N

N

An Efficient Implementation of Tiled Polymorphic
Temporal Media
Simon Archipoff

» To cite this version:

Simon Archipoff. An Efficient Implementation of Tiled Polymorphic Temporal Media. ICFP FARM,
ACM SIGPAN, Sep 2015, Vancouver, Canada. 10.1145/2808083.2808089 . hal-01214101

HAL Id: hal-01214101
https://hal.science/hal-01214101
Submitted on 12 Oct 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01214101
https://hal.archives-ouvertes.fr

An Efficient Implementation of Tiled Polymorphic Temporal
Media

Simon Archipoff *
simon.archipoff@u-bordeaux.fr
LaBRI
Université de Bordeaux

Abstract

Tiled Polymorphic Temporal Media (TPTM) are a
convenient way to describe, compose and encode
multimedia streams. This paper presents a TPTM
encoding that allows simple and efficient imple-
mentation of both composition and rendering. In
particular, an on-the-fly rendering procedure is pro-
vided in order to handle infinite (lazy) TPTM.

1 Introduction

In the context of computerized music, but also in
the context of systems producing temporal media,
the purpose of computation not only concerns what
values are to be computed as in classical program-
ming, but also when these values are to be pro-
duced or rendered.

In these fields, temporal media (sequences of me-
dia values that evolve with time, such as audio or
video) play a prominent role. In [2], a polymor-
phic temporal media algebra is defined, allowing to
combine them either in sequence or in parallel. Pre-
sumably, these operators are sufficient. However,
the analysis of common functions, such as tempo-
ral media synchronization, suggests that temporal
media may be abstracted further.

In order to compose of two audio sequences 17
and my, we have to take into account the content
of my and my in order to make a consistent audio

*Partially funded by INEDIT, ANR-12-CORD-009.

alignment. A silence d may have to be added to
the composition in order to synchronize m; and m,.
More precisely, such a composition would be (d :+:
my) :=:my or my :=: (d:+:mjy), where :+: denotes the
sequential composition and :=: denotes the parallel
composition. Of course, an abstraction of the form

Amy my — (d:+:my) :=:mp

would be meaningless since the value d depends on
both m; and m,. Instead, the correct abstraction of
the composition of two audio sequences m; and m;
can be defined by:

Amy my — let d = alignOffset mq my
inifd>0

then (d:+:mq) :=:1mp

else my :=: ((—d) :+:my)

where the function alignOffset performs a possibly
complex analysis of the underlying musical struc-
ture induced by m; and my.

The synchronization data of two temporal me-
dia m; and my can be independent one with the
other, for instance for musical bars. This suggests
that the underlying abstract structure that may rel-
evantly describes these audio sequences should not
only consists in the ordered audio frames them-
selves, that form the basis of the audio sequences,
but also in a number of synchronization marks al-

lowing to adequately align these audio sequences
one with each other.

As a matter of fact, most audio toolboxes that are
available nowadays propose mechanisms to enrich
audio or musical sequences with such a kind of syn-
chronization markers. Yet, while these markers are
defined (in a quite ad hoc way) at the interface level,
their definition, manipulation and transformation at
the programmatic level is far from being clearly un-
derstood.

Despite an apparent simplicity, defining and han-
dling adequate synchronization marks over tempo-
ral media is not easy: how many synchronization
marks should we allow? This immediately raises
the question of representing the (possibly many
and heterogeneous) time scales the temporal me-
dia are to be defined on. Such a time scale can be
for instance: seconds, bars, beats, events... Even
more, as soon as interaction appears, this poses the
problem of building systems that are globally asyn-
chronous (event driven) and locally synchronous
(almost continuous).

The tiled modeling and tiled programming ap-
proach that is recalled and implemented in this
paper is an attempt to formalize, not only at the
programmatic level but also at the modeling level,
the interplay between temporal media values: what
they are, and their synchronization marks: how
they should be used. In particular, it aims at provid-
ing sufficiently rich abstract description of temporal
media types so that as we shall see, one can easily
define a meaningful abstract composition process:

Amq my — mq Y% my

where % is the tiled composition operator. The re-
sulting domain specific language is both versatile
and efficient.

In a first part of this paper we will recall some of
the work done in this field. Then we will present
our main contribution: a new implementation of
Tiled Polymorphic Temporal Media. Last, we will
study how this implementation compare to other
ones considering algorithmic complexity, perfor-
mances, and finally expressiveness. As an illustra-

tion of expressiveness, we present a set of prim-
itives to convert Polymorphic temporal media to
Tiled Polymorphic Temporal Media using our im-
plementation.

2 From PTM to TPTM

In this section we give a brief survey of the existing
approaches, from Hudak’s Polymorphic Temporal
Media (PTM) to the more recently proposed Tiled
Polymorphic Temporal Media (TPTM).

An important concept with PTM and therefore
TPIM is the notion of observational equivalence
between two temporal media. The observational
equivalence of m; and my, denoted by m; = my,
means that 7 and m; can not be distinguished dur-
ing the rendering, no matter how they are combined
with other temporal media.

2.1 Polymorphic Temporal Media (PTM)

A Hudak’s Polymorphic Temporal Media [2] can be
either a temporal media value lasting for some du-
ration d, a sequential composition :+: or a parallel
composition :=: of any two simpler media. Such op-
erators are depicted in Figure 1 where, as in most
figures, the horizontal axis represents the flow of
time from left to right.

l m l

l n

my and mp

l m [1 |

sequential composition m1q 4 my

[3 |
l m]

parallel composition my :=: my

Figure 1: PTM syntax and semantics

Despite its simplicity, this model is used in com-
puter music library such as Haskore [6] and Eu-

terpea [3] (both written in Haskell). It has nice alge-
braic properties [2].

This model handles infinite temporal media
thanks to laziness. For instance in m = myq :+:m, m
is a valid and playable temporal media when m; is
finite. About the implementation, the “on demand”
semantics of Haskell spares the programmer a lot of
work and makes the code very simple.

With the simplicity of this approach come two
slight drawbacks. The first one concerns the se-
mantics of the parallel composition, we have many
ways to synchronize two temporal media in paral-
lel (at their beginning, at their end, truncating the
end of the longest...). We have to make an arbi-
trary choice: in Euterpea, the parallel composition
synchronizes the two operands at their beginning,
and the duration of the resulting media is the one
of the longest operand. The second drawback is the
lack of modularity mentioned in the introduction.

2.2 Tiled Polymorphic Temporal Media
(TPTM)

Tiled Polymorphic Temporal Media proposed by
Hudak and Janin [4] offers a simpler approach with
a single tiled composition operator (denoted %).
With TPTM, the information about the synchroniza-
tion is embedded in the media and is used in the
tiled composition. It follows that both sequential
and parallel compositions appear as particular cases
of tiled composition.

Tiled PTM allows the decorrelation of the begin-
ning and the end of the temporal media from their
synchronization points. More precisely, a tile is a
stream enriched with two particular points called
pre (7) and post (1), as depicted in Figure 2.

S

l |
1

Figure 2: A tile

Then, given two tiles f; and f; encapsulating
streams s; and s, respectively, we compute the com-
position t; % t, by synchronizing the post marker of

t; with the pre marker of #;, and mixing their un-
derlying streams. The synchronization points of the
resulting tile are the pre marker of #; and the post
marker of tp, as depicted in Figure 3. Thus, tiles t;
and f; describe how s; and s; are aligned.

{, _prey ty pre,

l 51 l l 52

post! post!

(a) Two stream descriptors enriched with pre and post
synchronization points
T
l 51 . |
1
[$2 |
1

(b) When composing t; with f, the post synchronization
point of t1 is aligned with the pre synchronization point
of tp

Y

[51 I \

L1 52 |
T

(c) The streams s1 and s, are completed with silences and
composed together to make a new tile

Figure 3: Tiles are enriched streams

2.3 Derived Operators

The model is rich enough so that we can easily de-
fine derived functions to compose tiles. The reset
of a tile re t is a tile of duration 0 with the post
marker at the same place as the pre marker in ¢. It
can be used to make parallel composition of tiles by
synchronizing them at their pre marker. The coreset
function co places the pre marker of a tile at the po-
sition of the post marker, making a tile of duration
0. It is useful to synchronize two parallel tiles on
their post marker. And the inv function swaps the
pre and the post marker. These functions are de-
picted in Figure 4.

The inv function have a very interesting algebraic
property. Under a few hypothesis on the underly-
ing media, the set of tiles equipped with product %
and the empty tile unit (of duration 0) forms an in-
verse monoid with regard to observational equiva-

1 1
t ret
T T
1 1
cot inv t

Figure 4: A tile t, and its reset, co-reset, and inverse

lence [4]. More precisely the product % is associa-
tive, unit is neutral and for every tile x there is a
unique tile inv x verifying:

X% invx%x=x
v x % x % inv x = inv x

2.4 Parallel Operators

Using those operators, we can define fork and join
binary operators, two parallel compositions syn-
chronizing tiles at their pre and post marker, re-
spectively. The fork operator behaves somehow like
the :=: compositor of PTM. The semantics of these
functions are depicted in Figure 5.

forkty tp =ret; %oty
join ty tp =t %co ty

2.5 Modeling Examples

Tiled Polymorphic Temporal Media are convenient
to handle media according to their underlying
structures beginning or ending, which can be dis-
tinct from their literal beginning or ending. Possible
applications of this property are detailed below.

2.5.1 Adding a Pickup

In music, an anacrusis, or pickup, is a brief intro-
duction to a measure. Using TPTM, it is simple to
add a pickup to a tile. Given a tile t with a posi-
tive duration and nothing before the pre marker, it

Y
T:q | 5 |
1

(a) tl and ty

| rel] TI
l) l co b
1
re tp % ty t1 % co ty
b £
l) l l [
1

(b) fork t tp (c) join ty tp

Figure 5: The fork and join functions

is possible to add a pickup p by computing co p % ¢
as depicted in Figure 6.

[; IL

A tile t and a pickup p

cop

f |
1

The co-reset of p is composed with ¢

e
l P I t l
1

The tile co p %t with its underlying media merged

Figure 6: Adding a pickup with tiles

In this example, we can see a case where TPTM
are more modular than PTM. In a %t % b, if one
wants to add something in t, as long as the markers
of ¢ are placed in a consistent way, neither a nor b
will be impacted by this modification.

2.5.2 Uniform Handling of Language and Rhyth-
mical Units

As a more concrete application instance, tiles are
convenient to modelize the relation between the
lyrics and the music. Those two objects do not have
the same logical structure. One is decomposed in
verses, grammatical units, words,... the other in
phrases, bars,... Nevertheless, they are both en-
tangled in a song and TPTM can formalize these
relations.

Here, we consider the Bob Dylan’s song “Blow-
ing in the wind”. We can encode the lyrics by a
list of tiles where the text embedded by each tile is
determined by grammar, and the markers of those
tiles by musical criteria. In Figure 7 the lyrics are
split using grammatical criteria, the pre and post
markers are placed according to the musical bars
location.

How many

roads

must a man

[walk down |

Figure 7: A song tiled by measures

We build a list of tiles with a duration of one mea-
sure. By packing these tiles four by four, we tile the
verses of the song, as shown in Figure 8.

I
| How many roads. ..

| before you call him a man? |
2

Figure 8: A song Tiled by verses of 4 measures

This illustrates the potential of TPTM to repre-
sent music at various time scales, and according to
the different structures involved (natural language,
measure, melody;,...).

3 Existing Implementations

Implementing TPTM is not a trivial task. We have to
satisfy the constraint of polymorphism, this implies
to make minimal hypothesis on the tiled media. We
also want to handle infinite data structure, and we
want our tiles to be playable in real time.

3.1 Tiles in Euterpea

Hudak and Janin made a first implementation on
top of Euterpea [4] by encapsulating Euterpea’s
Music type into a type Tile:

data Tile a = Tile { preT :: Duration;
postT :: Duration;
musT :: Music a }

with Duration implementing the set of rational num-
bers.

Simple and elegant, this implementation already
allows to study the notion of tiled programming.
However, it suffers from a lack of polymorphism, as
primitives on tiles are implemented with primitives
of Music type.

1 3.2 The Syntactic Approach

Other standalone implementations proposed by
Bazin, Hudak and Janin [1, 5] separate clearly the
out-of-time tile construction induced by tiled mod-
eling and the in-time on-the-fly rendering. To this
end, they encode tiles in a syntactic way.

This settles a set of primitives that allows both
composition and rendering of tiles.

3.3 Creation Primitives

First, the out-of-time primitives used to produce
tiles:

delay :: Duration — Tile a
event::a — Tile a

(%) ::Tilea — Tilea — Tilea
dur ::Tile a — Duration

This syntax describes the two atomic tiles. The ex-
pression delay d is an empty tile of duration d which
can be positive as well as negative, and event e is
a tile of null duration with a single event e. The
Figure 9 shows two atomic tiles. In most figures
the horizontal axis represent the time and the scale
is respected. The dur function returns the dura-
tion of the tile, defined as the time distance be-
tween the pre and post markers. We observe that
dur (a%b) = dur a + dur b. The % operator allows
the composition of those two base tiles.

S ®
1

(a) The tile delay 2 (b) The tile event e

Figure 9: Two simple tile

As delays can be negative, the temporality of
the media does not have to be reflected in the de-
scription of the tile. For instance, in event a %
delay (—1) % event b, the event b will occur before
the event a. Then, we can describe every tile by its
sequence of events separated by back and forth de-
lays, hence the resulting tiles are “zigzag” through
time. An example of such a tile is depicted in Fig-
ure 10.

Figure 10: A tile “zigzag” t

With those construction primitives, we can im-
plement the reset, co-reset, and inverse functions
described earlier. These functions are depicted in
Figure 4.

invt =letd =durt

in delay (—d) %t % delay (—d)
re t =t % delay (—(dur t))
co t = delay (—(durt)) %t

3.4 Rendering Primitives

Obviously, zigzag tiles can not be rendered as they
are. The first event to occur can be deep in the syn-
tactic structure. For each tile, there is a normal form
where there is no consecutive delays, and no nega-
tive delay between two events. Such a normal form
is depicted in Figure 11.

Figure 11: The tile t normalized

One way to compute such a normal form is to
define some primitives to extract the first events and
the time distance to them:

firstE :: Tile a — MultiSet a
firstD :: Tile a — Maybe Duration

The firstE function returns the list (encoding a
multiset) of all the first events (all the other are
strictly later). And the firstD function returns the
delay between the pre marker and the first events.
Such a delay will not be defined if the tile have no
event. That is the reason why firstD returns a value
of type Maybe Duration. It can be either Just d, re-
turned when the tile have events, or Nothing when
there is no such event.

In order to play a tile, we need to compute the
first events to occur, when they will occur, but also
what comes afterward. We define the primitives
headT and tailT to compute these. The headT func-
tion returns the tile composed of the first delay and
the first simultaneous events, and tailT returns the
remainder of the tile, as depicted in Figure 12.

headT :: Tile a — Tile a
tailT ::Tilea — Tile a

headT t

Figure 12: Same tile as in Figure 10 with the first
event extracted

For any tile, we have the property:
t = headT t % tailT t

Those functions are named after the head and tail
functions defined over lists because of the semantic
similarity between them. Over any non empty list [
the following property is verified.

| == head | :tail |

The headT function can be defined in term of firstD
and firstE:

headT t =
case firstD t of
Nothing — delay 0
Justd —— delay d % fold (At e — t % event e)
(delay 0)
(firstE t)

As event only takes a single event, the multiset re-
turned by firstE is reduced in a tile using tiled prod-
uct and the standard Haskell function fold. This
function takes as parameter an accumulation func-
tion (here of type Tile e — ¢ — Tile €) and a starting
accumulator value (here delay 0, a neutral).

3.5 Observational Equivalence

The simplest observational equivalence is the fol-
lowing: two tiles are considered equivalent when
they have the same duration and describe the same
marked sequence of timed events. Such a defini-
tion does not takes into account the properties of
the events type, relevant from the observation. It is
recursively implemented by:

(=) :: Eq e = Tile e — Tile e — Bool
(St t=
case (firstE t1,firstE t;) of
([I,[]) —durty ==durt,
(le1,1e2) — firstE t; == firstE t,
A firstD t; == firstD tp
A tailT 1) = tailT t

The base case is when both tiles have no event, then
it checks if they are equal in duration. The recur-
sive case checks if the two tiles have the same first
events, at the same time, and if their remainders
(their tails) are equivalent.

4 Heaped Tiles

Here, we present a new approach using balanced
data structure and making the duration of the tile
independent of the delays used to build it. For this,
we define a tile as a duration (of type Duration) and
a set of timed events. Such a set is implemented by
a mergeable heap, here Sleator and Tarjan’s skew

heap [7].
The implementation of the tile is given by:

data Tile e = Tile Duration (SHeap e)

with Duration the duration of the tile and SHeap ¢ a
set of timed events.

The skew heap of events is a binary tree where
node are labeled by a delay and embed some events.

data SHeap e = Empty
| SHeap Duration (MultiSet e) (SHeap e)
(SHeap e)

The events are stored in a multiset MultiSet, the
Duration member is the time distance that separates
the events in the node from his father, or the implicit
pre marker of the tile for the root. In Figure 13 are
depicted the same tiles as in Figure 9. The duration
is represented by a dotted line between the two syn-
chronization points, and the event is attached to the
implicit pre marker of the tile (at time o).

T 2 >i (6]
(a) The tile delay 2 @
(b) The tile event e

Figure 13: Two simple heaped tiles

In Figure 14, we can see the correspondence be-
tween zigzag and heaped representations (same po-
sition on the horizontal axis means same time). In
the later case, the syntactic composition of the tile is
lost but the events are partially ordered.

(b) Heaped

Figure 14: Two representations of the tile delay 1 %
event b % delay (—3) % event a % delay 2 % event ¢ %
delay (—2)

4.1 High Level Implementation of the
Primitives

The primitives introduced in 3.3 are implemented
as follows:

delay d = Tile d Empty
event e = Tile 0 (SHeap 0 (singleton e) Empty Empty)
-- singleton e is a multiset containing only e
(%) (Tile dy s1) (Tile dy sp) =
Tile (dy + dy) (mergeSH sy (shiftSH dy s;))
dur (Tiled _) =d

The delay d function returns a tile of duration d with
no events, the event e function returns a tile of du-
ration o and a single event at time distance o of the
pre marker of the tile.

The mergeSH function is a binary operator that
merges two heaps by preserving time distances, ev-
ery event of each operand will be at the same time
distance in the resulting tree. And the shiftSH func-
tion takes as parameter a duration and a heap, and
shift all the timed events of the heap by the dura-
tion.

The implementation of composition is based on the

property:
t Y%ty = re ty Yo delay (dur t1) % by

The sole SHeap of the tile delay (dur t1) % tp, is com-
puted by shiftSH dq sp (every events of t, are pre-
ceded by a delay of (dur t1)). Then, the events of t,
shifted are merged by the ones of t;, and the dura-
tion of the resulting tile is the sum of the durations
of t; and #,. The tiled product is depicted in Fig-
ure 15.

4.2 Additional Primitives

The rendering primitive are simple as well, all of the
relative complexity of the implementation is hidden
in the heap’s primitives. Here the implementation
of a few more primitives:

firstD (Tile — (SHeap d _ _ _)) = Just d
firstD _ = Nothing

(a) The synchronization points are aligned (the heap of
the second operand is shifted)

(b) The heaps and the synchronization data are merged

Figure 15: Tile composition

firstE (Tile _ Empty) = empty -- empty multiset
firstE (Tile — (SHeap _e _ _)) =e
headT (Tile — Empty) =
Tile 0 Empty
headT (Tile — (SHeap te _ _)) =
Tile t (SHeap t e Empty Empty)
tailT (Tile d Empty) =
Tile d Empty
tailT (Tiled (SHeap t _17)) =
Tile (d —t) (mergeSH 1 7)

The tail T function removes the first events, and then
computes a new heap containing all the remaining
events.

A very important improvement with this tile rep-
resentation is that the reset of a tile is defined even

when the duration of this tile is undefined, as we
can implement it by:

re (Tile _h) = Tile O h

4.3 Low Level Implementation

A skew heap [7] is a very simple data structure that
can be implemented in Haskell with less than 10
lines of code, it have nice algorithmic properties,
and as it is a good base for an implementation of a
priority queue, we can use it to implement TPTM as
well. It is a binary tree where the nodes are labeled
by elements of an ordered set (times for instance).
It allows a quick access to the smallest element of
the heap, and a quick merge of two heaps. Here,
to store the events we uses a slightly modified skew
heaps, the difference with the usual ones is that the
nodes carry delays and not absolutes times.

The set of timed event is coded by a binary tree.
In an expression of the form

n = SHeap d mse Ichild rchild

where d is the time distance between the events in
the multiset mse and the event embedded by the fa-
ther of n, or the implicit pre synchronization of the
tile when 7 is the root.

The invariant of the heap is:

e the duration carried by every node except the
root is strictly positive,

e anode carry at least one event,

e the total delay to an event is the sum of all
delays from the root to the node carrying this
event.

The implementation of shiftSH is pretty straight-
forward. It is an O(1) operation: as the labels on
the nodes are relatives, shifting a node shifts all its
subtree. With absolutes labels we would have an
O(n) operation.

shiftSH :: Duration — Sheap e — SHeap e
shiftSH d Empty = Empty
shiftSH d (SHeap d' el v) = SHeap (d+d') el r

Finally, the implementation of mergeSH is given by:

mergeSH :: Ord e = SHeap e — SHeap e — SHeap e
mergeSH | Empty = |
mergeSH Empty v = r
mergeSH heap,@(SHeap dy e 11 11)
heap,@(SHeap dy ey I 12) =
case compare di dp of
EQ — SHeap dy (union ey ey) (mergeSH Iy 11)
(mergeSH I 5)
LT —

SHeap dy ey (mergeSH ry (shiftSH (—dy) heap,))

h
GT —

merge
dq dzl
l r 4 N
! 12 2
dy |
merge / \
dz — dl ll
() m
lz 2

SHeap d ey (mergeSH 1y (shiftSH (—d;) heap,))

2

We merge the trees following their rightmost
paths, and swap the right and the left child in the
resulting tree. This case is depicted in Figure 16. By
this mean, the tree tends to grow “from the inside”
rather than the rightmost path.

If the roots of the two tree we want to merge have
the same delay, we do not increase the resulting tree
size and we merges their events instead , otherwise
we would have a o delay and violate our invariant.
This case is depicted in Figure 17. The fact that we
forbid null delay is reducing the tree size, but we
could as well allow it and then treating this special
case in the headT function rather than in the merge
function. We can use mergeSH over infinite heaps
because it is lazy on the childs of its parameters.

5 Complexity Analysis

In this section we will study space and time
complexity of a syntactic implementation and the
heaped implementation. We define the size of a tile

10

Figure 16: Heaps merge: case d; < d3

by n = n, + n; where n, is the number of events
and 7, is the number of delays in it.

5.1 Syntactic Complexity
A syntactic implementation suffer from two algo-
rithmic problems, about time and space complexity.

Firstly, there is no mechanism to balance the
structure built. The complexity of the in-time ren-
dering depends on the way the tile has been con-
structed. For instance, a call to firstE is linear on
a tile that has been constructed starting “from the
end”, because the first events are in the bottom of
the syntactic structure. In general, all operation are
in O(n), where n is the size of the tile.

Secondly, given a tile t of any event type, there
is no bound to the size of a tile ¢ such that t = #'.
We can have an arbitrary number of delays because
of the property delay (a+ b) = delay a % delay b.
With the implementation described in 3.1, the space
complexity is O(n, +ny).

merge
dp | d
ll " lz 2
dil
merge merge
’ L n ‘ ’ L, 1 ‘

Figure 17: Heaps merge: case d; = d;

5.2 Heaped Complexity

With the heaped implementation and assuming that
Duration have O(1) space complexity (for instance
when a bounded number of delay values are used),
the space complexity of a tile with n, events and n,
delays is O(n.) since the invariant of the heap imply
ng = O(ne).

It can be proven [7] that mergeSH have an amor-
tized complexity of O(logn). Hence, both % and
tailT have a logarithmic time complexity and headT
have a constant time complexity.

6 Performances

In this section, we will compare the Twisted imple-
mentation [5], and the one introduced in this paper.
In all the following measures, we simulate the ren-
dering of a tile by recursively extracting all the first
events of the tile. We use GHC 7.8.4 with no runtime
tuning on an AMD Opteron 6174 (2.2 GHz). More
specifically, we will benchmark the normalization of
tiles defined as follow:

tileL 0 = delay 0
tileL n = (delay 1 % event ()) % tileL (pred n)

tileR 0 = delay 0
tileR n = tileR (pred n) % (delay 1 % event ())

parallelTile t n = foldl (%) (delay 0) (replicate n (re t))

tileLeft = parallelTile (tileL 2000) 16
tileRight = parallelTile (tileR 2000) 16

The performance of the normalization of a tile is
very sensitive to its expression with the syntactic
representation. The tileR function generate a worst
case for syntactic representation (parallelTile do not).

Due to the space complexity described in sec-
tion 5.1, the extraction of the first events of a tile
does not guaranty that the remainder is smaller
than the original tile. The implementation described
in [5] suffer from this, the number of delays in failT ¢
increases. This is the reason why in Figure 18 the
reduction time of firstE (tailT"t) is proportional to
n.

45000 T T T

40000

T

35000 -

30000 -

25000 |-

20000 -

time in ps

15000 -

10000

5000

1000
event

1500 2000

Figure 18: Normalization of tileLeft with the Twisted
implementation

Thanks to the property delay a % delay b =
delay (a +b), we can always merge two consecutive
delays and then reduce the tile size. By modifying
the implementation of the % operator in Twisted to
guaranty that we never have two consecutive de-
lays, we have a constant time call to firstE. In Fig-
ure 19 we see that the patched Twisted implementa-
tion can perform an in-time on-the-fly rendering on

11

a left parenthesized tile. The very first call to firstE
is longer because it trigger the evaluation of the tile.

500

400 B
4 300 - B
£
[
£
s 200 B
0 Il Il Il
0 500 1000 1500 2000
event
Figure 19: Normalization of tileLeft with the

patched Twisted implementation

But the Twisted implementation stay very sensi-
tive to the expression of the tile. In Figure 20 we see
the normalization of the same tile but right paren-
thesized. The first events are the deepest leafs of an
imbalanced syntactic tree, hence the reduction time
of firstE is proportional to the size of the tile.

160000

e

140000

120000

T T T

100000

80000

time in ps

60000 +

40000

20000 - i B

0 I I I
0 500 1000

event

2000

Figure 20: Normalization of tileRight with the
patched Twisted implementation

The performance of the Heaped implementation
performing the normalization of the same tile as in
Figure 20 (a tile constructed “backward”) is shown
in Figure 21. The average call to firstE is less than
50 us. The garbage collector periodically cause

longer execution time. Because of the complicated
complexity analysis of the skew heaps and the im-
pact of the lazy semantics, a worst case for the
Heaped implementation is yet to find.

500
400 [1

300 7 - :' .:.* oo 4

time in ps

200 o

100 - 4

1000
event

2000

Figure 21: Normalization of tileRight with the new
Heaped implementation (some few points are be-
tween 500 and 5000 ys)

The normalization of a left parenthesized tile with
the Heaped implementation is depicted in Figure 22.
The first call to firtsE last 1400 s, the average is 6 us.

500

time in ps

200 ~

100 - i ’ ’ ’ . . -

1000 2000

event

1500

Figure 22: Normalization of tileLeft with the new
Heaped implementation (some few points are be-
tween 500 and 1500 ps)

12

7 Infinite Tiles

As the lazy semantics of Haskell allows the pro-
grammer to write infinite data structures such as
lists, we would like to be able to write infinite tiles.
In this section we study the possibility of represent-
ing and playing an infinite tile. Such a tile that may
results from an equation of the form x = m % re x
[4]. Because we are interested in relevant tile from
a musical point on view, we will consider only the
tiles with a finite number of events at each time, and
where all delay d; between consecutive set of events
verify for all i: 0 < m < d; < M for some m and
M. This mean in particular that we can not have an
infinite number of events in a finite time interval.

7.1 Syntactic Implementation

With the syntactic representation, we observe that it
is impossible to build such an infinite tile with a fi-
nite duration. Because the duration of the tile is the
sum all the delays that composes it, and a infinite
tile have an infinite number of positive delays, we
would need to add an infinite number of negative
delays to make the sum finite. We can write a func-
tion that compute an potentially infinite tile from a
potentially infinite list for instance, but it will suffer
from a memory leak because of the infinite num-
ber of negative delays accumulated needed to have
a finite duration. The Figure 23 depict such a tile.

dq d

dy dy

3
(@) O—O——A@
b Y. d;

Figure 23: A potentially infinite zigzag tile

7.2 Heaped Implementation

As in tiled Euterpea, it is possible to represent an in-
finite tile with the Heaped implementation. The rea-
son is that the set of SHeap e with empty right childs
is isomorphic to the list type [(Duration, MultiSet e)]

13

where all the durations in it are positives except
maybe the first one and all multisets are non empty.
Hence, we can build infinite tiles given an infinite
list.

We define a function sToT as Stream To Tile, that
takes a potentially infinite list and returns an infi-
nite tile of finite duration that encode this list. Such
a tile is depicted in Figure 24.

sToT I = Tile 0 (IToSH I)

IToSH :: [(Duration, MultiSet e)] — SHeap e

IToSH || = Empty

IToSH ((d,e) : (0,¢') :1) = IToSH ((d, unionee'):1)
-- we don’t want 0’s

IToSH ((d,e) :1) = SHeap d e (IToSH 1) Empty

The IToSH function computes a SHeap from the list
while reducing o delays, and the sToT function re-
turns a null duration Tile with this heap.

Figure 24: An infinite heaped tile

Unlike the implementation in 7.2, here we can
build and render an infinite tile with no memory
leaks.

8 Encoding PTM into TPTM

As a consequence of the possibility to compute infi-
nite Heaped tile, we can write conversion function
from infinite PTM to TPTM. This implementation
suffers from a memory leak when the PTM con-
verted is have an infinite duration.

We use this simple definition for PTM, and a
Event to encode temporal media in term of events:

data Media a = Prim Duration a
| Wait Duration
| Media a :+: Media a
| Media a:=: Media a
data Event a = On a | Off a deriving (Eg, Ord)

The constructors Prim d a represents a media a dur-
ing a time d, Wait d is a delay, and the remaining
constructors are pretty straightforward. In TPTM,
we encode a media a for a duration d by two event
separated by a time d marking the beginning and
the end of a.

The tiles involved here have the property:

(P) All the events embedded are between the two
synchronization marks: There is no event be-
fore the pre marker, and no event after the post
marker.

A TPTM encoding a PTM is a well parenthesized
sequence of event On a and Off a. We define a func-
tion mToT as Media To Tile that computes such a
tile:

mToT :: Ord a = Media a — Tile (Event a)
mToT (Primd a) =
event (On a) % delay d % event (Off a)
mToT (Wait d) = delay d
mToT (my :=:my) = parM (mToT my) (mToT my)
mToT (my :+:myp) = segM (mToT my) (mToT my)

The seqM and parM functions are the tiled imple-
mentation of :4: and :=: respectively, in order to
be able do deal with infinite tiles, these functions
can not be implemented naively. The seqM function
works under the hypothesis that both operands ver-

ify (P).

parM (Tile dy h1) (Tile dp h2) =
Tile (max dy dy) (mergeSH h1 h2)
seqM (Tile dy h1) ~(Tile dy h2) =
Tile (dy + dy) (lazyMergeSH h1 (shiftSH dy h2))

The implementation of parM is pretty straightfor-
ward, we notice that parM is lazy on durations, and

14

mergeSH can handle infinite heaps, so such a func-
tion suit its purpose. However, the implementation
of segM is less obvious because it have to be lazy on
its second parameter in order to be able to handle
an infinite PTM such as my :+: (my +: (m3 :+: (my....

The first unwanted strictness come from the fact
that in Haskell, pattern matching in case expression
are strict by default. Without the “lazy-pattern”
tilde, when seqM a b is evaluated, it will trigger
the evaluation of a and b, b can also be of the form
seqM c d, hence, it will trigger an infinite computa-
tion. Such a pattern matching cannot fail because
Tile e have a single constructor. We could as well
made the program lazy on the second operand by
other mean, but for the sake of simplicity, we use
the ~(pattern) syntax.

The second unwanted strictness comes from
mergeSH because it needs to evaluate both its
operand in order to see from which one the first
event of the resulting tree comes from. We use the
hypothesis (P) to implement a lazier merge.

lazyMergeSH :: SHeap e — SHeap e — SHeap e
lazyMergeSH Empty h = h
lazyMergeSH (SHeap delr) h =

SHeap d e (lazyMergeSH r (shiftSH (—d) h)) |

The lazyMergeSH function is lazy on the second
parameter and works only under the hypothesis
that the first event of the second heap is after the
last event of the first heap. The algorithm is exactly
the same as mergeSH, but by hypothesis we are al-
ways in the LT case.

The mToT function build a tile of the duration of
the media, such a duration can be undefined in case
of infinite PTM such as m in m = my :+: m. It follows
that one will prefer the use of the function mToReT
which returns the reset of that tile, of duration o.

mToReT :: Ord a = Media a — Tile (Event a)
mToReT = re o mToT

Such an implementation suffers from a memory
leak if the PTM converted is infinite. Because the

function mToT will compute without evaluating the
duration of the resulting tile, which can be infinite.

9 Rendering

The firstE, firstD and tailT performs an abstract ren-
dering. In order to make more concretes experi-
ments around TPTM, two players have been writ-
ten. The first one is a MIDI player, and the second
one an audio player.

These two players relies on the sound server
JACK that provides a real-time engine and primitive
to send both MIDI and audio. The input of JACK
is bufferized, this conveniently loosen the real-time
constrains imposed to the Haskell runtime.

9.1 MIDI Player

The MIDI player takes as input a tile of MIDI mes-
sages and feed the JACK server by performing
an on-the-fly normalization of the tile. The firstE
function performs an agnostic accumulation of the
MIDI events, the player relies on downstream com-
ponents to compute the semantic of simultaneous
events.

This player have been used to play standard MIDI
files. Such a file can be seen as a list of parallel
tracks (usually one per instrument), where a track
is a sequence of delays and MIDI events. Hence, we
encode a MIDI file by a tile of the form re t; %re t, %
re t3%: - - where each t, is a positive tile encoding of
the nth MIDI track.

9.2 Audio Player

We implemented a player that is capable of read-
ing and playing audio tile as well. A digital au-
dio stream is a continuous signal discretized at a
constant framerate. For performance reasons, ren-
dering a tile with one event per audio frame was
not feasible. Thus, an audio tile is based on the
granular synthesis technique. The audio events are
“grain”, some few milliseconds of audio stream.
These grains overlap and are placed in an envelope
in order to avoid artifacts.

15

Thanks to this technique, we can easily change
the tempo without modifying the pitch, as it suffice
to modify the delays in tile separating the grains.
However, significant speed change generate a lot of
artifacts.

A reduction have to be performed on the events
returned by firstE, from a multiset of grains we com-
pute a vector of audio frames.

These experiments open the way to musical ex-
perimentation. We are currently working on a
player that can simultaneously read both MIDI and
audio.

10 Conclusion

The implementation proposed in this paper have
good algorithmic properties and can handle infinite
temporal media, just as Tiled Euterpea could [4].

In further research we would like to extend TPTM
model in order to handle interactive temporal me-
dia. In particular, we are interested in being able
to describe some synchronizations between the ren-
dering of a tile and an external stream of events
(the music played by a musician for instance). We
are also interested in expressing complex interactive
programs with conditional renderings.

The tree structure of our implementation seems
to be adapted to this extension as it induces a par-
tial order between the events that is compatible
with the temporality of those events. This tree de-
scribes a non-determinism between the order of the
events to be played that is resolved by the normal-
ization. An arbitrary arity tree could express a non-
determinism between the order of external events
that would be resolved by the monitoring of ex-
ternal events. Of course, this would imply explor-
ing the possible links with other known approaches
such as, in particular, Functional Reactive Program-
ming approach.

References

[1] T. Bazin and D. Janin. Flux média tuilés poly-
morphes: une sémantique opérationnelle en

[2]

Haskell. 2015.

P. Hudak. An algebraic theory of polymor-
phic temporal media. In Proceedings of PADL 04:
6th International Workshop on Practical Aspects of
Declarative Languages, pages 1—15, 2004.

P. Hudak. The Haskell School of Music : From sig-
nals to Symphonies. Yale University, Department
of Computer Science, 2013.

P. Hudak and D. Janin. Tiled polymorphic tem-
poral media. In ACM Workshop on Functional
Art, Music, Modeling and Design (FARM), pages
49-60. ACM Press, 2014.

16

[5] P. Hudak and D. Janin. From out-of-time design
to in-time production of temporal media. Tech-
nical report, LaBRI, Université de Bordeaux,
2015.

[6] P. Hudak, T. Makucevich, S. Gadde, and
B. Whong. Haskore music notation — an alge-
bra of music. Journal of Functional Programming,

6(3):465-483, May 1996.

[7] D. D. Sleator and R. E. Tarjan. Self adjusting
heaps. SIAM J. Comput., 15(1).

