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SUMMARY  18 

Extraction of relevant information from highly complex environments is a prerequisite to survival. 19 

Within odour mixtures, such information is contained in the odours of specific elements or in the 20 

mixture configuration perceived as a whole unique odour. For instance, an AB mixture of the 21 

element A (ethyl isobutyrate) and the element B (ethyl maltol) generates a configural AB percept in 22 

humans and apparently in another species, the rabbit. Here, we examined whether the memory of 23 

such a configuration is distinct from the memory of the individual odorants. Taking advantage of 24 

the newborn rabbit abilities to learn odour mixtures, we combined behavioural and pharmacological 25 

tools to specifically eliminate elemental memory of A and B after conditioning to the AB mixture, 26 

and evaluate consequences on configural memory of AB. The amnesic treatment suppressed 27 

responsiveness to A and B but not to AB. Two other experiments confirmed the specific perception 28 

and particular memory of the AB mixture. These data demonstrate the existence of configurations 29 

in certain odour mixtures and their representation as unique objects: after learning, animals form a 30 

configural memory of these mixtures, which coexists with, but is relatively dissociated from, 31 

memory of their elements. This capability emerges very early in life.  32 

 33 
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1. INTRODUCTION  39 

Animals constantly interact with the environment. Specifically, they must discriminate the sensory 40 

information available in the surroundings and extract those which are the most relevant for survival 41 

and development. Indeed, the environment is highly complex in terms of the number and diversity 42 

of stimuli. For instance, mammals must process composite visual and auditory stimuli, or mixtures 43 

of chemical cues, to respectively recognize the face, the voice or the odour of conspecifics [1-4]. 44 

However, this processing raises a question currently debated in the scientific literature, namely do 45 

the face, the voice and the odour each constitute for the receiver a sum of elements or individual 46 

unique cues? Here, we consider this problem within olfaction. 47 

In some cases, mixtures of odorants are perceived as a collection of independent, identifiable 48 

elements; the perception is then elemental [e.g., 5-7]. However, some mixtures induce a configural 49 

processing, meaning that the mixture gives rise to either a unique and novel perceptual odour 50 

quality, different from the odour qualities of the elements, or to a novel quality perceived in 51 

addition to the qualities of the odorants [8]. Configural odour processing has been described in a 52 

variety of species (e.g., bee, catfish, human, spiny lobster, moth, rat), with different approaches 53 

[e.g., 9-16]. For instance, data in human adults revealed that a mixture of two odorants (AB), one 54 

smelling like strawberry (A: ethyl isobutyrate) and the other like caramel (B: ethyl maltol), 55 

generates the configural perception of a pineapple odour at a specific ratio of A/B [17-18].  56 

Interestingly, recent results in a young mammal, the newborn rabbit, showed similar configural 57 

processing abilities with the same AB mixture. After the learning of one element (A or B), rabbit 58 

pups do not respond to the AB mixture (while they respond very well to an AC mixture; odorant C: 59 

guaïacol), suggesting that they perceive in AB something more than the odours of A and B, i.e. an 60 

AB configuration. Conversely, after the learning of the AB mixture, they respond both to A, B and 61 

to AB, suggesting that they acquire both the elements and the configuration during the conditioning 62 

[19-21]. Therefore, newborn rabbits are strongly suspected to perceive the AB mixture in a weak 63 

configural way, i.e. to perceive three distinct odours in the mixture: the odour of the AB 64 
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configuration in addition to the odours of the elements A and B. When the ratio of A/B is modified, 65 

the pups strongly respond to this A’B’ mixture after the learning of one element (A or B), 66 

suggesting a shift from the configural representation to the elemental one [22]. However, a clear 67 

demonstration that configural representation is distinct from representation of each element was still 68 

lacking in the literature for either young or adult organisms. Here, we combined a behavioural 69 

approach with pharmacological tools to assess the perception and retention of complex odour 70 

stimuli (mixtures) in the form of entities (configurations) or through their constituting elements.  71 

After learning, memories become stabilized within hours following a consolidation phase 72 

involving protein synthesis [23,24]. The use of protein synthesis inhibitors, such as anisomycin, 73 

during this time-limited period disrupts memory consolidation and consequently erases memory. 74 

Retrieval can return memories to a labile, protein synthesis-dependent state, a process referred to as 75 

memory reconsolidation [25,26]. Again, disruption of memory reconsolidation, by the use of 76 

protein synthesis inhibitors, erases the reactivated memory. This process of reconsolidation has 77 

been demonstrated across species, memory paradigms, and in particular in rabbit pups after odour 78 

conditioning [27]. Moreover, this process is selective to the reactivated memory. For instance, in 79 

newborn rabbits initially conditioned to two odorants, injection of anisomycin after reactivating 80 

only one of the elements abolishes the response to this odorant without interfering with the response 81 

to the other non-reactivated odorant [28,29].  82 

Here, in three successive experiments, we systematically used a similar 3 steps procedure 83 

including a) a conditioning phase inducing olfactory learning of a mixture (AB or A’B’),  84 

b) a reactivation phase to reactivate some (A and B) or all (A, B and AB) of the previously 85 

conditioned information in order to induce amnesia of the reactivated information using 86 

pharmacological treatment (see [28,29]), and c) a testing phase to assess behavioural responsiveness 87 

towards the mixture and its elements. First, in rabbit neonates previously conditioned to the 88 

configural AB mixture, we injected anisomycin after separate reactivation of its elements (odorants 89 

A and B) in order to specifically erase the memory of A and the memory of B; then, we evaluated 90 
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the consequences on the response to the AB mixture (Experiment 1). An absence of response to AB 91 

will indicate that responsiveness to the mixture critically depends on the representation of the 92 

elements. Conversely, response to AB after amnesia of A and B will indicate that the configural 93 

memory of the mixture is clearly dissociated from the memories of its elements. As a second step, 94 

we made a control experiment with the A’B’ mixture (Experiment 2). Since this mixture is 95 

perceived in an elemental way by rabbit pups, i.e. without a configural odour but as the sum of the 96 

element odours, pharmacological disruption of A and B memories after reactivation should be 97 

followed by amnesia of A’B’. Finally, after neonatal conditioning to the configural AB mixture, we 98 

determined the effect of preventing AB memory reconsolidation on the memory of the AB mixture 99 

and of its components. Based on previous work, rabbit pups were strongly suspected to perceive 100 

both the elements (A and B) and the AB configuration during exposure to the AB mixture. As a 101 

consequence, the reactivation of the whole mixture should reactivate the memory of its three 102 

representations (A, B and AB) and amnesic treatment should induce forgetting of all these 103 

memories (Experiment 3). Taken together, these experiments aimed to uncover chemosensory 104 

perceptual and memory mechanisms available to promote initial decisions and actions critical for 105 

social relationships and feeding behaviour in mammals.  106 

 107 

 108 

2. MATERIAL AND METHODS  109 

(a) Animals and housing conditions 110 

Males and females New-Zealand rabbits Oryctolagus cuniculus (Charles River strain, L’Arbresle, 111 

France) from the Centre de Zootechnie (University of Burgundy, Dijon) were kept in individual 112 

cages. A nest box (0.39 x 0.25 x 0.32 m) was added on the outside of the pregnant females’ cages 2 113 

days before delivery (day of delivery was day 0; d0). To equalize pups’ nursing experience, all 114 

females had access to their nest between 11:30-11:45 a.m. This procedure allowed females to 115 

follow the brief (3-4 min) daily nursing of the species [30]. Animals were kept under a constant 116 
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12:12 light:dark cycle (light on at 7:00 a.m.) with ambient air temperature maintained at 21-22°C. 117 

Water and pelleted food (Lapin Elevage 110, Safe, France) were provided ad libitum. In the study, 118 

68 newborns (from 18 litters) were used.  119 

 120 

(b) Odorants 121 

The odorants consisted of 2-methylbut-2-enal (the Mammary Pheromone, MP, CAS# 497-03-0) 122 

[27,31], ethyl isobutyrate (odorant A, CAS# 97-62-1), ethyl maltol (odorant B, CAS# 4940-11-8) 123 

for pure components, and of AB and A’B’ mixtures. The AB mixture included 0.3x10
-5

 and  124 

0.7x10
-5 

g/ml of components A/B; this 30/70 v/v ratio elicits configural perception of a pineapple 125 

odour in human adults due to blending properties [17,32], and seems to induce weak configural 126 

perception in newborn rabbits (i.e. perception of three distinct odours in the mixture, the odours of 127 

A, B and AB) [19-22]. The A’B’ mixture included 1.5x10
-5

 and 0.7x10
-5 

g/ml of components A/B; 128 

this 68/32 v/v ratio elicits elemental perception of the mixture in newborn rabbits (i.e. perception of 129 

two odours only, those of the element A and the element B) [22]. Contrary to the MP, none of the 130 

A, B, AB and A’B’ stimuli triggered spontaneous sucking behaviour of rabbit pups; they were 131 

therefore considered as initially neutral [19-22].  132 

The MP allowed us to induce the learning of the AB or A’B’ mixtures through associative 133 

conditioning [see section (c)]. MP served as the unconditioned stimulus and was used at 10
-5 

g/ml, a 134 

concentration known to be highly efficient to promote conditioning [31], while the AB or A’B’ 135 

mixtures served as the conditioned stimuli. Thus, the AB-MP and A’B’-MP blends included 1x10
-5 

136 

g/ml of MP and respectively 0.3 and 0.7x10
-5 

g/ml, or 1.5x10
-5

 and 0.7x10
-5 

of A and B.  137 

Single odorants A and B (10
-5

 g/ml), or the AB mixture were also used in the reactivation 138 

procedure, and the same stimuli plus the A’B’ mixture were used during behavioural testing.  139 

All the odorants were purchased from Sigma-Aldrich (Saint-Quentin Fallavier, France) and all 140 

the final solutions were prepared in a solvent composed of 0.1% of ethanol (anhydrous, Carlo Erba, 141 

Val de Reuil, France) and 99.9% of MilliQ water (Millipore, Molsheim, France). 142 
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 143 

(c) Phase 1: Odour conditioning 144 

Conditioning sessions were run on day 1 in an experimental room close to the breeding room. The 145 

pups were transferred by groups of 4 (2/litter) into a box lined with nest materials and maintained at 146 

room temperature. The MP-induced conditioning was run following a procedure previously 147 

described, which consisted in a single, brief and simultaneous exposure both to the unconditioned 148 

MP and the conditioned stimulus. Thus, for the conditioning session, 4 ml of the MP-AB mixture 149 

(Experiments 1 and 3) or MP-A’B’ mixture (Experiment 2) were pipetted on a pad (19x14 cm, 150 

100% cotton) then held 2 cm above the pups for 5 min. This exposure is known to induce the very 151 

rapid learning of the stimulus paired with the MP, here an odour mixture [e.g., 19,27,28,31]. The 152 

conditioning session occurred 1h before the daily nursing (10:30 a.m.), to equalize the pups’ 153 

motivational state and limit the impact of satiation on responses [33]. Two minutes after the end of 154 

the conditioning, the pups were individually marked with weakly odorous ink and returned to their 155 

nest. The box containing the pups was rinsed with alcohol and distilled water after each 156 

conditioning session.  157 

 158 

(d) Phase 2: Reactivation and Pharmacological treatment 159 

On day 2, twenty-four hours after the conditioning, the memory of pups was reactivated in 160 

Experiment 1 and 2 by successive exposure to each element A and B (the order of presentation of A 161 

and B was counter-balanced between pups from a same group). The exposure consisted in 162 

stimulation with each odorant A and B during 2.5 min (inter-stimulation delay: 1 min) following the 163 

same procedure as for conditioning (odorised cotton pad held above the litter). In Experiment 3, the 164 

AB mixture itself was used during a 5-min long reactivating exposure. 165 

In each experiment, immediately after reactivation, anisomycin (AN; Aldrich) was injected to 166 

half of the pups (42 mg/kg, i.p.) after dilution in 0.9% NaCl solution and adjustment of pH 7.2 with 167 

1N HCl [27-28]. Control for the effect of AN injection was realized with the other half of animals 168 
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receiving saline 0.9%. As in other studies with other newborn or adult mammals [e.g., 23,34-36] we 169 

considered that AN in newborn rabbits may induce a real amnesia and not a perturbation in 170 

responsiveness due to an aversive effect [27,28]. Pups were returned to the nest just after AN or 171 

saline injection.  172 

 173 

(e) Phase 3: Behavioural assay 174 

The behavioural assay occurred on day 3 (i.e., 24h after Phase 2 of reactivation) in the experimental 175 

room previously used for conditioning and reactivation. It happened also 1h before the daily nursing 176 

to limit the impact of satiation on motivation and behavioural responsiveness [33]. The assay 177 

consisted of an oral activation test during which a pup was immobilized in one gloved hand of the 178 

experimenter, its head being left free. Each odour stimulus (odorant A, odorant B, and the AB or 179 

A’B’ mixture) was presented for 10 s. with a glass rod 0.5 cm in front of the nares [e.g., 180 

19,27,28,31]. A test was positive when the conditioned stimulus elicited (on/off response) head-181 

searching movements (vigorous, low amplitude horizontal and vertical scanning movements 182 

displayed after stretching towards the rod) usually followed by grasping movements (labial seizing 183 

of the rod extremity). Non-responding pups displayed no response except sniffing. Pups were tested 184 

in groups of 4 or 6, mixing AN- and saline-treated newborns. The experimenters did not know if the 185 

currently tested pups belonged to one or the other treatment group. Each pup participated in only 186 

one experiment but was successively tested with 3 stimuli, i.e. odorant A, odorant B and the AB 187 

mixture in Experiments 1 and 3, and odorant A, odorant B and the A’B’ mixture in Experiment 2. 188 

Successive testing involved the presentation of a first stimulus to a pup, then a second stimulus to 189 

another pup, and so on with an inter-trial interval of 60 s. The order of stimuli presentation was 190 

systematically counterbalanced from one to another pup. If a pup responded to a stimulus, its nose 191 

was softly dried before the next stimulation. The pups were immediately reintroduced in their nest 192 

after testing.  193 

 194 
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(f) Statistics 195 

Due to the death of 4 pups (2 AN, 2 saline), the analyses focused on 64 newborns. The frequencies 196 

of responding pups were compared using the χ² test of Pearson when the groups were independent 197 

(i.e., distinct groups tested for their response to a same stimulus) or the Cochran’s Q test when the 198 

groups were dependent (i.e., pups from a same group tested for their response to three stimuli). 199 

When the Cochran’s Q test was significant, proportions of responding pups were compared 2 x 2 by 200 

the χ² test of McNemar. Degrees of freedom are indicated when > 1. Data were considered as 201 

significant when the two-tailed test ended with p < 0.05.  202 

 203 

 204 

3. RESULTS 205 

1. Learning of the AB configural mixture, amnesia of A and B and resulting memory of AB 206 

The AB mixture is hypothesized to be weakly configurally perceived by rabbit neonates, meaning 207 

that pups should perceive the odour of AB in addition to the odours of the element A and the 208 

element B in the mixture. If this is true, after conditioning to the whole mixture, the memory of the 209 

AB configural odour might be distinct from the memory of the element odours. To assess whether 210 

conditioning to the AB mixture induced separate memories of the suspected AB configural odour 211 

compared to the odours of the A and B elements, 24 rabbit pups were conditioned to AB by pairing 212 

with the MP on day 1, reactivated by successive exposure to the A and B elements on day 2 213 

(without MP) then immediately injected with saline (n = 10, control group) or AN (n = 14, 214 

experimental group), and tested for their behavioural responsiveness to A, B and AB on day 3. The 215 

AN treatment should induce amnesia of the element odours, but not necessarily of the AB 216 

configuration. In the control group, which did not receive AN treatment, the pups should respond 217 

strongly and equally to the odours of A, B and AB.  218 

One AN-treated pup died between days 2 and 3; the results therefore concerned 10 vs 13 219 

neonates. On day 3, the saline-treated pups highly responded both to the AB mixture and to the 220 
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components (> 80%, Q = 2, ddl = 2, p > 0.38). Conversely, AN-treated pups displayed distinct 221 

responsiveness to the stimuli (Q = 12.3, ddl = 2, p = 0.006): they did not respond to the odorants 222 

presented separately (< 8%), but were still robustly responsive to the AB mixture (> 60%, AB vs A 223 

or B: χ² > 5.6, p < 0.018). While AN-treated pups responded clearly less to the A and B odorants 224 

than saline-treated neonates (χ² > 9.5, p < 0.01 for each odorant), they maintained a similar level of 225 

responsiveness to AB (χ² = 1.12, p = 0.29) (Figure 1). 226 

Thus, after conditioning to the AB mixture and separated reactivation of odorants A and B, AN-227 

injection was followed by retrograde amnesia of the odours of the two components. This amnesia 228 

was however not sufficient to prevent responsiveness to the whole mixture; the memory of the 229 

mixture, and only of the mixture, remained intact. 230 

 231 

 232 

2. Learning of the A’B’ elemental mixture, amnesia of A and B and resulting memory of A’B’ 233 

Previous evidence suggests that, in contrast to the AB mixture, the A’B’ mixture is olfactorily 234 

perceived by rabbit pups as the sum of its elements but not as a configuration, i.e. that pups 235 

perceived the odours of A and of B but not of an A’B’ configuration in the A’B’ mixture [22]. 236 

Therefore, we hypothesized that after conditioning to A’B’, reactivation and amnesia of the 237 

elements A and B should dramatically impair responsiveness to the A’B’ mixture, in contrast to 238 

what we observed in Exp. 1 with the AB mixture. To run this control experiment, 24 new rabbit 239 

pups were conditioned to A’B’ by association with the MP on day 1, exposed successively to A and 240 

to B and immediately injected with saline (n = 12, control group) or AN (n = 12, experimental 241 

group) on day 2, and tested for their behavioural responsiveness to A, B and A’B’ on day 3. Pups 242 

from the AN group were hypothesized to neither respond to A or to B nor to A’B’, while saline-243 

injected control pups should respond both to the elements and to the mixture.  244 

Three pups died between days 2 and 3 (respectively saline, n = 2 and AN, n = 1); thus analysis 245 

concerned 10 vs 11 pups. On day 3, the saline-treated pups fully responded to A, B and AB (100%). 246 



 11 

Comparatively, AN-treated neonates responded extremely weakly to the stimuli, not only to the 247 

odorants but also the A’B’ mixture (< 10%). For each stimulus, the responsiveness was therefore 248 

higher in saline- than in AN-treated pups (χ² > 13.9, p < 0.001 in all 2x2 comparisons) (Figure 2). 249 

Thus, in rabbit pups initially conditioned to the A’B’ mixture, reactivation with odorants A and 250 

B followed by blockade of reconsolidation, impaired the memory both of the elements and of the 251 

A’B’ mixture. Responsiveness to the components seemed essential to respond to their mixture at 252 

this ratio.  253 

 254 

 255 

3. Learning then amnesia of the AB configural mixture and resulting memory of AB, A and B 256 

Results of Exp. 1 showed that after MP-induced conditioning to the AB mixture, rabbit pups 257 

responded to the mixture even after forgetting its elements A and B. This suggested distinct 258 

memory of the AB configural odour versus memory of the A and B element odours, and accounted 259 

for the weak configural perception of the AB mixture, i.e. the perception during conditioning of a 260 

specific AB odour in addition to the odour of each element. To finally confirm the weak configural 261 

perception of the AB mixture, we induced its conditioning, reactivated the memory of the whole 262 

mixture (not of its elements only as in Exp. 1) before inducing amnesia, and tested the 263 

responsiveness of the pups to AB, A and B. In this particular situation, if AB was perceived as the 264 

sum of two elements plus one configuration, the presentation of AB during the reactivation phase 265 

should reactivate both the memory of the configuration and of the elements which then should both 266 

be erased by the pharmacological treatment. This should consequently impede the pups’ 267 

responsiveness to each of the three odours perceived in the mixture, A, B and AB. Thus, 20 pups 268 

were conditioned to AB by association with the MP on day 1, reactivated with AB before injection 269 

of saline (n= 10, control group) or AN (n = 10, experimental group) on day 2, and tested for their 270 

responsiveness to A, B and AB on day 3. Pups from the AN group should not respond to any of the 271 

stimuli, while those from the saline group should respond to all.  272 
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All saline-treated pups responded to the odorants A and B, and to the AB mixture. Conversely, 273 

AN-treated pups displayed no or extremely weak responsiveness to any of the stimuli (< 10%;  274 

Q = 2, ddl = 2, p = 0.38). As in Exp. 1, saline treated pups responded therefore more to the odorants 275 

than AN-treated neonates (χ² =12.9, p < 0.001 for each odorant). However, here, injection of AN 276 

was followed by a major drop in responsiveness to AB compared to injection of saline (χ² = 16.2,  277 

p < 0.001) (Figure 3). 278 

Thus, after AB conditioning, when reactivation concerned the whole AB mixture, amnesia of AB 279 

appeared suppressive of any response to either the mixture or to its elements.  280 

 281 

 282 

4. DISCUSSION 283 

Natural odours are constituted by mixtures of distinct molecules which carry by themselves 284 

particular odours. In that context, it is often considered that configural processing, i.e. perception of 285 

some mixtures as odour objects, is an efficient way to reduce the complexity of the chemical 286 

surroundings and optimize the detection, identification and discrimination between stimuli carrying 287 

biological significance [4,37-39]. However, a clear demonstration of brain and cognitive processes 288 

that could selectively differentiate a complex odour as a whole - unique representation - from its 289 

odorant parts has been lacking. Here, we combined behavioural and pharmacological approaches to 290 

evaluate whether the representation of AB, an apparent configural mixture for rabbit pups at a 291 

specific ratio (30/70) [19-22], is relatively distinct from the representation of each component 292 

odorant. 293 

As main results, we provide evidence that after neonatal learning of the AB mixture, amnesia of 294 

A and B did not propagate to AB: pups that did not respond to either A or to B still responded to 295 

AB (Exp. 1). Thus, a particular memory of AB was created during conditioning to the mixture, in 296 

parallel to the memories of odorant A and odorant B, and all these memories created together 297 

become rapidly dissociated. However, after conditioning to the AB mixture, reexposure to the 298 
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whole mixture (Exp. 3) reactivated not only the AB configuration but also the elements A and B, 299 

which were all sensitive to the post-reactivation pharmacological treatment: the pups became 300 

amnesic to AB but also to A and to B. In terms of perception, this demonstrates something only 301 

previously suggested: the AB mixture evokes a configural odour perceived by newborn rabbits in 302 

addition to (no to the detriment of) the specific odours of A and B. In other words, the perception of 303 

the AB mixture by rabbit pups is weak configural and not robust configural [for previous 304 

suggestions of partial configural perception of AB, see 19-22]. The configural AB odour can be 305 

processed on its own and is sufficient to trigger the behavioural response to the AB mixture. Thus, 306 

in the context of neonatal odour perception, the results indicate that a complex stimulus can induce 307 

different percepts which are simultaneously memorized but form rapidly, relatively separated 308 

memory traces. The memories of the mixture and its components are not entirely independent 309 

however. That is, while disruption of the component memory did not affect the configural AB 310 

memory, disruption of the configural AB memory did impair the memory of the elements. This 311 

asymmetrical relationship suggests complex interactions between these different, relatively distinct 312 

representations. As further evidence of interactions between the representations of A, B and AB, we 313 

have recently demonstrated competition between the elemental and configural long-term (several 314 

days) memories [40].  315 

The memory treatment observed here could be also at play later in life, since in human adults the 316 

same AB mixture is known to evoke an odour (pineapple) different from those of its A and B 317 

elements (strawberry and caramel, respectively) [17,18]. Comparatively, when rabbit pups are 318 

conditioned to the elements A and B in mixture, but at a ratio known to trigger the elemental 319 

perception of the mixture (A’B’, ratio 68/32) [22], amnesia of A and of B abolished the response to 320 

A’B’. This demonstrates that responsiveness to the A’B’ mixture is based exclusively on perception 321 

of elements A and B and that no mixture-specific memory is created at this ratio [see 41, for similar 322 

results with an elementally processed compound composed of a tone and a light]. 323 
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The present findings, when combined with previous work [19,20,29], demonstrate that memory 324 

for odour mixtures may be encoded in a variety of ways, depending on the nature of the stimuli and 325 

post-training events. The evidence that memories of certain odour mixtures (as the AB mixture 326 

here) can be simultaneously, and relatively separately, configural and elemental suggests that even 327 

mixtures perceived configurally have traces of their components somewhere in the brain. Analysis 328 

of configural processing and the formation of odour objects suggest a strong role for the olfactory 329 

(piriform) cortex and plasticity of intracortical association fibre synapses which can link distributed, 330 

co-active cortical neurons [38]. Thus, while spatial coding of mixture-evoked activity within the 331 

olfactory bulb did not discriminate configural mixtures from their components [42-44], piriform 332 

cortical neural ensembles have been demonstrated to rapidly process co-occurring odorants into 333 

distinct representations, different from the representations of their component parts [45]. This 334 

cortical representation of configural odour objects is experience-dependent, promotes odour 335 

discrimination, and can be impaired by disrupting normal synaptic plasticity selectively within the 336 

piriform cortex [46-48].  337 

It is unclear whether the simultaneous elemental representation of the components apparent here 338 

is also dependent on the piriform cortex. Processing of odours occurs in a variety of regions beyond 339 

the canonical olfactory pathway, including hippocampal formation, frontal areas and other limbic 340 

structures [49-51], even during early development [52]. In humans, it has been demonstrated that 341 

the brain can distinguish between single odorants and binary mixtures [53]. Moreover, combining 342 

odours that differ in hedonic quality (e.g., pleasant and unpleasant) can create a configurally 343 

pleasant odour percept [54]. However, when assessed with neural imaging, circuits normally 344 

selectively activated in response to the unpleasant component are still activated, even though the 345 

configural perception does not reflect this underlying component [54]. The present results suggest a 346 

similar distributed network process may occur in newborn rabbits, with memory for individual 347 

components occurring distinctively (at least in part) from the configural memory. Further work will 348 
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be required to identify neural mechanisms and locations of elemental versus configural processing, 349 

including the roles of the olfactory bulb [7], olfactory cortex and elsewhere. 350 

Finally and regarding adaptation, odour mixture perception has a major impact on animal 351 

behaviour, both in aquatic and terrestrial species, and contributes to decision making related to food 352 

searching, mate choice, spatial orientation, and to interspecies interactions as predator avoidance 353 

and plant pollination [e.g., 11,12,55-58]. However, knowledge about the way odour mixtures are 354 

precisely processed, retained and connected to behaviour remains scarce. Here, the findings 355 

demonstrate the existence of configurations in certain odour mixtures, depending on odorants’ ratio, 356 

and their representation as unique objects. To date, these possibilities were only suggested at a 357 

perceptual level (in young as in adults). Here, they are evidenced even in an incompletely mature, 358 

neonatal organism, and strengthened by straightforward results related to a more integrative level, 359 

memory: clearly, a specific memory of configural odour mixtures exists, and appears involved in 360 

rapid processing and responsiveness to behaviourally significant chemically complex stimuli. In 361 

newborn rabbits, odour learning occurs during the daily interaction with the mother devoted to 362 

nursing [30,59-62]. Memory of single odorants but also of configural information is certainly at 363 

works during this vital period of interaction. It could allow for neonates to acquire, represent and 364 

successfully retain complex odour information carried by the maternal body, that may help 365 

improving the relationships with the mother (attraction, sucking, recognition), as indirect 366 

information linked to the social, physical and feeding environment useful later in life. More 367 

generally, the reactivity to configural information contained in some complex sensory stimuli 368 

certainly allows an animal to categorize efficiently the diversity of stimuli which constitute its own 369 

world and to find familiarity in the most constant and crucial representations of this changing 370 

environment.  371 

 372 
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Figure Legends 541 

 542 

 543 

Figure 1: Proportions of 3-day-old rabbit pups responding in an oral activation test to odorant A 544 

(ethyl isobutyrate), odorant B (ethyl maltol) and the AB mixture (30/70 ratio of A/B), after 545 

conditioning to AB on day 1 by pairing with the mammary pheromone (MP), and reactivation on 546 

day 2 by successive exposure to A and to B followed by immediate injection of anisomycin (AN) or 547 

NaCl (saline). *: p<0.05. 548 

 549 

Figure 2: Proportions of 3-day-old rabbit pups responding in an oral activation test to odorant A 550 

(ethyl isobutyrate), odorant B (ethyl maltol) and the A’B’ mixture (68/32 ratio of A/B), after 551 

conditioning to A’B’ on day 1 by pairing with the mammary pheromone (MP), and reactivation on 552 

day 2 by successive exposure to A and to B followed by immediate injection of anisomycin (AN) or 553 

NaCl (saline).  554 

 555 

Figure 3: Proportions of 3-day-old rabbit pups responding in an oral activation test to odorant A 556 

(ethyl isobutyrate), odorant B (ethyl maltol) and the AB mixture (30/70 ratio of A/B), after 557 

conditioning to AB on day 1 by pairing with the mammary pheromone (MP), and reactivation on 558 

day 2 by exposure to AB followed by immediate injection of anisomycin (AN) or NaCl (saline).  559 

 560 


