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Foreword

Analysis of Random Structures, as studied by the world-wide network AofA (Analysis of Algorithms) and
by the European ALEA network, relies on the interplay between analytic and probabilistic approaches.
Philippe Flajolet (1948-2011) played a fundamental and inspiring role in the development of these methods
and their scientific communities.

The Nablus 2014 CIMPA summer school was a unique opportunity to introduce both the analytic
and the probabilistic approaches to the Palestinian students.
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“Analytic combinatorics

aims to enable precise =
Analytic quantitative predictions

Combinatorics of the properties of large

= combinatorial structures. =X X
et v : i\i
| 5

Amazon As pdf See also Philippe Flajolet’s lectures and courses

“... The theory has emerged over recent decades as essential both for the analysis of algorithms and for
the scientific models in many disciplines, including probability theory, statistical physics, computational
biology and information theory. With a careful combination of symbolic enumeration methods and
complex analysis, drawing heavily on generating functions, results of sweeping generality emerge that
can be applied to fundamental structures such as permutations, sequences, strings, walks, trees, graphs
and maps.”

Foreword to “Analytic Combinatorics”, Flajolet-Sedgewick 2009, Cambridge University Press.

Philippe Flajolet (1948-2011) laid the foundations of Analytic Combinatorics and extensively developed
the methods and techniques used in this field.

Examples

Binary trees. If you ask to a five or six years old child to draw binary trees with 1, 2, 3, 4, and 5 external
nodes, and ask him about how many (different) ones there are, he will tell you the sequence (provided he or she
does not get tired)

1,1,2,5,14...
Counting is also natural for mathematicians. Considering the sequence (B,) enumerating binary trees and its
OGF (ordinary generating function) B(z), we have

(Bn) = (B1, B2, B3, Bs,...) = (1,1,2,5,14,...) and B(z)=)» Bnz".

n>1

Now, if there are more than one external node in a binary tree, removing the root gives two subtrees that are
equivalent (from a counting point of view) to any binary tree: there is a recursive decomposition that translates
to a functional equation verified by the generating function B(z), from which it is possible to extract the n-th
Taylor coefficient B, (see next figure).

How many binary frees B,, with n external nodes?

B=0O + e, (Bx B).
Euler-Segner (1743): Recurrence

A n—1
&M Ba= ) HeBix.
k=1
R Oy Form OGF: B(z) = z + (B(z) x B(z)).

Solve equation (quadratic):
LARERR M Be) =11V &) = 1-1(1-42)"2
5)5 N?‘ ™ '}5‘- ';3\ £y £ Expand:

B, = £ (272 _12) (Catalan numbers)
=

Figare 3.1

(From Flajolet, Bologna course, 2010) n

The example of binary trees is typical of the process of Analytic Combinatorics which works as follows.

1. Construct a symbolic equation on the combinatorial classes occurring in your problem (in the case
of binary tree, these are the class B and the class O representing a leaf with OGF z).



2. Translate the symbolic equation into a functional equation on generating functions.

3. Extract the Taylor coefficient of interest; asymptotically, this is often done by complex analysis and
Cauchy integrals or variants of these.

The counting is much more general than univariate counting as we see next.
Cycles in permutations. The cycle construction puts in equivalence classes sequences taken up to a circular
shift; considering the permutations of the symmetric group &4 of size 4!, we have

1234 = 2341 = 3412 =4123, 1243 =2341=..., 1324 =..., 1342 =..., 1423 = ..., 1432 =....

If C,, = n!/n is the number of classes of the symmetric group &, quotiented by the cycle construction, the
corresponding exponential generating function verifies

=L S -2 ()

n>0 n>0

Considering any permutation, we can decompose it as a set of cycles, as seen in the following example

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 12 13 17 10 15 14 9 3 4 6 2 7 8 1 5 16 )’

one of the cycle being 4 — 17 — 16 — 5 — 10 — 4.
If C is a generic cycle, and P a generic permutation, the decompositions is written symbolically as

P=Ae}+C+(CrxC)+(CxC*xC)+... (Permutation = Set of Cycles).

As Set ~» exp and Cycle ~» log, using again exponential generating functions that count labelled objects, and
moreover a variable u that counts the number of cycles, we have (being very sketchy)

1 1 1 _
P(z,u) = E {Z} uf 2" =14 uC(z) + 5u202(z) + §U3C3(z) +---=exp <u10g (E)) =(1-2)""
n>0 ’ ’
u<n

where {Z} is the Stirling cycle number that counts the number of permutations of size n with k cycles.

We obtain by the binary theorem

M-z = {Z]uk:u(u+1)(u+2)...(u+n—1),

k<n

and, by logarithmic differentiation, the expected number of cycles u, = E = [Z} in a random permutation of
n!
k
size n is the n-th harmonic number,
1 1

Second moment follows easily, and an asymptotic method known as quasi-powers theorem leads to a limiting
Gaussian law. (There are equivalent probabilistic approaches.)

What can you learn from Analytic Combinatorics?

The projected courses will aim providing a thorough introduction to Flajolet-Sedgewick book “Analytic Com-
binatorics”; an additional course will be related to the Boltzmann random generation of objects. If you are a
mathematician or a physicist, you cannot avoid being touched by the beauty of symbolic structures and by rela-
tively simple mathematical concepts that lead to deep results with “real life” applications. If you are a computer
scientist you will learn evaluating combinatorial structures that have algorithmic counterparts; i.e the (general-
ized) birthday paradox provides an analysis of collisions in data hashing.
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Random structures: a probabilistic approach

Together with analytic combinatorics, methods
coming from modern probability theory provide
natural tools to study random structures. Being
often of different nature, results from both comple-
mentary points of view enrich one another.

Example
Podlya urns provide a rich model for many situations in algorithmics. In this model, one considers an urn
that contains red and black balls (this can be generalized to any finite number of colors). One starts with
an initial configuration. At any step of time, one chooses one ball at random in the urn, checks its color and
puts it back into the urn. Depending on its color, one adds new balls of different colors according to some
fixed replacement rule. The random process is defined by iterating this procedure.

Take for instance the urn process having as replacement matrix. This means that when a red ball

0 3
21
is drawn, it is placed back into the urn together with 3 black ones; when one draws a black ball, one adds 2
red balls and 1 black one.

The composition sequence (i.e. the respective numbers of red and black balls it contains) of a Pélya urn is
a Markov chain. This follows from the fact that the random composition at a given time depends only on
the probability distribution of the preceding composition. This is the so-called forward point of view of the
growing random structure that implies immediately, for example, hat the urn contains asymptotically 40%
of red balls, with probability 1.

The forward point of view leads to represent all successive configuration in one global object:
the random process, giving access to powerful probabilistic tools like

- martingales, after suitable rescaling of the urn process. Most of limit theorems come from this
beautiful theory;

- embedding in continuous time, illustrated in our example by the underlying tree structure of
the urn process as follows.

One can usefully represent the evolution of the urn by the growing of a tree. The leafs are colored red and
black and represent the balls in the urn. Drawing a ball amounts to choosing a leaf. The corresponding
added balls are represented as daughter leafs. In the figure below, one chooses the black pointed leaf in the
tree on the left; one obtains the new tree drawn on the right.



In the discrete time urn, the subtrees are not stochastically independent. Embedding the process in con-
tinuous time consists in making the time intervals between two drawings random. When this random times
are exponentially distributed, the subtrees of the continuous time urn process become independent. The
resulting process is well-known by the probabilists: it is a branching process, giving rise to — Gaussian or

not — limit laws.

After embedding in continuous time, the gained independence allows us to use the recursive
properties of the random structure through the divide and conquer principle. This is to the
backward point of view. Applied to generating functions, it is the base tool for analytic
combinatorics methods. In the probabilistic domain, it translates the recursivity in terms of
distributional equations on random variables, often of the type

woE S Aw®

where the A4; are known random variables, the W) are independent copies of W, independent
of the A; as well. By means of Fourier analysis for instance, one derives properties of the limit
distributional behavior of the random structure.




A note on conditional expectation '

The conditional probability of one eve(njét1 A V&)fith respect to another event B of non-zero

e P(ANB
probability is known as: P(A|B) := B(5)
(continuous) density, and we want to condition with respect to a value taken by X it is not
possible to apply the preceding formula since the event {X = x} has null probability. With
X and Y two random variables, the probability of Y conditioned to X may be viewed as
taking a couple (X,Y), assuming known the value of X and doing a “prediction” of Y, i.e
finding a function of X that approximates as well as possible Y. This is expressed in the
following as E(Y'|B(X)) where B(X) is the o-algebra generated by X.

. If we consider a random variable X with

Mathematically, the conditional expectation of Y with respect to X is defined as the orthog-
onal projection of Y in the Hilbert space of square-integrable functions onto the space of
B(X)-measurable functions (see below).

Definition 1 Let (Q, A, P) be a probability space. Let also L*(A) be the space of real-valued
fonctions that are measurable on (2, A) and square-integrable with respect to the measure P.
It is a Hilbert space for the scalar product (f,g) = [, fg dP.

let B be a sub-o-algebra of A and let L*(B) be the space of real-valued fonctions that are

measurable with respect to B and square-integrable. The orthogonal projection of L*(A) on
L*(B) is called conditional expectation with respect to B (or knowing B).

Notation. The conditional expectation of X knowing B is noted E¥(X) or E(X|B).

A frequent particular case occurs when the o-algebra B is one of the o-algebras of a filtration
(Fn)n>o0- Typically, when one considers a discrete-time process (X,,),>0, and when F,, is the
o-algebra generated by the X, for p < n. The o-algebra F, is called the o-algebra of the
past before n and E(X | F,) or E/»(X) denotes the conditioning of X by the past before n.

Since L? is dense in L' for a finite positive measure, the last notion can be extended to all
integrable functions. This leads to the following characterization that is in practice more
useful that the definition:

Proposition 1 (characterization of the conditional expectation)

Let X € L'(, A,P) and let B C A. Then E(X|B) is the unique random variable such that:
e E(X|B) is B-measurable;

o for every B-mesurable and bounded random variable Y, we have E(Y X) = E(YE(X|B)).

It is necessary to remark that E(X|B) is a random variable B-measurable; this is generally
speaking not the case for a constant like E(X'). The conditional expectation with respect to
the trivial o-algebra reduced to {(), 2} is the usual simple expectation. If X is independent
of B, we get E(X|B) = E(X).

!Translation to English by Pierre Nicodéme of a note of Brigitte Chauvin written in French.



Proposition 2 (properties of the conditional expectation)

o linearity : Va,b € R, E(aX + bY|B) = aE(X|B) + bE(Y|B)

o [E(X|B)| < E(X] |B)

o IfC is a o-algebra and if C C B, then E(E(X|B)|C) = E(X|C)

In particular, E(E(X|B)) = E(X)

o If X is integrable and Z is B-measurable, then BE(XZ|B) = ZE(X|B). Moreover, when Z
is B-measurable, we have E(Z|B) = Z and E(E(X|Z)) = E(X)

Link with the conditional probabilities

Let A and B be two events, with P(B) # 0. Let us choose as B the c-algebra B =
{0, B, B¢,Q}. Then, one verifies with the characterization that

P(AN B)
P(B)

P(A N BY)

E(14|B) = “P(B)

]lB"— Ich

which gives

E(14|B) = P(A|B)1p + P(A|B°)1p..



A Gentle Introduction to Analytic Combinatorics

Jérémie Lumbroso Basile Morcrette

Oxford, September 5-7, 2012

"These notes were written by Jérémie Lumbroso and Basile Morcrette for the Ist
French-British Young Research Workshop that took place in Oxford in 2012, and of
which the purpose was to foster collaborations between French and British young
researchers over topics common to them - probabilistic analyses, or analytic combi-
natorics. There have since been subsequent editions, most recently in Paris in 2014.
Another edition is scheduled in Bath in 2015."
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1 Introduction

1.1 General Aim.

e Study combinatorial structures in a simple, unified and automatic way.
e Do exact (with formal, symbolic methods) and asymptotic (with C-analytic methods) counting.

e Examples of combinatorial structures: integers, words, permutations, trees, functional graphs.

1.2 Catalan numbers, by hands

Let’s begin with one of the most famous objects in combinatorics. The approach presented here, is the typical approach
one would use to find the enumeration of combinatorial objects from a recurrence, as it would be described for instance
in Wilf’s popular textbook [4, §1].

Consider C,, the number of binary trees of size n (i.e. with n internal nodes). A simple exhaustive study leads to the first
terms Co =1, C1 =1,C9=2,C3=5,Cy =14, ...

A classical way of counting those numbers is to find a recurrence. A binary tree of size n + 1 is composed of a root and
two subtrees: its left child is a binary tree of size k, its right child is a binary tree of size n — k, and the choice of the
integer k is in the set {0, 1,...,n}. So, it is possible to write the recurrence scheme

Cop1 =Y CrCrg.
k=0

The hint is now to use a generating function: C(z) = Y, ., Cp 2", where the variable z is just some parameter. The
sequence (C,)n>0 is now encoded by the function C'(z). From the previous equation, we multiply each side by the
monomial 2”1, and then make the sum forn = 0,1, .. ..

Z CnJrlZnJrl = Z i Ck Cnfk ZnJrl ’

n>0 n>0 k=0

Z Cpz" =z Z
n>

n>1 0

which can be re-written .
3 (Ce) (Coez
k=0
Now, using the generating function C(z), we find the classical equation
C(z) —1=20(2)*

Solving this second order equation, and using the initial condition Cy = 1 (which translates into C(0) = 1), the solution
is

1—-+1-4z

Clz) = 2z

Finding the exact coefficients C,, is done by the formal power series expansion of C'(z). We use the classical Newton’s
generalised binomial theorem
(a—1) , ala—1)...(a—k+1) ,

«
(1+x)a:1+ax+TI +...+ o ¥4

and find

¢(z) :Zn-li-1<2:)zn'

n>0

J. LUMBROSO and B. MORCRETTE, Introducing Analytic Combinatorics, CIMPA Summer School 2014, Nablus 9



o

asymptotic formula of C,,, we use the classical Stirling formula n! ~ v/27ne™" n", and find

oo L [ 4 n=%/2
" n+1\n N
This course’s aim is to directly get the framed results—the exact and asymptotic enumeration—from a symbolic speci-

fication of the combinatorial objects. In our current case, a binary tree can be symbolically specified as being: either a
single leaf (noted o), or a node (noted e), with a pair of binary trees (the left and right children), thus

So we conclude saying the number of binary trees of size n is the Catalan numbers C,, = ) And if we want an

B =ocor(e,B,B)

which of course bears a striking resemblance with the functional equation satisfied by the generating function, C(z) =

1+ 2C0(2)C(z)...

2 Unlabelled objects

This section summarizes the main aspects of the first chapter of the reference book [2, §I].

2.1 Basic definitions: combinatorial classes, generating functions

Definition 1. A combinatorial class A (sometimes simply a class) is a finite or denumerable set on a which is defined a
size function, | - | : A — Zx, such that, for every size there is only a finite number of elements, that is

Vn € Zso, an = |[{z € A | |z| =n}| < .

Remark. Following the common usage (as formalized in Flajolet and Sedgewick’s reference text [2]), we will always denote combi-
natorial classes using upper-case calligraphic letters such as A, subclasses containing only elements of a given size n as A, and the
counting sequences using the lower-case roman type, a,.

As the definition suggests, for a given combinatorial class, there may be several different valid size functions. A well-
known example in combinatorics is that of planar' binary trees: we can for instance enumerate them according to the
number of internal nodes, the number of external nodes (also called leaves), or by counting both.

On the other hand, a trivial measure of size that would not be valid would be to count the number of children of the root
(either 0, 1, or 2) as we would then have an infinite number of trees of “size” 1 and 2.

Definition 2. Let A be a combinatorial class, and let (a,)nez., be its counting sequence. We call A(z) the ordinary
generating function (or OGF) associated with A,

A(z) := Z anz".

n=0

In some cases, it is also sometimes convenient to consider the equivalent definition of generating function as the sum over
the objects of combinatorial class A

Az) = Z zled,

acA

IThe term planar is here used to express that a combinatorial structure is embedded in the plane; in the case of binary trees, that means that we
distinguish a left and a right child.

J. LUMBROSO and B. MORCRETTE, Introducing Analytic Combinatorics, CIMPA Summer School 2014, Nablus 10



Combinatorial class Counting sequence OGF

1
Word 0,1}* 2" W(z) =
ords on {0, 1} (2) 5
Integer compositions gn—1 I(z) = 1-z
1-2z
1 2 1—-v1—-4
Binary trees (counting internal node) " B(z) = S e
n+1\n 2z
Permutations n! P(z) = Z nlz"
n=0

Table 1. Some standard combinatorial classes, their enumeration sequence, and their ordinary generating function (OGF).
Note permutations do not have an analytic ordinary generating function, i.e., the radius of convergence of P(z) is 0.

Exercise 1. Show that these two definitions are equivalent.

The generating function is a traditional object in combinatorics. But where it is usually considered as a formal object,
algebraically manipulated, analytic combinatorics shows that there is considerable power in instead considering them as
analytic objects.

Once given a generating function, our main goal will be to extract its coefficients. Let f(z) be a generating function, we
use the notation [z"] to note the coefficient of the variable 27,

(+"17(2) = "] (Z f) ~

Here are some elementary but very fundamental operations on coefficients, which will also be revisited later on.
e Scaling: [2"]f(Az) = A"[2"]f(%), as
[2"]f(Az) = ["] <Z fz-(Az)’) = [z"] (Z(mi)zi> = A"[2"f(2).
' i=0

e Right shifting: [2"]2* f(2) = [z"*]f(z), because

272" (2) = [2"] (Z fﬂ”’“) = [="] (Z fi—kZZ) =["""1f(2).
i=0 i=k

2.2 The symbolic method

Let A, B and C be combinatorial classes with respective ordinary generating functions A(z), B(z) and C(z). The
symbolic method is the observation that some symbolic operations can directly be translated to ordinary generating
functions.

2.2.1 Elementary constructions

The base elements are neutral objects, noted €, which have no size and are thus translated as 2lel = 20 = 1, and atomic
objects with size 1, noted Z, and translated to OGFs as the variable z. In addition, we can distinguish however many kinds
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of neutral objects, for instance €1, €2, etc., which will all translate to 1, and however many kinds of atomic objects, which
may translate either to the same variable z, or to some other variable z1, 29, etc. depending on whether it is important to
distinguish the type of atom it contributes to.

Disjoint union. We write A = B +C, if class A is defined as the disjoint union of B and C: thatis A contains all objects
from B and €, and objects keep their original sizes. Because the union is disjoint, there is no overlap in the enumeration,
and this translates to the generating functions as

A(z) = B(z) + C(2).
Indeed, using the combinatorial definition of OGFs, since objects from A are either from B or C,

Az) = Z el = Z el 4 Z 2o = B(2) + C(2).

acA a€EB acl

Remark. Although we speak of “disjoint union”, in practice, we never concern ourselves on whether the combinatorial classes are
disjoint; instead we consider we are doing the union of unique copies of each class (for instance, imagine that A = B 4 B means that
A is composed of either elements of B that are colored pink or purple—thus twice as many elements).

Cartesian product. We write A = B x C, if class A is defined as all ordered pairs, « = (3,7) € A where the first
element § is from B and the second +y from € (i.e § € B,~ € C). The size function on A is then defined as |«| = | 3]+ |7/,
thus

since

Az) = 30 ol = 375 SR - (Z zO‘l) . <Z za|> — B(2)-C().

acA BeEB ~veC acB acC

Remark. The size for Cartesian products is here the sum of the sizes of each object of a pair, and accordingly we say that we are
dealing with additive combinatorial structures. Other rules for the Cartesian product are possible, for instance that the size of a pair
be the product of each component; we would then be dealing with multiplicative combinatorial structures enumerated by Dirichlet
generating functions (DGF),

D(s) = Z%.

n>1

These combinatorial structures are intimately tied to number theory, and in particular Riemann’s zeta function features prominently as
it is the DGF for the unit sequence (much like the quasi-inverse in additive combinatorics).

Sequence. We write A = SEQ (B), if A is defined as all ordered sequences (of any size, including zero) of objects from
B,

A:={e}+B+BXxB+BxBxB+...
in other words we have
A::{(617"'aﬁ£)|€>oa 6]63}

Observe in order for A to be a well-defined class, it is necessary that by = 0 (i.e. that there is no object in B with size
zero), as then A would contain an infinity of objects of any given size. The translation to OGFs is

A(z) =) B(2)F = 1%3(2).
k=0

This operation is often referred to as the quasi-inverse.
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Structure OGF

{e} 1

{2} z
A+B | A(z) + B(2)
A xB A(z) - B(z)
SEQ(A) | 1 —14(2)

Table 2. Small dictionary of unlabelled combinatorial classes

Recursive classes. Finally we mention that, under certain conditions, combinatorial classes may be defined recursively,
to allow for instance for the definition of branching structures. We will not go into the technical detail of these conditions
(see [2, §1.2.3]), except to say that the general idea is that:

1. for every class there should be at least one terminal symbol (an atom or a neutral element);

2. asystem should not allow for a same symbol to be expanded twice without increasing the size.

Example 1. This second point can be illustrated using a common mistake when specifying unary-binary trees (sometimes called
Motzkin trees because they are in bijection with Motzkin paths, much like standard binary trees are in bijection with Dyck paths). If
we define the class of unary binary tree as

U=2+U+U
that is, we define a tree is either a leaf, or an unary internal node or a binary internal node and we count the leaves, then the recursion
is not well-founded, and there are two ways to see this.
Combinatorically, the problem is that since unary nodes (in particular) do not affect the size of a tree, it is possible to obtain an infinity
of trees of the same size, simply by taking any unary-binary tree and increasing ad infinitum the number of unary binary nodes—without
changing the size. We were able to get away with counting leaves in binary trees because binary nodes affect the number of leaves (in

other words there is a direct correspondance between the number of internal nodes and external nodes).
Analytically, the problem is simply that the functional equation

Uz)=2+U(2) +U(2)°
does not admit any positive real solution.
The problem is solved by counting simultaneously the leaves by ¢ and the internal nodes by z; this gives the equation

Uz, t) =t + 2U(z,t) + 2U°(z, 1).
2.2.2 Some direct examples

Example 2. Binary words on the alphabet {0, 1}
A word is a finite sequence of 0 and 1.
W =SEQ({0} + {1}) X

WE =11

and "W (z) = 2"

Example 3. Number F), of different ways to cover the segment [0,n] with bricks of size 1 and 2
Let a be an atomic class of size 1 and b an atomic class of size 2. Then, F = SEQ(a + b).

1

= =1 222 3 RN
1= (127 +z422"+32"+ 52 +
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We identify it as the Fibonacci sequence F},. The recurrence F,+2 = Fy4+1 + F3, is directly linked to the equation 22—2-1=0.

Example 4. Integer composition [2, §1.3]
The composition of an integer n is the sequence z1, 2, ..., 2 suchthatn = 1 + x2 + ... + xx, with z; > 1.
An integer x is an atomic class of size x, represented by the OGF z*. The class J of integers has the OGF I(z) = z + 22 + 2% 4+ ... =

z

1—2z°
The class of compositions of integers € is described by € =SEQ(J). So,
1 1 1 z
S e (05 Rl Rl g SR
C, = [Zn]C(Z) — [Zn] 1 _ [Zn] < _ 2n _ 2n—1 _ 2'n—1
" 1-22 122

Remark. For each example (words, Fibonacci numbers, integer compositions), the exponential growth of the coefficients of the OGF is
directly linked to the singularity of the generating function (a singularity of a function is a point where the function is not well defined,
when it grows to infinity).

2.3 OGF as complex objects

Until now, an OGF is simply a formal sum of monomials. Let’s now consider? the OGF as a univariate function of the
complex variable z.

FE) =" faz"

n>0

When it is possible to write f as a Taylor expansion f(2) =" -, fn(z — 20)™, we say that f is analytic at the point z.
In combinatorics, almost all generating functions are analytic at 0. The function f has a radius of convergence R defined
by

R = sup{r such that f(z) is analytic for |z| < r}

An other way to see the radius of convergence is

R~ =limsup | f,|'/™

It means that when n grows to infinity, we have f,, ~ R~ "0(n) where (n) is a subexponential function of n. The
definition impose that it must exist a singularity on the circle |z| < r. Furthermore, a classical theorem in complex
analysis (due to Pringsheim) says: If the coefficients f,, are non negative, then there exists a singularity at the point of the
real line z = R.

2.4 Asymptotic of the coefficients (simple case)

Lemma 1. (Schiitzenberger) All the combinatorial constructions upon (g, Z, +, X, SEQ) leads to generating functions
that are rational.

Indeed, € and Z translates to 0 and z that are trivial rational expressions; moreover the operators +, x and SEQ transform
a pair of rational functions, or a rational function, to another rational function (where a polynomial is a rational function
of denominator 1).

Let f be an OGF. It is possible to write f as a quotient of two polynomials A(z) and B(z). And so, finding the singularities
of f is equivalent to finding the zeros of the denominator B(z). The rational function f has a partial fraction expansion:

f(z) = polynomial + Z ﬁ (reN)
(p,),B(p)=0

2This material is covered partially in [2, §IV.1 p.225] for the complex nature of the OGF, and then the exponential growth is explained in §IV.3 p.238
and in particular §I1V.3.2 p.243.
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Finding the asymptotics of the coefficients f,, is equivalent to the study of the asymptotics of (1 — z/p)~".

1

=g

P —2) T

_ _afntr-—1
- f r—1

an+r—=1n+r—-2)...(n+1)
(r—1)!

—n,r—1

p"n
(r—1)

Finally, f,, is a sum of terms of the form ¢ p~™"n"~!. (This is a version of Theorem VI.1 p.381 in [2], when p = 1.)

Conclusive remarks

o the singularity which is the closest to the origin give the exponential growth in the asymptotics. The singularity of
minimal modulus is called dominant singularity.

e the subexponential term of this asymptotic is given by the multiplicity of the dominant singularity.

Example 5. Find the asymptotics of the coefficients of

f(2)=(1—=2°/2)°1-2")""1—-22)"°(1—2-2%)"".
Singularities:={+/2, —v/2,1,1/2, ¢, #} Dominant singularity: z = 1/2  Multiplicity: 5. So, f, = [2"]f(z) ~ c2"n".
2.5 General asymptotic scheme

With more detailed complex analysis, it is possible to get the asymptotic of other generating functions (not necessarily
rational). This is Theorem VI.2 p.385 in [2], also seen in the special case where the singularity is p = 1 (using the property
of scaling, [2"]f(pz) = p™[2"]f(2), we can always get back to this case).

Theorem 1. (Subexponential asymptotic term). For « € R\{0,—1,-2,...}, and k € N,

1 e LN ont T ke
[Z](l_z)alog (1_Z> F(a)lg(),

where T is the classical generalized factorial function: T'(x) = fooo et 14t

Theorem 2. (Transfer lemma, Th. VI.3 p.390 [2])
Iff(z) ~z—1 g(z), then fy ~ gn.

Iff(Z) —z—1 O(g(z))! then fn = O(gn)

Iff(Z) —z—1 O(Q(Z))’ then fn = O(Qn)-

This powerful theorem expresses that it is enough to know the comparative behaviour of two functions in the neighbour-
hood of their smallest singularity (here assumed to be 1).
The intuition is that a function’s behaviour around its singularity is extremal and dictated exactly by its singularity.

Remark. For a more detailled lemma (with all hypothesis), see [2]. Moreover, instead of getting only a first order equivalent, it is also
possible to have a more precise asymptotic expansion with several error terms.

2.6 Tree enumeration

The topic here is fully covered in [2, §1.5].
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2.6.1 Binary trees (number of internal nodes). B=ec+2ZxBxB

So, B(z) = 1 4 2B(z)2. We solve the equation and find B(z) = 1=¥1=%= V21z_42.
The singularity is at z = 1/4, and the order is —1/2.
Near z = 1/4, we can write B(z) ~ —QW. So,

B 247ln—3/2 4nn—3/2 r(_1/9) = 2f
e (K1) - 207

2.6.2 Unary-Binary trees (internal and external nodes). U =2+ ZxU + ZxUxU
U(z) = 2+ 2U(z2) + 2U(2)? = 2¢(U(2)), where ¢(t) = 1 +t + t2.
Exercise 2. Find the generating function, an expression for the coefficients and an asymptotic value.

2.6.3 General trees A =2ZxSEQ(A)

A(z) = = 1 5 o Aw=s+ A(2)?
_ — 4z 7L—1n—3/2
A(z) = Lovizdz V214 A, ~ 4T

Remark. We notice that zB(z) = A(z). Then, [z""'|B(z) = [2"]A(z), and B,,_1 = A,,. The bijection between binary trees and
general trees is here proved thanks to the symbolic method!

2.6.4 Otter trees: the problem of symetries

An Otter tree 7 is a rooted binary non-planar unlabelled tree.
T(2) =242 +22+221 43254625 + 1127 + ...

An Otter tree is just a leaf, or it is a node with two Otter subtrees. But there is a symmetry at this node, so we put a factor
1/2 in the counting of those configurations. But with this correction, when the two subtrees are exactly the same, it it now
counted just a half time. So we add the other half for those subtrees. Then,

T(z) =z+ %T(z)2 + %T(ZQ).

2.6.5 Balanced 2-3 trees (external nodes): an example of substitution

Balanced 2-3 trees are trees where each node is:
e aleaf,
e an internal node with two or three sons,

and all leaves are at the same distance from the root.
The combinatorial specification is:

E=2+Eo0[{Tx LI +{2ZxTx 2} ~ E(2)=z+E(z*+2%),

since trees with depth % are transformed to trees of depth h + 1 by substituting each leaf by an internal node and two or
three leaves.
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3 Labelled objects and exponential generating functions

We now discuss the topic of labelled objects, introduced in [2, §1I.1 and 2].

As noted, for instance in Table 1, the class of permutations does not have an analytic OGF, because the coefficients n!
grow exponentially faster than 2™ and thus the radius of convergence the ordinary generating function is zero.

This combinatorial explosion is a common trait shared by all combinatorial classes that are labelled—that is, of which
the atoms are endowed with a permutation of n, the size. Permutations are such a class (a permutation is a sequence of
labelled atoms), as are arrangements (a subset of labelled atoms), and more complex objects such as graphs.

3.1 Definition and examples

The solution is to enumerate these objects using exponential generating functions, in which the coefficient is normalized
by n!.

Definition 3. Let A be a labelled combinatorial class, and let (@, )nez., be its counting sequence. We call A(z) the
exponential generating function (or EGF) associated with A,

x P
A(z) = Z an -
n=0 ’

And with EGFs there is also a combinatorial definition,

Zled
A(z) = z Tall”

acA

Notice that now, extracting the coefficient leads to a factorial factor:

a, = nl[z"A(z)

Example 6. P = {Permutations}

Pls) — 'z"_ 1
(z)—Zn.ﬁ_ T
n>0

It looks like a sequence of atoms. Indeed, a permutation can be viewed as a linear graph of size n:
o(l)—o(2)—0o(8)— ... —o(n)

Example 7. U: non connected graphs (graphs with no edge). For all n, U,, = 1.

z

Example 8. X: Complete graphs (all edges). It is the same EGF, K (z) = e*.

Example 9. C: Cyclic graphs (with a given orientation in the plan). C;, = (n — 1)!. So,

C(z):Z(n—l)!%T;:Z%:log(liz) .

3.2 Construction of the sum

The disjoint union is the same construction as the unlabelled case. If A = B + C, then the EGF of A is A(z) =
B(z) + C(z).
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3.3 Construction of the product

Starting with two labelled structures 3 and +y, the classical Cartesian product does not provide a well labelled structure.
The set of labels of a well-labelled structure of size n is exactly the set of integers [1, n].

So, from a couple (8, 7), we define a re-labelled structure (5’, ') where the labels are exactly {1,...,|5| 4+ |y|}, and the
relative order of labels of each element is preserved. We define

B %~ = { all couples (3,~") well relabelled}

The class 3 x y contains exactly (lﬂ “;‘M) distinct elements. Then we can define the labelled product

A=BxC= |J B~y

BEB ,yeC

Lemma 2. A(z) = B(z) - C(z)

Proof.

Lol
acA
L1811

=22 2w

BEB ~EC acfxy

- B+ 1\ 281z
- ZZ( 5] )(|ﬁ+|7|)

BeB ~eC
_ Z Z 2181171
1~ |1
fom L8 1Blth!
= B(z)-C(2)

Remark. B « B := B? does not contain elements (3, 5): the re-labelling make the two s different.
3.4 Construction of the sequence

Since we have the two constructions, sum and labelled product, it is possible to construct the sequence as before. For any
labelled class B where by = 0,

A =SEQ(B) ={ast. It>0,a= (b, ..., Bx) finite re-labelled sequence, 3; € B}

SEQ(B)={c}4+B+B+xB+BxB+rB+...
The corresponding EGF is

1
2)=> B(z)F= e

k>0

Definition 4. k components sequence : SEQ;(A) = A*
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3.5 Construction of the set

A k components set is defined as:
SET(B) := {sets with k elements of B}

This class can be viewed as an equivalence class:

SEQ.(B
SET,(B) = %)
where ‘R is the following equivalence relation:
(B1,- -5 Be)R(BY, - - -, By,) iff there exists a permutation o € &, such that 3,(;) = 3.

We notice that the ratio of cardinalities is:
|SET(B)| 1

[SEQ,(B)] ~ KL
Then, we define the SET constructor:
A = SET(B) = | ] SET(B),
k>0
and the corresponding EGF is )
Az) = 37 AR = exp(B(2)).

k>0

3.6 Construction of the cycle
For any labelled class B with by = 0 and k£ > 1, the class of k£ components cycle is
CYCk(B) := {cycles with k elements of B}

This class can be viewed as an equivalence class:

SEQ4(B
Cycy(B) = SE(B)
T
where ¥ is the following equivalence relation:
(Biy -5 Be)T(BY, .. ., By) iff there exists a cyclic permutation 7 € &, such that 3,(;) = f;.

We notice that the ratio of cardinalities is:
|ICycr(B)] 1
ISEQ(B)| k-
Then, we define the CYC constructor:
A:=Cyc(B) = Cycu(B),
k>0

Az =3 %A(z)k — log <1_13(Z)> .

k>1

and the corresponding EGF is

3.7 Examples of permutation classes

P(z) = % — exp <log (L))

This corresponds to the symbolic equation:

3.7.1 Permutations

P =SET(CYC(Z))

This express the classical decomposition of a permutation in a product of cycles with disjoint supports.
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Structure EGF

{e} 1

{2} z
A+ B A(z) + B(z)
AxB A(z) - B(z
SEQ(4) 1—14(2)

SET (A) exp(A(z))
1

Table 3. Small dictionary of labelled combinatorial classes

3.7.2 Involutions

An involution ¢ is a permutation such that 02 = Id. It can be viewed as a product of permutations of size 1 and 2 with
disjoint supports, that is a set of cycles of size 1 or 2. All permutations are defined by: P = SET (CyC (Z)). Involutions
are specified by J = SET(CYC<2(Z)). Then, the EGF is

52
I(z) = exp<z+2)
- S LGy
o n!
n>0
1 - (n) 1 2k n—k
- S (b
n>0 " k=0
M~ 1,
- Y I (1)
n>0 k=0
Extracting the coefficient,
[2"I(z) = 1 i—i— L n—l i-i— +# n-k i-ﬁ-
ol\0/)20 T (m—1)\ 1 J2t T (n—kN\ Kk J2k T
B an/éj 1 (n—z)l
pard (n—1)! ) 28
[n/2] |
n!
Finally, the exact number of involutions of size n is I,, = ZZ:; m

Remark. Finding an asymptotic for those formula will be develop later (Saddle-point analysis).
3.7.3 Derangements
A derangement is a permutation without fix points

D = SET(CYC>1(2))
2 3 1 —z
D(z) = exp <Z2+Z3—|—) = exp (log (1_2> +z) = 16_2
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