| ≥ |f (v)| + |f (x)|.
If

y 1 = ε and y 2 = ε then T = x k , f (x) k = π 1 f (v) k σ 2 , π 1 is a prefix of f (x[1]), σ 2 a suffix of f (x[|x|]) and |f (x)| ≥ |f (v)|. The word f (x) k-2 ∈ Fcts f (v) k is a common factor of powers of the two words f (x) and f (v). Furthermore, we have |f (x)| k-2 ≥ |f (x)| 2 ≥ |f (x)| + |f (v)|.
Let us now really deal with this case 1. By Corollary 2.4, there exist two words t 1 and t 2 and two integers p and r such that f (v) = (t 1 t 2 ) p and f (x) = (t 2 t 1 ) r with t 1 t 2 and t 2 t 1 primitive words.

If

p ≥ 2 then f (v k/2 ) contains a k-power. Indeed, f (v k/2 ) = (t 1 t 2 ) p× k/2 with p × k/2 ≥ k.
In the same way, if r ≥ 2 then f (x k/2 ) contains a k-power. But v k/2 (proper factor of v k ) and x k/2 (proper factor of x k ) are both k-power-free: f is not k-power-free.

So we can assume that p = r = 1. We have

f (T ) = f (y 1 )(t 2 t 1 ) k f (y 2 ) = π 1 (t 1 t 2 ) k σ 2 with |f (y 1 y 2 )| = |π 1 σ 2 |, |π 1 | < |f (T [1])| = |f ((y 1 x)[1])| and |σ 2 | < |f (T [|T |])| = |f ((xy 2 )[|xy 2 |])|. If y 2 = ε, we get |f (y 2 )| > |σ 2 | and thus |f (y 1 )| < |π 1 |. It means that y 1 = ε. Furthermore |π 1 | < |f (x)| = |t 2 t 1 | and f (T ) = f (x k y 2 ) starts with (t 2 t 1 ) k and π 1 (t 1 t 2 ) k . Since t 1 t 2 is not an internal factor of (t 1 t 2 ) 2 (we know that f (v) = t 1 t 2 is
primitive) and by a length criterion, we necessarily obtain that t 2 = π 1 and f (y

2 ) = π 1 σ 2 . It follows that f (v) = t 1 π 1 and f (x) = π 1 t 1 . Since |t 2 | = |π 1 | < |f (T [1])| = |f (x[1])| and |σ 2 | < |f (y 2 [|y 2 |])|, if |y 2 | ≥ 2, we get that y 2 [1..|y 2 | -1] = ε and f (y 2 [1..|y 2 | -1]) is a prefix of t 2 = π 1 itself a prefix f (x[1]): a contradiction with f bifix. So |y 2 | = 1 and |f (y 2 )| -|σ 2 | = |t 2 | ≤ |f (v)|.
In the same way, when y 1 = ε we successively get

y 2 = ε, σ 2 = t 1 , f (y 1 ) = π 1 σ 2 , f (v) = σ 2 t 2 , f (x) = t 2 σ 2 , |y 1 | = 1 and |f (y 1 )| -|π 1 | = |t 1 | ≤ |f (v)|.
If

y 1 = y 2 = ε then π 1 = σ 2 = ε, t 1 t 2 = t 2 t 1 i.e. x = v and T = x k .
Case 2: Any power of f (x) and any power of f (v) do not have common factor of length at least |f (x)| + |f (v)|.

If

y 1 = ε and y 2 = ε, we have T = x k y 2 and f (x)f (x) k-1 f (y 2 ) = π 1 f (v) k σ 2 . But π 1 is a prefix of f (T [1]) = f (x[1]): there exist a word σ 1 such that f (x[1]) = π 1 σ 1 . Furthermore, σ 1 f (x[2..|x|])f (x k-1 ) ∈ Fcts f (x k ) ∩ Fcts f (v k ) . Thus |σ 1 f (x[2..|x|])f (x k-2 )| < |f (v)| and |f (x k-1 )| < |π 1 f (v)|.
In a same way, if y 1 = ε and y 2 = ε, we have

T = y 1 x k and |f (x k-1 )| < |f (v)σ 2 |.
By Lemma 2.12 and Remark 2.13, we immediatly get:

Corollary 3.2 With hypotheses and notations of Lemma 3.1, if f (T ) and f (v) k are synchronised (this is obviously the case when f is a uniform ps-morphism) then either f is not k-power-free or T verifies (P.1).

Corollary 3.3 Let k ≥ 4 be an integer. Let f be a ps-morphism from A * to B * . Let v k and t k be two pure k-powers over A. Let us assume that f

(t k ) = π 1 f (v) k σ 2 with |π 1 | < |f (t[1])| and |σ 2 | < |f (t[|t|])|. If π 1 = ε or if σ 2 = ε then f is not k-power-free.
Proof.

By Lemma 3.1, if f is k-power-free then t k verifies (P.1) or (P.2). Since t k is a pure k-power, it follows that t k can only verify (P.1.1) with |y| = 0. But that contradicts the fact that |f (y

)| = |π 1 σ 2 | > 0.
Corollary 3.4 Let k ≥ 4 be an integer. Let f be a ps-morphism from A * to B * . Let v and T be non-empty words over A such that v k is a pure k-power. Let us assume that

f (T ) = π 1 f (v) k+1 σ 2 with |π 1 | < |f (T [1])| and |σ 2 | < |f (T [|T |])|.
Then, either f is not k-power-free or there exist a pure k-power x k , a word Y over A and a word Z over B such that (P.1.1)

: T = x k+1 Y , |Y | ≤ 1, f (Y ) = π 1 σ 2 , f (x) = π 1 Z and f (v) = Zπ 1 (P.1.2) : or T = Y x k+1 , |Y | = 1, f (Y ) = π 1 σ 2 , f (x) = Zσ 2 and f (v) = σ 2 Z.
Proof.

Let T 1 be the shortest prefix of T such that f (T 1 ) starts with

π 1 f (v) k i.e. f (T 1 ) = π 1 f (v) k σ 2 with |σ 2 | < |f (T 1 [|T 1 |])| and let T 1 be the word such that T = T 1 T 1 . Let T 2 be the shortest suffix of T such that f (T 2 ) ends with f (v) k σ 2 i.e. f (T 2 ) = π 1 f (v) k σ 2 with |π 1 | < |f (T 2 [1])| and let T 2 be the word such that T = T 2 T 2 .
By Lemma 3.1, either f is not k-power-free or each of the words T 1 and T 2 verify one of the condition (P.1.1), (P.1.2), (P.2.1) or (P.2.2).

If T 1 verifies (P.1.1) that is there exist a pure k-power x k , a word y over A and a word Z over B such that

T 1 = x k y, |y| ≤ 1, f (y) = π 1 σ 2 , f (x) = π 1 Z and f (v) = Zπ 1 then we get that f (T ) = f (x k yT 1 ) = (π 1 Z) k π 1 σ 2 f (T 1 ) = π 1 (Zπ 1 ) k+1 σ 2 . It means that σ 2 f (T 1 )
starts with Z and f (yT 1 ) starts with π 1 Z = f (x). Since f is injective, we get that yT 1 starts with x: there exist a word Y such that yT

1 = xY with f (Y ) = π 1 σ 2 . If |Y | ≥ 2, since |σ 2 | < |f (T [|T |])| = |f (Y [|Y |])|, then f (Y [1..|Y | -1]) is a prefix of π 1 itself a prefix of f (x[|1|]
): a contradiction with f bifix. It follows that T verifies (P.1.1) .

If

T 1 verifies (P.1.2) then f (v) = σ 2 Z and f (T ) = f (yx k T 1 ) = π 1 σ 2 (Zσ 2 ) k f (T 1 ) = π 1 (σ 2 Z) k+1 σ 2 . That is f (T 1 ) = Zσ 2 with |σ 2 | < |f (T [|T |])| = |f (T 1 [|T 1 |])|. Moreover, f (y) = π 1 σ 2 with |π 1 | < |f (T [1])| = |f (y[1])| = |f (y)| and f (x) = Zσ 2 . By Lemma 2.10 and since |σ 2 | < |f (T 1 [|T 1 |])| = |f (x[|x|]
)|, we get that x = x 1 a and T 1 = x 1 c for some word x 1 and some letters a and c with either y = a or c = a. If c = a then T 1 = x, σ 2 = σ 2 and T verifies (P.1.2) . If y = a then it means that f (x) ends with f (y) = f (a) = π 1 σ 2 . It implies that Z ends with π 1 : there exist a word Z 1 such that Z = Z 1 π 1 and f (x

1 ) = Z 1 . Since f (T 1 ) = Zσ 2 = Z 1 π 1 σ 2 = f (x 1 )f (c), we get that f (c) = π 1 σ 2 .
Taking ax 1 for x, c for Y and σ 2 Z 1 for Z, we get that T verifies (P.1.1) .

In the same way, if T 2 verifies (P.1.2) then T verifies (P.1.2) and if T 2 verifies (P.1.1) then T verifies (P.1.1) or (P.1.2) .

If

T 1 verifies (P.2.2) that is T 1 = yx k with |f (x k-1 )| < |f (v)σ 2 |, then, by definition of T 1 , we get |σ 2 | < |f (x)| ≤ |f (x) k-2 | < |f (v)| and |f (yx k-1 x[1..|x| -1])| < |π 1 f (v) k |. It follows |f (xT 1 )| ≥ |f (x[|x|]T 1 )| > |f (v)σ 2 | and it implies that T 1 = ε. Thus f (x) k is an internal factor of f (v k-1 ): f is not k-power-free.
In the same way, if T 2 verifies (P.2.1) then f is not k-power-free.

Let us now assume that T 1 verifies (P.2.1) and T 2 verifies (P.2.2) i.e. there exist two pure k-powers x k and x k and two non-empty words y and y over A such that

T 1 = x k y with |f (x k-1 )| < |π 1 f (v)| and T 2 = y x k with |f (x k-1 )| < |f (v)σ 2 |. In particular, |f (x)| < 1 2 |π 1 f (v)| < |π 1 | + 1 2 |f (v)| and |f (x )| < |σ 2 | + 1 2 |f (v)|. It follows that |f (T [2..|T | -1])| ≥ |f (T )| -|f (x)| -|f (x )| > |f (v) k |: there exist a word V conjugated of f (v) such that f (T [2..|T | -1]) contains V k . If T [2..|T | -1] is k-power-free then f is not. Thus T [2..|T | -1] contains a pure k-power t k . But f (t) k is an internal factor of f (v) k+1 . So, if |f (t) k | ≤ |f (t)| + |f (v)| then f (t) k is factor of f (v 3 ) with v 3 k-power-free: f is not k-power-free. If |f (t) k | > |f (t)| + |f (v)|,
by Corollary 2.4, then there exist two words t 1 , t 2 and two integers p, q such that f (t) = (t 1 t 2 ) p and f (v) = (t 2 t 1 ) q with t 1 t 2 and t 2 t 1 primitive words. Moreover, since v k and t k are pure k-powers, we get p = q = 1. Let T and T be the non-empty words such that T = T t k T . We have 

f (T ) = f (T )(t 1 t 2 ) k f (T ) = π 1 (t 2 t 1 ) k+1 σ 2 with |π 1 | < |f (T [1])| and |σ 2 | < |f (T [|T |])|. Since t 1 t 2 is a primitive word, t 1 t 2 is not an internal factor of (t 1 t 2 ) 2 . So f (T ) = π 1 t 2 and f (T ) = t 1 σ 2 . By Lemma 2.10, it implies that t = v 1 av 2 , T = bv 2 and T = v 1 c for some words v 1 , v 2 ,

Equations of reduction

When f (w) = pu κ s, the different occurences of u give us equations on the images of the factors of w. Some equations can be reduce:

Lemma 3.5 Let α 1 , α 2 , β 1 , β 1 , β 2 , γ 1 , γ 2 be words over an alphabet B such that |β 1 | = |β 2 | = 0, β 1 is a proper suffix of β 1 and 0 ≤ |α 2 | -|α 1 | ≤ |β 1 |. In these hypotheses, the equality α 2 β 2 γ 2 = α 1 β 1 β 1 γ 1 implies α 2 γ 2 = α 1 β 1 γ 1 .

Proof.

Let us denote w = α

1 β 1 β 1 γ 1 = α 2 β 2 γ 2 .
The words α 1 , α 2 are both prefixes of w. Since |α 2 | ≥ |α 1 |, the word α 1 is a prefix of α 2 : there exists a word α 2 such that α

2 = α 1 α 2 with |α 2 | = |α 2 | -|α 1 | ≤ |β 1 |.
We have

|γ 2 | -|γ 1 | = |w| -|α 2 β 2 | -|γ 1 | = |β 1 | -(|α 2 | -|α 1 |) so 0 ≤ |γ 2 | -|γ 1 | ≤ |β 1 |.
The words γ 1 , γ 2 are both suffixes of w: there exists a word γ 2 such that

γ 2 = γ 2 γ 1 with 0 ≤ |γ 2 | ≤ |β 1 |. The equality α 2 β 2 γ 2 = α 1 β 1 β 1 γ 1 becomes α 1 α 2 β 2 γ 2 γ 1 = α 1 β 1 β 1 γ 1 that is α 2 β 2 γ 2 = β 1 β 1 . But |α 2 | + |γ 2 | = |α 2 β 2 γ 2 | -|β 2 | = |β 1 β 1 | -|β 1 | = |β 1 |. Thus α 2 is a prefix of β 1 and γ 2 is a suffix of β 1 so of β 1 with |α 2 | + |γ 2 | = |β 1 | that is α 2 γ 2 = β 1 . It follows that α 2 γ 2 = α 1 α 2 γ 2 γ 1 = α 1 β 1 γ 1 .
The situation described in Figure 1 is an example of a case where the hypotheses of the following lemma are verified. Figure 2 Let f be a morphism from A * to B * and let (w i ) i=1..κ+1 , (x i ) i=1..κ be words over A such that |f (x i )| = |f (x j )| = 0 for all integers i, j in [1, κ].

We denote by w the word w 1 x 1 ...w κ x κ w κ+1 .

We assume that there exist u, p, s, (X i ) i=1..κ and (Y i ) i=1..κ words over B such that f (w 1 ) = pX 1 , f (w κ+1 ) = Y κ s and f (w i ) = Y i-1 X i for all 2 ≤ i ≤ κ. Furthermore, we assume that, for all integers i in [1, κ], we have u = X i f (x i )Y i : it means that f (w) = pu κ s.

Let us also assume that there exists an integer q such that, for any integer i in

[1, κ], 0 ≤ |X q | -|X i | ≤ |X q |
where X q is a common suffix of X q and f (x q ). Then the word w = w 1 w 2 ...w κ w κ+1 verifies f ( w) = pǔ κ s with ǔ = X i Y i for any integer i in [1, κ].

In particular, f ( w) and ǔκ are synchronised only if f (w) and u κ are synchronised. We say that we have reduced w. Point 4 of Remark 3.7 will be treated in the proof of Lemma 3.6. Point 5 is the mirror image of point 4. And point 6 is a combination of point 4 and point 5.

1 Y 1 X f x ( ) 1 f x ( ) q X Y q q q X' q X'' f x ( ) 2 Y 2 2 X k Y X k f x ( ) k ( ) f w k+1 f w ( ) 1 p s u Figure 1: Reduction of a power 2 X f x ( ) 2 f x ( ) q Y 2 ( ) f w k+1 X k f x ( ) k k Y f x ( ) q 1 1 p q X Y q s u Y X

Remark 3.7

1. Using the mirror image and exchanging |X q | the maximum of

|X i | by the maximum |Y q | of |Y i | (i.e. |X q | is the minimum of |X i |), the condition "0 ≤ |X q |-|X i | ≤ |X q |
where X q is a common suffix of X q and f (x q )" of Lemma 3.6 can be replaced by "0 ≤ |Y q | -|Y i | ≤ |Y q | where Y q is a common prefix of Y q and f (x q )".

A prefix

u 1 of u is also a prefix of ǔ if |u 1 | < |X q | and a suffix u 2 of u is also a prefix of ǔ if |u 2 | < max |Y j |. 3. If, instead of u = X κ f (x κ )Y κ , we only have that X κ f (x κ )Y κ is a prefix of u then f ( w) = pǔ κ-1 X κ Y κ s with X κ Y κ prefix of ǔ.
4. If q = 1 and X q is a suffix of f (x q ) i.e. X q = ε (see Figure 2) then we do not need x 1 and optionally not w 1 in the hypotheses of Lemma 3.6. Conclusion remains true with

u = X 1 Y 1 , w 2 = w 1 w 2 or w 2 , f (w 2 ) = pX 1 Y 1 X 2 , w = w 2 x 2 w 3 .
..w κ x κ w κ+1 and w a (not necessarily proper) suffix of w 2 w 3 ...w κ w κ+1

5. If q = κ and Y q is a prefix of f (x q ) then we do not need x κ and optionally not w κ+1 in the hypotheses of Lemma 3.6. Conclusion remains true with

u = X κ Y κ , w κ = w κ w κ+1 or w κ , f (w κ ) = Y κ-1 X κ Y κ s, w = w 1 x 1 w 2 .
..w κ-1 x κ-1 w κ and w a (not necessarily proper) prefix of w 1 w 2 ...w κ-1 w κ .

6. If q = 1, q = κ, X q is a suffix of f (x q ) and Y q is a prefix of f (x q ) then we do not need neither x 1 nor x κ in the hypotheses of Lemma 3.6. Conclusion remains true with

u = X 1 Y 1 = X κ Y κ , w 2 = w 1 w 2 or w 2 , w κ = w κ w κ+1 or w κ , f (w 2 ) = pX 1 Y 1 X 2 , f (w κ ) = Y κ-1 X κ Y κ s, w = w 2 x 2 w 3 ...w κ-1
x κ-1 w κ and w a (not necessarily proper) factor of w 2 w 3 ...w κ-1 w κ .

For any positive integer , since |f

(x i )| = |f (x j )| is equivalent to |f (x i )| = |f (x j )
| and since a prefix (resp. a suffix) of f (x i ) is a prefix (resp a suffix of f (x i )), we immediately obtain the following Corollary that will be the central point of the proof of Proposition 4.1.

Corollary 3.8 (method of reduction)

Let κ ≥ 3 and ≥ 1 be two integers, let α be an integer in {1, 2} and let β be an integer in {κ -1, κ} Let f be a morphism from A * to B * and let (w i ) i=α..β+1 , (x i ) i=α..β be words over A such that |f (x i )| = |f (x j )| = 0 for all integers i, j in [α, β].

We denote by w the word w α x α ...w β x β w β+1 . We assume that there exist u, p, s, (X i ) i=α..β and (Y i ) i=α..β words over B such that f

(w i ) = Y i-1 X i for all integers i in [1 + α; β]. Furthermore, we also assume that f (w α ) = pu α-1 X 1 and f (w β+1 ) = Y κ u κ-β s where u = X i f (x i )Y i ( = ε) for all integers i in [α, β]: it means that f (w) = pu κ s.
Finally, we assume that there exists an integer q such that, for any integer i in

[α, β], 0 ≤ |X q |-|X i | ≤ |X q | where X q is a common suffix of X q and f (x q ), 0 ≤ |X q |-|X i | ≤ |f (x q )| when α = 2, or 0 ≤ |Y i | -|Y q | ≤ |f (x q )| when β = κ -1.
Then, for any integer 0 ≤ φ < , the word w = w α x φ α ...w β x φ β w β+1 verifies f ( w) = pǔ κ s with ǔ = X i f (x φ i )Y i for any integer i in [1; κ]. In particular, f ( w) and ǔκ are synchronised only if f (w) and u κ are synchronised.

Proof of Lemma 3.6.

Without loss of generality, we can assume that |p| < |f (w

1 [1])| and |s| < |f (w κ+1 [|w κ+1 |])|.
Let X q be the word such that X q = X q X q . For any integer i ∈ [1, κ], we have

X i f (x i )Y i = X q X q f (x q )Y q (= u). Since 0 ≤ |X i | -|X q | ≤ |X q |, by lemma 3.5, we get X i Y i = X q Y q (it is ǔ). That is f ( w) = pX 1 Y 1 X 2 ..Y κ-1 X κ Y κ s = pǔ κ s and |ǔ| = |u| -|f (x q )|.
Let us treat Point 4 of Remark 3.7 that is q = 1, X q is a suffix of f (x q ) (i.e. X q = ε), u = X 1 Y 1 , w 2 = w 1 w 2 or w 2 , f (w 2 ) = pX 1 Y 1 X 2 and w = w 2 x 2 ...w κ x κ w κ+1 . Let X q be the word such that f (x q ) = X q X q . We have |X i | ≤ |X q | ≤ |f (x q )| for any integer i in [2, κ]. Since X i f (x i ) and X q f (x q ) are both prefixes of u, let z i be the prefix of X q such that X q X q z i = X i f (x i ). We have

|z i | = |X i f (x i )| -|X q X q | = |X i |. Thus X i = z i is a suffix of f (x i ). It follows that, for all integers i in [2, κ], X i Y i = ǔ (as X i f (x i )Y i ) is a suffix of pu = pX 1 Y 1 : f ( w) ends with ǔκ s.
Even if it seems elementary, the delicate point of this proof is the property of synchronization. In the next part, we are interested in it. This will also give the basic ideas of the proof for the specific assumptions of Remark 3.7. A re-reading of the general case adjusting the conditions (most frequently considering a suffix of w 1 or w 1 w 2 in case 4 and a prefix of w κ+1 or w κ w κ+1 in case 5) gives the solution to theses specific cases.

If f ( w) and ǔκ are synchronised, there exist two integers 0 Since y r is a suffix of w r and y r+1 is a suffix of w r+1 , let i be the integer such that w[1..i]y r = w 1 x 1 w 2 ..x r-1 w r and let j be the integer such that w[1..j]y r+1 = w 1 x 1 w 2 ..w r x r w r+1 . Since i = 0 implies = 0 and j = |w| implies m = |w|, we have 0

≤ < m ≤ | w| such that |ǔ| = |f ( w[ + 1..m])| = |f ( w[1..m])| -|f ( w[1.. ])| and, specifically, p = ε when l = 0 and s = ε when m = | w|. If l = 0 then ǔ = f ( w[1..m]) = X 1 Y 1 . Since f is injective, there exists a prefix w 2 of w 2 such that f (w 1 ) = X 1 and f (w 2 ) = Y 1 . It follows that w starts with w 1 x 1 w 2 and f (w) starts with f (w 1 x 1 w 2 ) = X 1 f (x 1 )Y 1 = u: f (w)
< i < j < |w|. Furthermore, |f (w[i + 1..j])| = |f (w[1..j])| -|f (w[1..i])| = |f (x r w r+1 )| -|f (y r+1 )| + |f (y r )| = |ǔ| + |f (x r )| = |ǔ| + |f (x q )| = |u|. That is f (w) and u κ are synchronised. Case 2: |f ( w[1.. ])| ≥ |pǔ r-1 | + max{|X r |; |X r+1 |}. The inequalities |pǔ r X r | ≤ |f ( w[1.. ])| < |pǔ r | mean that |f (w 1 ..w r )| ≤ |f ( w[1.. ])| < |f (w 1 ..w r+1 )|: there exists a prefix z r+1 of w r+1 such that w[1.. ] = w 1 ..w r z r+1 . Since |pǔ r X r+1 | ≤ |f ( w[1..m])| < |pǔ r+1 |, there exists a prefix z r+2 of w r+2 such that w[1..m] = w 1 ..w r+1 z r+2 . We have |ǔ| = |f ( w[1..m])| -|f ( w[1.. ])| = |f (w r+1 z r+2 )| -|f (z r+1 )|.
Let i be the integer such that w[1.

.i] = w 1 x 1 ...w r x r z r+1 and let j be the integer such that w[1..j] = w 1 x 1 ...w r x r w r+1 x r+1 z r+2 . Since 0 < < m < | w|, we have 0

< i < j < |w|. Furthermore, |f (w[i + 1..j])| = |f (w[1..j])| -|f (w[1..i])| = |f (w r+1 x r+1 )| + |f (z r+2 )| - |f (z r+1 )| = |ǔ| + |f (x r+1 )| = |ǔ| + |f (x q )| = |u|. That is f (w) and u κ are synchronised. Case 3: |pǔ r-1 | + min{|X r |; |X r+1 |} < |f ( w[1.. ])| < |pǔ r-1 | + max{|X r |; |X r+1 |}. In particular, it means that |X r | = |X r+1 |. If |X r | < |X r+1 | then |f (w 1 ..w r )| = |pǔ r-1 X r | < |f ( w[1.. ])| < |pǔ r | ≤ |f (w 1 ..w r+1 )| and |f (w 1 ..w r )| ≤ |pǔ r | < |f ( w[1..m])| < |pǔ r X r+1 | = |f (w 1 .
.w r+1 )|: There exists a prefix z r+1 of w r+1 such that w[1.. ] = w 1 ..w r z r+1 and there exists a suffix y r+1 of w r+1 such that w [1..m]y r+1 = w 1 ...w r w r+1 .

We have

|ǔ| = |f ( w[1..m])| -|f ( w[1.. ])| = |f (w r+1 )| -|f (z r+1 )| -|f (y r+1 )|. Since 0 < |f ( w[1.. ])| -|f (w 1 ..w r )| = |f ( w[1.. ])| -|pǔ r-1 X r | < |X r+1 | -|X r |, we get |X r f (z r+1 )| < |X r+1 | and so the word X r f (z r+1 ) is a prefix of X r+1 . Since ||X r | -|X r+1 || ≤ |X q | ≤ |f (x q )|, we get that |X r f (x r )| ≥ |X r+1 |. But X r+1 is a prefix of X r f (x r ) (they are both prefixes of u) so f (z r+1
) is a prefix of f (x r ). By Lemma 2.6, it implies that z r+1 is a prefix of x r .

Let i be the integer such that w[1.

.i] = w 1 x 1 ...w r z r+1 and let j be the integer such that w[1..j]y r+1 = w 1 x 1 w 2 ..w r x r w r+1 . As previously, we have 0 < i < j < |w| and |f (w

[i + 1..j])| = |f (w[1..j])| -|f (w[1..i])| = |f (x r w r+1 )| -|f (y r+1 )| -|f (z r+1 )| = |ǔ| + |f (x r )| = |ǔ| + |f (x q )| = |u|.
That is f (w) and u κ are synchronised.

The case |X r | > |X r+1 | is solved in the same way using the fact that z r+2 is a prefix of f (x r+1 ).

Situations of reduction

Let k ≥ 3 be an integer and let κ ∈ {k; k + 1}. Let f be a morphism from A * to B * and let ω be a word over A such that f (ω) = pU κ S for some words p, S and U = ε over B such that |p| < |f (ω [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF])|. Moreover, we assume |S| < |f (ω[|ω|])| when κ = k + 1. It is important to note that in this section the word S is not necessary a proper suffix of f (ω[|ω|]) when κ = k.

For any integer j in [1, κ + 1], let i j the smallest integer such that pU j-1 is a prefix of f (ω[1..i j ]). We have i 1 = 1 and there exist words p j and s j such that f (ω[i j ]) = p j s j , p 1 = p, s κ+1 is a prefix of S (s κ+1 = S when κ = k + 1), p j = ε if j = 1 and s 1 = ε. Furthermore, we have f (ω[1..i j ]) = pU j-1 s j for any integer j in [1, κ + 1], U = s j f (ω[i j + 1..i j+1 -1])p j+1 for any integer j in [1, κ].

Since a factor of ω can appear many times in ω, it is necessary to indicate which exact factor we are going to work with: if ω[n..m] = z, we denote n = n z and m = m z fixing by this way the considered occurrence of z in ω. For any positive integer α, if ω[n..m] = z α , we also denote n = n z and m = m z without specifying α. It is the same notation as the case α = 1: we will precise only if necessary.

To simplify notations, let us recall that, given two integers 1 ≤ n z ≤ m z ≤ |ω|, the word ω[n z ..m z ] = z α define two words we denote z p and z s such that ω = z p z α z s , with

n z = |z p | + 1 and m z = |z p z α |. This means that z p = ω[1..n z -1] and z s = ω[m z + 1..|ω|].
Given two integers 1 ≤ n z ≤ m z ≤ i κ+1 , we also define a word D z and three integers λ z , d z and c z (even if c z is not used in this section). Eventually, we will precise D z,ω , λ z,ω , d z,ω and c z,ω if a doubt may occur. Briefly, λ z is the integer such that f

(ω[n z ..m z ]) = f (z α ) starts in the λ z th occurrence of U ; d z indicates if the first occurrence of f (z) in f (ω[n z ..m z ])
covers or not two consecutive occurrences of U ; c z is the number of occurrences of U covers by f (ω[n z ..m z ]) and D z is a prefix of U such that f (z p z) ends with D z or D z f (z). More precisely, if n z = 1 i.e. z is a prefix of ω then λ z = 0, d z = 1 and D z is the word such that f (z) = pD z . When n z ≥ 2, let λ z be the integer such that

n z ∈]i λz ; i λz+1 ] i.e. |pU λz-1 | ≤ |f (ω[1..n z -1])| = |f (z p )| < |pU λz |. If |f (z p z)| ≤ |pU λz | then let d z = 0 otherwise let d z = 1. Let D z be the word such that f (z p z dz ) = pU λz-1+dz D z . It means that D z = s λz f (ω[i λz + 1..n z -1]) when d z = 0 and s λz f (ω[i λz + 1..n z -1])f (z) = U D z when d z = 1. In particular, D z is a proper suffix of f (z) when d z = 1. Finally, c z is the lowest integer such that |f (ω[1..m z ])| ≤ |pU λz+cz-1 |.
It is important to remark that, if ω[n z ..m z ] = z α , the integers n z and m z define z α and z. But, since we may have several occurrences of z α in ω, we do not have the contrary. In other words, the equality z = z not necessarily implies n z = n z or m z = m z . In the same vein, λ z , d z , c z and D z depend on n z and m z but not directly of z. But if no question exists over the considered factor of ω or if the choice of the considered factor does not matter, we will write

z α instead of ω[n z ..m z ].
For any integer α ≥ 2 and for any word ω We say that f (y) α is a conjugated shift to the right of f (z) α if f (z) α is a conjugated shift to the left of f (y) α . We simply say that f (y) α is a conjugated shift of f (z) α if it is a conjugated shift to the left or to the right of f (z) α .

[n z ..m z ] = z α with n z , m z ∈ [1, i κ+1 ], the word f (ω[n y ..m y ]) = f (y α ) = f (y) α with n y , m y ∈ [1, i κ+1 ] is a conjugated shift to the left of f (ω[n z ..m z ]) = f (z α ) = f (z) α (in f (ω)) if there exist two words t 1 = ε and t 2 such that f (y) = t 2 t 1 , f (z) = t 1 t 2 and
For a general use of conjugated shifts of f (z) α , we will switch t 1 and t 2 roles in definition and conditions (1) to (3) for a conjugated shift to the right.

For any pure k-power ω

[n v ..m v ] = v k of ω, there are k-2 choices for the factor v 3 in v k . We denote v 3 (β) the β th factor of v 3 in v k that is ω[n v ..m v ] = v β-1 v 3 (β) v k-β-2 with 1 ≤ β ≤ k -2.
We will focus on theses different cubes v 3 but without specifying β in this section. For any factor ω

[n v ..m v ] = v 3 of ω[1..i κ+1 ] and for any integer j ∈ [1; κ], let L j,v be the set of the words ω[n x ..m x ] = x 3 such that f (ω[n x ..m x ]) = f (x) 3 is a conjugated shift to the left of f (ω[n v ..m v ]) = f (v) 3 with λ x = j if d x = d v = 0 and λ x = j -1 otherwise.
We also denote R j,v the set of the words ω

[n x ..m x ] = x 3 such that f (ω[n x ..m x ]) = f (x) 3 is a conjugated shift to the right of f (v) 3 with λ x = j -d v × d x .
If ω[n x j ..m x j ] = x 3 j is a word in L j,v ∪ R j,v , we denote t 1,j , t 2,j the words such that f (v) = t 1,j t 2,j and f (x j ) = t 2,j t 1,j .

More specifically, let j 0 be an integer such that ω[n v ..m v ] = v 3 ∈ L j 0 ,v (∪R j 0 ,v ). We will always assume that n x j 0 = n v and m x j 0 = m v that is x j 0 = v. Lemma 3.9 We use all previous definitions and notations of this section. In particular, v 3 is a chosen factor of a pure k-power v k . When one of the four following situations happen, there exist a word ω such that f (ω) = p (U ) κ S for some words p , S and 

U = ε over B verifying |p | < |f (ω[1])|, 0 < |U | < |U | and f (ω) and (U ) κ are synchronised if f (ω) and U κ are synchronised. 1. d v = 1, |D v f (v) 2 | < |U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [2, κ]. 2. d v = 1, L j,v ∪ R j,v = ∅ for any integer j ∈ [2, κ -1]
|D v f (v) φ | ≤ |U | < |D v f (v) φ+1 |. 3. d v = 0, |D v f (v) 2 | ≤ |U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, κ]. 4. d v = 0, |U | < |D v f (v) 2 | < |D v U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, κ -1].
Proof.

For any integer j, let ω[n x j ..m x j ] = x 3 j be a word in L j,v ∪ R j,v .

1.

d v = 1, |D v f (v) 2 | < |U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [2, κ]. If x 3 j ∈ L j,v and d x j = 1 (including x j 0 = v) or if x 3 j ∈ R j,v
, let X j be the word D x j and let e j be the integer d x j . If x 3 j ∈ L j,v and d x j = 0, let X j be the suffix of f (x j ) such that D x j f (x j ) 2 = U X j and let e j = 2. Let q be an integer such that |X q | = max{|X j |; j ∈ [2; κ]}. For all integers j ∈ [2, κ], if d x j = 0 with x 3 j ∈ L j,v or if d x j = 1, by definitions, we have that X j is a suffix of f (x j ). If d x j = 0 with x 3 j ∈ R j,v then it means that D v = D x j t 2,j . But D v is a suffix of f (v) = t 1,j t 2,j . So it implies that X j = D x j is a suffix of t 1,j and of f (x j ) = t 2,j t 1,j .

In particular, X q is a suffix of f (x q ) and we get that 0

≤ |X q | -|X j | ≤ |X q | ≤ |f (x q )| for all integers j ∈ [2, κ]. Furthermore, if d x j = 0 with x 3 j ∈ R j,v then λ x = j and λ x = j -1 otherwise. It follows that f (ω[1..n x j -1])f (x e j j ) = pU j-1 X j . Since |X j f (x j )| ≤ 2|f (x j )| = |f (v) 2 | ≤ |U |, X j f (x j
) is a prefix of U : there exists a word Y j such that U = X j f (x j )Y j for all integers j ∈ [2, κ]. Let w 2 be the prefix of ω such that f (w 2 ) = pU X 2 i.e.

w 2 = ω[1..n x 2 -1]x e 2
2 and let w κ+1 be the suffix of

ω such that f (w κ+1 ) = Y κ S i.e. ω = ω[1..n xκ -1]x 1+eκ κ w κ+1 . In particular, we have f (ω[n x j ..n x j+1 -1])f (x e j+1 j+1 ) = f (x 1+e j j
)Y j X j+1 for all integers j ∈ [2, κ -1]. Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 X j for all integers j ∈ [3, κ].

In summary, ω = w 2 x 2 w 3 x 3 ..w κ x κ w κ+1 , f (ω) = pU κ S with U = X j f (x j )Y j for all integers j ∈ [2, κ], there exists an integer q ∈ [2, κ] such that 0 ≤ |X q | -|X j | ≤ |X q | ≤ |f (x q )| and X q is a suffix of f (x q ). By Corollary 3.8 (or Lemma 3.6 and using Remark 3.7(4)), in particular the property of synchronised words, we can reduce f (ω). More precisely, let U be the non-empty word X q Y q and let w 2 be the shortest suffix of w 2 such that f (w 2 ) ends with U X 2 and let ω be the word w 2 w 3 ..w κ w κ+1 . We get that f

(ω) = p (U ) κ S with |p | < |f (ω[1])| and |U | = |U | -|f (x q )| < |U |.
Fact 1 : Let us note that U is a suffix of U and, if U starts with a word z prefix of D v f (v) (for instance X q ) then z is also a prefix of U . Fact 2 : For all integers j ∈ [1, κ], if x 3 j ∈ L j,v then w j ends with x j and besides if d x j = 1 then w j+1 starts with x j . If x 3 j ∈ R j,v then w j+1 starts with x j and besides if d x j = 1 then w j ends with x j . Fact 3 : If there exists an integer j 1 such that x 3 j 1 ∈ L j 1 ,v with d x j 1 = 0 and if there exists an integer j 2 such that x 3 j 2 ∈ R j 2 ,v with d x j 2 = 0 then w j 1 +1 starts with x j 1 and w j 2 ends with x j 2 . 

d

v = 1, L j,v ∪ R j,v = ∅ for any integer j ∈ [2, κ -1]
|D v f (v) φ | ≤ |U | < |D v f (v) φ+1 |. In this case, U is a prefix of D v f (v) φ+1 .
For any integer j ∈ [2, κ -1], we define X j and e j as Case 1 and we find that X j is also a suffix of f (x j ) (thus of f (x j ) φ+1 ).

If x 3 j ∈ L j,v with d x j = 1, then U is a prefix of D v f (v) φ+1 = X j t 2,j (t 1,j t 2,j ) φ+1 thus U is a prefix of X j f (x j ) φ+2 . If x 3 j ∈ L j,v with d x j = 0, since U 2 is a prefix of U D v f (v) φ+1 = U D v (t 1,j t 2,j ) φ+1 = D x j (t 2,j t 1,j ) φ+2 t 2,j = U X j f (x j ) φ t 2,j , it follows that U is a prefix of X j f (x j ) φ+1 .
In the same way, we show that U is a prefix of X j f (x j ) φ+1 when x 3 j ∈ R j,v . Let q be an integer such that |X q | = max{|X j |; j ∈ [2; κ -1]}. If x 3 j ∈ L j,v with d x j = 1 or x 3 j ∈ R j,v with d x j = 0 then |X j | ≤ |X j 0 |. Thus, if q = j 0 , either x 3 j ∈ L j,v with d x j = 0 or x 3 j ∈ R j,v with d x j = 1. Let δ be the greatest integer such that

|X q f (x q ) δ | ≤ |U | < |X q f (x q ) δ+1 |.
For any integer j ∈ [2, κ -1], since |X j f (x j ) δ | ≤ |X q f (x q ) δ | ≤ |U |, there exists a word Y j such that U = X j f (x j ) δ Y j . Since U is a prefix of X q f (x q ) φ+2 , we get that U = X q f (x q ) δ Y q with Y q a prefix of f (x q ). Let w 2 be the prefix of ω such that f (w 2 ) = pU X 2 , let w κ be the suffix of ω such that f (w κ ) = Y κ-1 U S and, for all integers j ∈ [3, κ -1], let w j be the word such that f (w j ) = Y j-1 X j . By Corollary 3.8 (or Lemma 3.6 and using Remark 3.7(6)), we can reduce f (ω). More precisely, let U be non-empty the word X q Y q : U is both a prefix and a suffix of U . Let w 2 be the shortest suffix of w 2 such that f (w 2 ) ends with U X 2 and let ω be the word w 2 w 3 ..w κ-1 w κ . We get that f (ω) = p(U ) κ-1 U S and so starts with p(U ) κ where

|U | = |U | -|f (x q )| < |U |. 3. d v = 0, |D v f (v) 2 | ≤ |U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, κ].
For any integer j ∈ [1, κ], let X j be the word D x j f (x j ) if x j ∈ L j,v with d x j = 0 (including

x j 0 = v), or the word D x j if x j ∈ L j,v with d x j = 1 or if x j ∈ R j,v . If x j ∈ L j,v
, let e j = 1 and if x j ∈ R j,v , let e j = 0.

For any word x

3 j ∈ R j,v , since |D v f (v) 2 | ≤ |U |, we necessarily have d x j = 0. Furthermore, 0 ≤ |X j 0 | -|X j | = |t 2,j | < |f (x j 0 )| = |f (v)|. If x 3 j ∈ L j,v and d x j = 0, we have X j 0 = D v f (v) = D x j t 2,j t 1,j t 2,j = X j t 2,j and so 0 ≤ |X j 0 | -|X j | = |t 2,j | < |f (x j 0 )|. If x 3 j ∈ L j,v and d x j = 1, we have X j t 2,j = D x j t 2,j = D v t 1,j t 2,j = X j 0 and so 0 ≤ |X j 0 | -|X j | = |t 2,j | < |f (x j 0 )| = |f (v)|. We have |X j 0 | = max{|X j |; j ∈ [1; κ]} and f (ω[1..n x j -1])f (x e j j ) = pU j-1 X j for all integers j ∈ [1, κ]. Since |X j f (x j )| ≤ |D v f (v) 2 | ≤ |U |, the word X j f (x j ) is a prefix of U : there exist words Y j such that U = X j f (x j )Y j for all integers j in [1, κ]. Let w 1 be the word ω[1..n x 1 -1]x ex 1 1
and w κ+1 be the word such that ω[n xκ ..|ω|] = x 1+eκ κ w κ+1 . In particular, we have f (w 1 ) = pX 1 , f (w κ+1 ) = Y κ S and, for any integer

j ∈ [1, κ -1], f (ω[n x j ..n x j+1 -1])f (x e j+1 j+1 ) = f (x 1+e j j
)Y j X j+1 . Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 X j for all integers j ∈ [2, κ].

By Corollary 3.8 (or Lemma 3.6), we can reduce f (ω). More precisely, ω = w 1 w 2 ..w κ w κ+1 and U

= X i Y i ( = ε) for all integers i ∈ [1, κ]. We get that f (ω) = p (U ) κ S with |p | = |p| < |f (W [1])| = |f (w 1 [1])| = |f (ω[1])| and |U | = |U | -|f (x q )| < |U |. Fact 1 : A prefix of U of length at most max{|X i |} = |X j 0 | = |D v f (v)| is also a prefix of U and a suffix of U of length at most max{|Y i |} is also a suffix of U . Fact 2 : If |D v f (v 3 )| ≤ |U | (i.
e. Y q starts with f (v)), we can work with e j + 1 instead of e j and we find that a prefix of U of length at most max{|X

j |} = |X j 0 | = |D v f (v 2 )| is also a prefix of U .
Fact 3 : If L j,v = ∅ for any integer j ∈ [1, κ] then w j ends with x j and w j+1 starts with x j .

d

v = 0, |U | < |D v f (v) 2 | < |D v U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, κ -1]. Let us recall that, by definition, |D v f (v)| ≤ |U |.
Let S 2 be the set of integers j such that there exists a word x 3 j in R j,v with d x j = 1 but no word in R j,v with d x j = 0 and no word in L j,v .

Case 4.1 :

d v = 0, |U | < |D v f (v) 2 | < |D v U |, S 2 = ∅ and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, κ -1]. If x 3 j ∈ R j,v , if x 3 j ∈ L j,v with d x j = 1 or if x 3 j ∈ L j,v with d x j = 0 and |D x j f (x j ) 2 | ≥ |U | then let X j be the word D x j and let e j = d x j . If x 3 j ∈ L j,v with d x j = 0 and |D x j f (x j ) 2 | < |U | then let X j be the word D x j f (x j ) and let e j = 1. For all integers j ∈ [1, κ -1], we have f (ω[1..n x j -1])f (x e j j ) = pU j-1 X j . For all integers j ∈ [1, κ -1], X j f (x j ) is a prefix of U : there exists a word Y j such that U = X j f (x j )Y j . Since |U f (x j )| > |X j f (x j ) 2 | ≥ |U |, we get that X j f (x j ) 2 is a prefix of U 2 and it follows that Y j is a prefix of f (x j ).
Let q be an integer such that |X q | = max{|X j |; j ∈ [1; κ -1]}. In particular, we have

|Y q | ≤ |f (x q )| and 0 ≤ |X q | -|X j | = |Y j | -|Y q | ≤ |f (x j )| = |f (x q )| for any integer j in [1; κ -1]. Let w 1 be the word ω[1..n x 1 -1]x ex 1 1
and w κ be the word such that ω

[n x κ-1 ..|ω|] = x 1+e κ-1 κ-1 w κ . We have f (w 1 ) = pX 1 , f (w κ ) = Y κ-1 U S. Furthermore, for all integers j ∈ [1, κ -2], we have f (ω[n x j ..n x j+1 -1])f (x e j+1 j+1 ) = f (x 1+e j j
)Y j X j+1 . Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 X j for all integers j ∈ [2, κ-1].

By Lemma 3.6 and using Remark 3.7(5), we can reduce f (ω).

The non-empty word U = X κ Y κ is a prefix of U and any suffix of U of length at most max{|Y i |} is also a prefix of U . We take ω = w 1 w 2 ..w κ . We get that f

(ω) = p(U ) κ-1 U S starts with p U κ with |p | = |p| < |f (W [1])| = |f (w 1 [1])| = |f (ω[1])| and |U | < |U |. Case 4.2 : d v = 0, |U | < |D v f (v) 2 | < |D v U |, S 2 = ∅ and L j,v ∪ R j,v = ∅ for any integer j ∈ [1, κ -1].
If j ∈ S 2 , let X j be the word D x j and let e j = 1.

If j /

∈ S 2 , we assume that if x 3 j ∈ R j,v then d x j = 0 else we take

x 3 j ∈ L j,v . If x 3 j ∈ R j,v (with d x j = 0) or if x 3 j ∈ L j,v with d x j = 0 and |D x j f (x j ) 2 | > |U | (for instance x j 0 ), let X j be the word such that D x j f (x j ) 2 = U X j and let e j = 2. If x 3 j ∈ L j,v with d x j = 1 or d x j = 0 and |D x j f (x j ) 2 | ≤ |U |, let X j be the word such that D x j f (x j ) 3 = U X j and let e j = 3. For all integers j ∈ [1, κ -1], we have f (ω[1..n x j -1])f (x e j j ) = pU j X j .
Especially, the word X j is a suffix of f (x j ) for any integer j ∈ [1, κ -1].

Let j 1 be an integer in S 2 i.e. x j 1 ∈ R j,v and d x j 1 = 1. We get that U 2 starts with X j 1 f (x 2 j 1 ). By definition, we have U X j 0 = D v f (v) 2 = U X j 1 t 2,j . For any word x 3 j ∈ L j,v with d x j = 1 or with d x j = 0 and |D x j f (x j ) 2 | ≤ |U |, always by definitions, we obtain U X j = U X j 0 t 1,j . It follows that |f (x j 1 )| = |f (x j )| ≥ |X j | > |X j 0 | ≥ |X j 1 |. Furthermore, the words f (x j ) and f (x j 1 ) are conjugated.

Let τ 2,j be the non-empty suffix of X j (and of f (x j )) such that X j = X j 1 τ 2,j and let τ 1,j be the word such that f (x j ) = τ 1,j τ 2,j . Since U X j 1 ends with τ 1,j , we get f (x j 1 ) = τ 2,j τ 1,j . Thus U 2 starts with X j 1 (τ 2,j τ 1,j ) 2 = X j f (x j )τ 1,j . Since f is bifix, it implies that ω[m x j + 1..|ω|] also starts with x j . In other words, x 3 j is followed by x j in ω.

Let q be an integer such that |X q | = max{|X j |; j ∈ [1; κ -1]}. In particular, 0 ≤ |X q | -|X j | ≤ |f (x q )|.

For all integers j ∈ [1, κ -1], X j f (x j ) is a prefix of U : there exists a word Y j such that U = X j f (x j )Y j . Let w 2 be the prefix of ω such that f (w 2 ) = pU X 1 i.e. w 2 = ω[1..n )Y j X j+1 for all integers j ∈ [1, κ-2]. Since f is bifix, it implies that there exists a word w j such that f (w j ) = Y j-1 X j for all integers j ∈ [3, κ].

If r ≥ 2 then f (v k-1 ) = (t 1 t 2 ) (k-1)×r with (k -1) × r ≥ 2k -2. And, since k ≥ 3, we have 2k -2 ≥ k that is f (v k-1 ) contains a k-power with v k-1 k-power-free by definition of v: f is not k-power-free.

If r = 1 then it implies q ≥ k -1. Otherwise, v q would be an internal factor of v k that is of W with |f (v) q | = |U |: f (W ) and U k would be synchronised. Thus, if W = v 1 v k v 2 for some words v 1 and v 2 then f (W ) = f (v 1 )(t 1 t 2 ) k f (v 2 ) = pU k+1 s = p(t 2 t 1 ) q×(k+1) s with q ≥ k -1.

Let x be the greatest integer such that p(t 2 t 1 ) x is a prefix of f (v 1 v) and let y be the greatest integer such that (t 2 t 1 ) y s is a suffix of f (vv 2 ). There exist four words t p , t p , t s and t s such that t 2 t 1 = t p t p = t s t s , f (v 1 v) = p(t 2 t 1 ) x t p , f (vv 2 ) = t s (t 2 t 1 ) y s and f (v k-2 ) = t p (t 2 t 1 ) q(k+1)-x-y-2 t s .

If x = 0 then |f (v 1 )| < |p| which implies that v 1 = ε. We get that f (v 1 v 2 ) = pt p f (v) = (t 1 t 2 ) 2 starts with a prefix of p(t 2 t 1 ) 2 . Since t 2 t 1 is not a primitive word, by Lemma 2.2, (t 2 t 1 ) is not an internal factor of (t 2 t 1 ) 2 . It implies that p = t 1 and t p = t 2 . In the same way, if y = 0, we get s = t 2 and t s = t 1 .

Since f (v 1 v) ends with t 1 t 2 , since f (vv 2 ) starts with t 1 t 2 , if x ≥ 1 and t p = t 2 or if y ≥ 1 and t s = t 1 then (t 2 t 1 ) is an internal factor of (t 2 t 1 ) 2 . By Lemma 2.2, we get that t 2 t 1 is not a primitive word: a contradiction with the definition of t 2 t 1 .

Thus t p = t 2 = t s , t p = t 1 = t s , f (v 1 v) = pt 2 f (v) x , f (vv 2 ) = f (v) y t 1 s and x + y + k -2 = q × (k + 1) -1. Since f is bifix, it follows that f (v 1 v) ends with f (v) x and f (vv 2 ) starts with f (v) y . We get that v q×(k+1)-1 is an internal factor W with q × (k + 1) -1 ≥ q. It implies that v q is an internal factor W with |f (v) q | = |U | i.e. f (W ) and u k are synchronised: a contradiction with the hypotheses. If W starts with a pure k-power v k , let W com be the greatest prefix of s 1 f (v[2..|v|])f (v k-1 ) which is factor of U k+1 so a common factor of a power of f (v) and a power of U . Let us note that if

W = v k then W com = U k+1 otherwise W com = s 1 f (v[2..|v|])f (v k-1 ).
If |W com | ≥ |U | + |f (v)|, by Corollary 2.4, there exist two words t 1 and t 2 and two integers r and q such that f (v) = (t 1 t 2 ) r and U = (t 2 t 1 ) q with t 1 t 2 and t 2 t 1 primitive words. Since v k is a pure k-power, we get that r = 1. Otherwise, f is not k-power-free. Since f (W [2..|W | -1]) contains U k/2 = (t 2 t 1 ) q× k/2 if q ≥ 2 then f is not k-power-free. Thus r = q = 1 and |f (v)| = |U |: a contradiction with the assumption that f (W ) and U are not synchronised.

(s 1 ; 1 = s 2 .

 112 s 2 ) = (ε; f (b)) and (s 1 ; s 2 ) = (f (a); ε) then the equality s 1 f (u) = s 2 f (v) implies u = v and s Definition 2.8 A morphism f from A * to B * is a ps-morphism (Keränen [12] called f a ps-code) if and only if the equalities f (a) = ps, f (b) = ps and f (c) = p s with a, b, c ∈ A (possibly c = b), p, s, p , s in B * imply b = a or c = a.

  u 1 , w 2 and some letters a, b, c. with either b = a or c = a. That is T = (av 2 v 1 ) k+1 c or T = b(v 2 v 1 a) k+1 : T verifies (P.1.1) or (P.1.2) .
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 736 deals with Point 4 of Remark 3.Lemma Let κ ≥ 3 be an integer.

Figure 2 :

 2 Figure 2: Case 4 of Remark 3.7

  and u κ are synchronised. In a similar way, if m = | w| then f (w) and u κ are synchronised. From now, we assume that 0 < < m < | w| and let r ≥ 1 be the integer such that |pǔ r-1 | ≤ |f ( w[1.. ])| < |pǔ r |. Let us recall that the words w[1.. ] and w 1 ..w r are both prefixes of w and that f (w 1 ..w r ) = pǔ r-1 X r . Case 1: |f ( w[1.. ])| ≤ |pǔ r-1 | + min{|X r |; |X r+1 |}. We have |f ( w[1.. ])| ≤ |pǔ r-1 X r | = |f (w 1 ...w r )| and so w[1.. ] is a prefix of w 1 ..w r . More precisely, since |f (w 1 ...w r-1 )| ≤ |pǔ r-1 | ≤ |f ( w[1.. ])|, there exists a suffix y r of w r such that w[1.. ]y r = w 1 ..w r . Since |f ( w[1..m])| = |ǔ|+|f ( w[1.. ])|, we get |pǔ r | ≤ |f ( w[1..m])| ≤ |pǔ r |+ |X r+1 |. There exists a suffix y r+1 of w r+1 such that w[1..m]y r+1 = w 1 ...w r w r+1 . In particular, we have |f (w r+1 )| = |f ( w[1..m])| + |f (y r+1 )| -|f ( w[1.. ])| -|f (y r )| = |ǔ| + |f (y r+1 )| -|f (y r )|.

  if we have one of the following conditions: 1. D z = D y t 2 when d y = d z 2. D y = D z t 1 when d y = 1 and d z = 0 3. D y f (y)t 2 = U D z when d y = 0 and d z = 1 Let us remark that conditions (2) and (3) imply |D z | < |t 2 |. Moreover, Taking t 2 = ε, let us also note that f (z α ) is a conjugated shift to the left of itself.

x 1 - 1 ]x e 1 1

 111 and let w κ+1 be the suffix of ω such that f(w κ+1 ) = Y κ S i.e. ω = ω[1..n xκ -1]x 1+eκ κ w κ+1 . Furthermore, we have f (ω[n x j ..n x j+1 -1])f (x e j+1 j+1 ) = f (x 1+e j j

Step 2 :

 2 W [2..|W | -1] contains a k-power and so a pure-k-power.By contradiction, let us assume that W [2..|W | -1] is k-power-free. It implies that W starts or ends with a pure k-power. Let s 1 and p k+2 be the words such that f (W[START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF]) = ps 1 and f (W [|W |]) = p k+2 s that is U k+1 = s 1 f (W [2..|W | -1])p k+2 . If |s 1 | ≤ |U k | then there exists a word U c such that s 1 U c is the prefix of s 1 f (W [2..|W | -1])p k+2 = U k+1 of length |s 1 U |. Trivially, the word U c is a conjugated of U (and |U c | = |U |). If |s 1 | + |p k+2 | ≤ |U |, we naturally have |s 1 | ≤ |U k |. Moreover |s 1 | + |U k c | + |p k+2 | ≤ |U k+1 |. It means that f (W [2..|W | -1]) starts with U k c . Since W [2..|W | -1] is a k-power-free word, it ends the proof : f is not k-power-free.Let us now study the case where|s 1 | + |p k+2 | > |U |.Let us recall that, since we assume that W [2..|W | -1] is k-power-free, any pure k-power of W = W [1..|W |] is necessarily a prefix or a suffix of it.

  and there exists a positive integer φ such that ω[n v ..|ω|] starts with v φ+2 and sup 2|f (v)|;

  and there exists a positive integer φ such that ω[n v ..|ω|] starts with v φ+2 and sup 2|f (v)|;

By Lemma 3.6 and using Remark 3.7(4), we can reduce f (ω). Reduction is almost the same that case where d v = 1, |D v f (v) 2 | < |U | and L j,v ∪ R j,v = ∅ for any integer j ∈ [2, κ]. Let us note that U is a suffix of U and that any prefix of U of length at most max{|X j } is also a prefix of U .

Special case of uniform morphisms

As a consequence of Corollary 3.2 and using Lemma 3.9, we will be able to reduce a word those image by a k-power-free uniform morphism contains a (k + 1)-power. It follows: Proposition 4.1 Let A and B be two alphabets and let k ≥ 4 be an integer. A k-power-free uniform morphism is a (k + 1)-power-free morphism.

Proof.

Let f be a uniform morphism from A * to B * . We assume that f is not (k + 1)-power-free and we want to show that f is not k-power-free.

The morphism f must be a ps-morphism. Otherwise, f is not k-power-free: it ends the proof.

Let w a shortest (k + 1)-power-free word whose image by f contains a (k + 1)-power. That is f (w) = pu k+1 s for two words p and s and a non-empty word u over B.

If f (w) and u k+1 are synchronised, by Lemma 2.12, w contains a k + 1-power: a contradiction with the definition of w. Now, let us assume that f is a ps-morphism and that f (w) and u k+1 are not synchronised. In particular, it implies that f is bifix and injective.

The central point of this proof is that, starting with w and u, we use iteratively reduction of Lemma 3.8 (that is of Lemma 3.6 and including the special cases of remark 3.7) on the word whose image contains a (k + 1)-power in such a way that there is no reduction left. That is, no situation of the hypotheses of Lemma 3.8 can be founded after this procedure: we obtain new words W et U such that f (W ) = pU k+1 s with p a proper prefix of W [START_REF] Berstel | Mots sans carré et morphismes itérés[END_REF], s a proper suffix of W [|W |] and f (W ) and U k+1 are not synchronised.

We will show that either f is not k-power-free or f (W ) and U can again be reduced using Lemma 3.8: a contradiction with their definitions.

We focus on the fact that W necessarily contains a k-power. Indeed, since whatever the conjugated U c of U , f (W ) contains U k c , the contrary ends the proof: f is not k-power-free. Moreover, if W = w i.e. |W | < |w| then, by definition of w, it means that W contains a (k + 1)-power.

Step 1: For any pure k-power v k of W , the words U k+1 and f (v) k do not have any common factor of length at least

By contradiction, let us assume that U k+1 and f (v) k have a common factor of length at least |U | + |f (v)|. By Corollary 2.4, there exist two words t 1 and t 2 and two integers r and q such that f (v) = (t 1 t 2 ) r and U = (t 2 t 1 ) q with t 1 t 2 and t 2 t 1 primitive words.

So, we have |W

In the case where W ends with a k-power v k , we similarly get

If W starts with a k-power then |s 1 | < |U |/2 and, since

In the same way, if W ends with a k-power, we obtain either a contradiction with the assumptions or that f is not k-power-free.

Step 3:

For any pure k-power

Thus if v j is the shortest factor of W [i j ..i j+cv ] such that f ( v j ) contains f (v) k then, by Corollary 3.2, we get that v j verifies Property (P.1) for all integers j ∈

We are going to see that it implies that W can be reduced: a final contradiction. Case 3.1: 

for any integer j ∈ [2; k + 1]: by Lemma 3.9(1), a reduction can be done.