
HAL Id: hal-01214038
https://hal.science/hal-01214038v1

Submitted on 25 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid de novo tandem repeat detection using short and
long reads

Guillaume Fertin, Géraldine Jean, Andreea Radulescu, Irena Rusu

To cite this version:
Guillaume Fertin, Géraldine Jean, Andreea Radulescu, Irena Rusu. Hybrid de novo tandem repeat de-
tection using short and long reads. BMC Medical Genomics, 2015, 8 (Suppl 3), pp.S5. �10.1186/1755-
8794-8-S3-S5�. �hal-01214038�

https://hal.science/hal-01214038v1
https://hal.archives-ouvertes.fr


RESEARCH Open Access

Hybrid de novo tandem repeat detection using
short and long reads
Guillaume Fertin, Géraldine Jean, Andreea Radulescu*, Irena Rusu

From IEEE International Conference on Bioinformatics and Biomedicine (BIBM 2014)
Belfast, UK. 2-5 November 2014

Abstract

Background: As one of the most studied genome rearrangements, tandem repeats have a considerable impact on
genetic backgrounds of inherited diseases. Many methods designed for tandem repeat detection on reference
sequences obtain high quality results. However, in the case of a de novo context, where no reference sequence is
available, tandem repeat detection remains a difficult problem. The short reads obtained with the second-
generation sequencing methods are not long enough to span regions that contain long repeats. This length
limitation was tackled by the long reads obtained with the third-generation sequencing platforms such as Pacific
Biosciences technologies. Nevertheless, the gain on the read length came with a significant increase of the error
rate. The main objective of nowadays studies on long reads is to handle the high error rate up to 16%.

Methods: In this paper we present MixTaR, the first de novo method for tandem repeat detection that combines
the high-quality of short reads and the large length of long reads. Our hybrid algorithm uses the set of short reads
for tandem repeat pattern detection based on a de Bruijn graph. These patterns are then validated using the long
reads, and the tandem repeat sequences are constructed using local greedy assemblies.

Results: MixTaR is tested with both simulated and real reads from complex organisms. For a complete analysis of
its robustness to errors, we use short and long reads with different error rates. The results are then analysed in
terms of number of tandem repeats detected and the length of their patterns.

Conclusions: Our method shows high precision and sensitivity. With low false positive rates even for highly
erroneous reads, MixTaR is able to detect accurate tandem repeats with pattern lengths varying within a significant
interval.

Background
Tandem repeats are one of the most studied genome
rearrangements [1-3]. Frequently located in genes or
regulatory regions, tandem repeats (TR) play an impor-
tant role in gene expression, genome evolution and tran-
scriptional regulation [2-5]. They represent an important
source of genome variation, help determine individuals
inherited traits and are involved in genetically inherited
diseases [6].
A TR is a sequence from a genome made of several

(not necessarily exact) copies of the same pattern,
located next to each other. In the case where each copy

is identical to the pattern, the sequence is called an
exact tandem repeat (ETR). Otherwise, it is called an
approximate tandem repeat (ATR). Depending on
the pattern length, TR are classified into microsatellites
(1-10 bp), minisatellites (10-100 bp) and satellites
(>100 bp) [7].
The problem of TR detection has been the subject of

many studies due to the TR important roles. The search
of TR in genomes can be done in two contexts: either
in the case where a reference sequence exists or in the
de novo context (i.e. without a reference sequence).
TR detection on reference sequences of genomes, chro-

mosomes or other types of assembled DNA sequences can
be performed by a significant number of existing tools (see
review [8] for examples). Most of these software contain* Correspondence: andreea.radulescu@univ-nantes.fr
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two main steps. At first, potential TR are searched with
either an exhaustive [9,10] or a heuristic algorithm [11].
Some of these search methods are specifically designed for
ETR such as BWtrs [9], while others can search for both
ETR and ATR such as TRF [11] and mreps [10]. A filter-
ing step is then executed for identifying the biologically
significant repeats. Simple methods such as a length
threshold [10] or more complex ones such as statistics-
based models [9] may be used. For sake of simplicity we
call all these methods TR sequence search tools.
In the case of a de novo context, TR detection remains a

difficult problem [12]. A sequencing platform produces
numerous possible overlapping sequences, called reads,
from the initial DNA sequence (called the target DNA
sequence). Developed in 2005, the second-generation
sequencing (SGS for short) technologies were developed to
lower the sequencing time and cost (see [13] for a descrip-
tion). However, the resulting reads have short length (100
bp to 250 bp) and high error rate. One of the first sequen-
cing technology, Sanger, can have an error rate as low as
0.001%, while reads from SGS technology can have up to
2.8% errors [14]. The loss of information, due both to the
short length of the reads and the error rate, is counterba-
lanced with high values for the coverage depth, that is, the
average number of reads covering an arbitrary position in
the target DNA sequence. In this context, obtaining a cor-
rect de novo assembly of SGS data sets from complex gen-
omes represents a difficult challenge [15]. Indeed, the
numerous repeated sequences occurring in a genome are a
main cause of errors in an assembly [16-18].
In order to surpass these challenges, several de novo

assemblers were developed to improve the repeat assem-
bly (see [19-21] for examples). Their procedures are
usually executed at the end of the assembly process and
are especially developed for repeat assembly by using
paired-end information [12]. Most SGS platforms pro-
pose paired-end sequencing protocols which provide
pairs of reads. The reads from a pair are separated on the
target DNA sequence by a known approximate distance
called insert size (usually ranging from 500 bp to 1 kbp).
The insert size being much longer than the read length,
the paired-end reads are used to span regions that con-
tain long repeats. The de novo assemblers using this type
of data are able to assemble a part of the repeats of the
original genome, but in their final output many repeats
are still missing [12]. Our previous study [22] focuses on
these missing repeats by retrieving ETR left unresolved
by the assemblers. The algorithm presented in this study,
called DExTaR, improves the detection of ETR after a de
novo de Bruijn assembly.
The read length limitation of SGS was tackled by the

Pacific Biosciences (PacBio) technologies [23]. As part of
the third-generation sequencing platforms, PacBio long
reads have a variable length ranging from 1 kbp to

20 kbp. This range of lengths can easily span most
repeats. Unfortunately, the read length expansion came
with a significant increase in the error rate. The mean
error rate is of approximately 16% [24]. Therefore, most
of the research work focusing on PacBio reads uses the
higher quality of SGS short reads, either for correcting
the PacBio reads [25-28] or for assembling in a de novo
context [29,30]. The problem of detecting TR sequences
by using the long PacBio reads has been analysed in
the context of an existing reference sequence [31]. Also,
studies show that complex regions of genomes can be
reconstructed using PacBio reads when finishing gen-
omes after a global assembly [32-34]. In the remaining
of this article we will use the term short reads to
describe SGS reads and long reads for the reads gener-
ated by the Pacific Bioscience technologies.
In this paper we present the first de novo method for

TR detection which uses both short and long reads and
performs only local assemblies. Our hybrid algorithm,
called MixTaR, combines the high-quality of short reads
and the large length of long reads for an efficient TR
detection. By detecting both ETR and ATR, MixTaR
goes further that DExTaR [22] in the TR detection.
Moreover, unlike DExTaR, MixTaR does not need a
previous global assembly.
MixTaR starts by building a de Bruijn graph from the

short reads. The de Bruijn graph is constructed from the
overlaps between fragments of reads of a certain length k,
called k-mers. Due to this fragmentation of the reads, the
de Bruijn graph allows a detailed analysis of complex
regions of the target DNA sequence. In particular, a suffi-
ciently long ETR appears in the de Bruijn graph as a cycle.
Therefore, we analyse the cycles in the de Bruijn graph for
possible TR candidates. This step can only provide poten-
tial TR patterns due to the reduced length of the short
reads. Thus, we use the long reads to verify the existence
of TR containing these patterns and to deduce the length
of these TR. The corrected TR sequence is then obtained
by a local greedy assembly of a selected set of short reads.

Methods
In this paper, we present MixTaR, our solution to the
DE NOVO HYBRID TANDEM REPEAT DETECTION
problem, defined as follows.
DE NOVO HYBRID TANDEM REPEAT DETECTION
Input: A set SR of short reads and a set LR of long

reads, both obtained from the sequencing of a DNA
sequence D.
Requires: The set of TR from D involving the reads in

SR and LR and their reverse complements.
The high-quality of the reads from SR and the large

length of the reads from LR are exploited by MixTaR
throughout three main steps (as presented in Figure 1):
(1) pattern detection, (2) pattern validation and (3) TR
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sequence assembly. In the first step, we build the de
Bruijn graph corresponding to the set SR, after including
in SR the reverse complements of the short reads. Long
repetitions, including TR, form cycles in the de Bruijn
graph. Thus, we search the graph for cycle detection

and by analysing the cycles we find, we deduce a list of
potential TR patterns.
For the second step we add to the set LR the reverse

complements of the long reads and we use the set to
validate these potential TR patterns. Because of the

Figure 1 MixTaR pipeline.
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significant length of the long reads, most of the TR from
D are spanned by at least one read in LR. The main dif-
ficulty of using long reads is to deal with their error
rate. Thus, we start by searching approximate copies of
each potential TR pattern in each read from LR. We
then validate a potential TR pattern if we identify at
least two approximate copies of it located next to each
other in at least one read from LR.
The third and final step is to identify the exact

sequence of the TR containing the validated patterns.
To do so, we use again the set SR. The short reads over-
lapping a validated pattern are used in a local greedy
assembly, from which we obtain the precise sequence of
the TR containing the pattern.
Definitions for the main notions used in the paper are

given in the next paragraphs, followed by a detailed
description of each step.

Definitions
Let s be a string of length |s| over an alphabet Σ. For an
integer i with 1 ≤ i ≤ |s|, s[i] is the letter at position i in
s and s[i, l] is the substring of s of length l that starts at
position i (and thus ends at position i + l − 1). The pre-
fix and suffix of length l of the string s are denoted as
Pref (s, l) and Suff (s, l). For two strings s1 and s2, we
denote their concatenation as s1 + s2. The alignment
score between s1 and s2 is obtained from an alignment
[35] of s1 and s2 by adding 1 for each matching position,
and -1 for each mismatch, insertion and deletion. The
maximum semi-global alignment score denoted as sgA-
max (s1, s2) represents the highest alignment score
obtained from the possible alignments of s1 and a sub-
string of s2. A maximum overlap alignment score oAmax

(s1, s2, lmin) between s1 and s2 is the highest alignment
score obtained from the possible alignments of Pref
(s1, l) and Suff (s2, l), where l ≥ lmin. A string s1 of
length l occurs in a string s2 if there is a position 1 ≤ i
≤ (|s2| − l + 1) for which s1 = s2[i, l]. The number of
occurrences occ(s1, s2) of a string s1 in a string s2 is the
number of positions i for which s1 = s2[i, l]. In the case
of a set of strings, the number of occurrences occ(s, ζ ) of
a string s in the set ζ of strings is equal to ∑t∈ζ occ(s, t).
De Bruijn graph. A read is a string over the alphabet

Σ = {A, C, G, T}. Let R be a non-empty set of reads of
length l, together with their reverse complements,
obtained after sequencing a DNA sequence D. We
denote δ the coverage depth used for obtaining R. Given
a positive integer k ≤ l, a k-mer is a substring r[i, k] of a
read r ∈ R such that 1 ≤ i ≤ l − k + 1. We denote S(k, r)
the set of k-mers of a string r. In the case of the set R of
reads, the set S(k, R) of k-mers of R is ∪ r ∈ R S(k, r). The
de Bruijn graph [36]Gk (R) is the directed graph con-
structed from S(k, R) as follows. Each k-mer from S(k, R)

is represented as a vertex v in Gk (R). We consider the
notation v for both the vertex and its corresponding
k-mer sequence. An arc a = (vi, vj) from vi to vj is built
between two k-mers iff Suff (vi , k − 1) = Pref (vj , k −1)
and occ(vi +vj [k], R) ≥ 1. Because of this arc construc-
tion, each read in R corresponds to an oriented path in
Gk (R). The frequency of an arc a = (vi, vj) in Gk (R) is
f (a, R) = occ(v, R)/δ where v = vi + vj [k]. Indeed, we con-
sider that the frequency of an arc is equal to the number
of times the arc has to be traversed for assembling D.
Tandem Repeat. A pattern p is a string of length |p| ≥ 2

over the alphabet Σ = {A, C, G, T}. An exact tandem
repeat (ETR) of the pattern p is a DNA sequence ε con-
sisting of two or more consecutive copies of p, each copy
being identical to p. Otherwise, if the copies of p in ε are
not identical to each other but the maximum alignment
score between each copy of p and p remains above a spe-
cific threshold, then ε is an approximate tandem repeat
(ATR) of the pattern p. A tandem repeat (TR) of a pat-
tern p is either an ETR or an ATR of p.
Let P = {p1, p2, . . . , pnp } be the list of copies of p in ε.

When p has at least one complete copy in ε, its last copy
pnp can be partial, meaning that pnp can be a copy (exact
or approximate depending on the type of TR of ε) of a
prefix of p. The copy number cnp of p in ε is the decimal
number cnp = (np − 1) + | pnp |/|p| and ε is then defined
by the pair (p, cnp). In this article, we consider that for
every 1 ≤ i ≤ np, pi is primitive [37], meaning that pi does
not contain itself an ETR. Moreover, when searching for
TR in a target DNA sequence, we look for maximal TR
in the sense that cnp is maximal.
ETR in the de Bruijn graph. Let k be a positive integer

and ε be an ETR of a pattern p such that |ε| ≥ |p| + k.
Let S(k, ε) = {v1, v2, . . . , v|p|} be the set of k-mers of ε
such that vi = ε[i, k], 1 ≤ i ≤ |p|. The set S(k, ε) is com-
posed only of the |p| first k-mers from ε. Indeed, since
every |p|-th positions in ε we retrieve again p or a prefix
of p, after |p| bp in ε we obtain k-mers that are already
in S(k, ε). The de Bruijn graph Gk (ε), built from S(k, ε),
thus consists of an elementary cycle c (i.e. each node
appears only once in c) where its nodes are linked as
follows. An elementary path is constructed from v1 to
v|p|since Suff (vi, k − 1) = Pref (vi+1, k − 1), for 1 ≤ i < |p|.
Because of the condition |ε| ≥ |p| + k, we deduce that
ε[p + 1, k] = p[1, k] = ε[1, k] and thus Suff (v|p|, k − 1) =
Pref (v1, k − 1). Therefore, v|p|is also connected to v1 by
the arc (v|p|, v1). An example is presented in Figure 2.
Moreover, for every such cycle, Property 1 below is satis-
fied (see also Figure 2).
Property 1 (Arc frequency property) Let v1 = ε[1, k]

and ve = Suf f (ε, k) be the first and last k-mers of the
ETR ε = (p, cnp) with |ε| ≥ |p| + k. In the cycle formed
by ε in Gk (ε), the frequency of each arc of the path from
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v1 to ve is the same. If × denotes this frequency, then the
frequency of each arc of the path from ve to v1 is equal
to × − 1.
Property 1 is respected for both |p| ≤ k and |p| > k as

illustrated in Figure 2 for two different values of k. In
both cases, the number of vertices in the cycle is equal
to |p| due to the unique presence of each k-mer in a de
Bruijn graph.
Now that the definitions used in this paper are pre-

sented, we describe in detail the three main steps of
MixTaR pipeline (Figure 1).

Pattern detection
SR is the set of short reads together with their reverse
complements obtained after sequencing the DNA
sequence D. As mentioned before, the ETR from D with
length at least |p| + k (where p is the pattern of the
ETR) form in a de Bruijn graph Gk (SR) elementary
cycles respecting Property 1. These ETR can represent
substrings of longer ATR of the same pattern p in D. In
this case, approximate copies of p are located next to
the ETR in D and the ETR is considered as internal to a
longer TR. In the following, these TR that contain an
internal ETR forming a cycle in the de Bruijn graph are
named robust TR. Our algorithm MixTaR first searches
for ETR, then for the robust TR containing them.
Cycle search algorithm We consider that each elemen-

tary cycle in de Bruijn graph represents a potential ETR
from D. Thus, after constructing the de Bruijn graph Gk

(SR) for a specific value of k, we start searching for ele-
mentary cycles in Gk (SR). The sequencing errors in the
set SR may introduce erroneous vertices in Gk (SR). In
order to eliminate them, we consider in our search only
the vertices for which occ(v, SR) ≥ s, where s is a para-
meter with a value depending on δ, the coverage depth of
SR. Moreover, we sort the list of vertices in Gk (SR) in a
descending order of their number of occurrences in SR.

A de Bruijn graph of a complex organism has a signifi-
cant size, with hundreds of thousands of cycles. Hence,
in order to detect a maximum number of elementary
cycles in a limited amount of time, we use one of the
most efficient cycle detection methods, namely Johnson’s
algorithm [38]. Johnson’s algorithm explores the graph
from every vertex v and returns the cycles that contain v
and that are not yet detected. To limit this exploration
we introduce three parameters: h, Λmax and lmax. From
each vertex v we start by searching the cycles of maximal
length of Λmax. After exploring h arcs from v and if there
are still arcs to be explored, the algorithm searches for
the remaining cycles from v of maximal length of lmax

(lmax ≤ Λmax).
As mentioned before and explained in the next para-

graph, after analysing a cycle c of l vertices we can obtain
a pattern p of length 2 ≤ |p| ≤ l. Therefore, in order to
obtain patterns with significant lengths, we have to maxi-
mize the number of cycles potentially containing an ETR
of maximal length of Λmax. For this, we consider that the
arcs of the cycles containing an ETR have a high value
for their frequency in SR. Thus, from each vertex we start
by exploring its output arcs in descending order of their
frequency in SR. In this way, we traverse the arcs having
the highest frequency in the first part of our cycle search.
The parameters Λmax, h and lmax are set depending on
the complexity of Gk (SR) and on the running time
allowed by the user for the cycle search.
Each vertex v from which we start the exploration of the

graph has to satisfy an additional condition: occ(v, LR) >0.
Because of the order in which vertices are considered, the
vertex v from which the algorithm searches from cycles is
also the vertex with the highest number of occurrences in
SR from the cycles obtained for v. We then consider that
we have for v the highest chance to find an errorless
occurrence in LR between the vertices of the detected
cycles from v. This additional condition is used in the sec-
ond step of MixTaR, to validate the obtained patterns
using the set LR.
Cycle analysis. Each cycle detected by Johnson’s algo-

rithm is analysed in order to find a potential ETR. The
difficulty is that in a de Bruijn graph Gk (SR), a cycle is
formed by a repeat, but not necessarily by an ETR. For
identifying the cycles formed by an ETR, we determine
the ones that respect Property 1. Let c be a cycle in
Gk (SR) such that c is formed by an ETR ε from the tar-
get DNA fragment D. We consider v1 = ε[1, k] and
ve = Suf f (ε, k) to be the first and last k-mer of ε as pre-
sented in Property 1. The flanking regions of ε in D cre-
ate two arcs ain= (x, v1) and aout = (ve, y) is Gk (SR),
such that x[1] + ε + y[k] occurs in D. We consider that
these two arcs mark the beginning and the end of ε.
In the case of a complex D, ε or substrings of ε can

appear several times at different locations in D. In the

Figure 2 The de Bruijn graph of an ETR with p = ATTGCG and
cnp = 3 in two cases: |p|>k (k = 4, left) and |p|≤k (k = 8, right).
The vertices v1 and ve are the ones described in Property 1. The
arcs frequencies in the de Bruijn graph are given by the (k+1)-mer
occurrences number in the ETR (between brackets in b)). For sake of
simplicity we choose for the coverage depth δ = 1.
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following we call these sequences additional interspersed
repeats (AIR) of ε. In a de Bruijn graph, each vertex
represents a unique k-mer. Since the AIR and ε have
common k-mers, their corresponding paths in Gk (SR)
share common vertices and thus parts of c. This fact has
two consequences for c. The first one is that, as is the
case for ε, the flanking regions of the AIR can create
additional input and output arcs from the vertices of c.
Since the AIR occur in D, they are spanned by reads in
SR. Thus, the second consequence is that the arcs of the
ETR in common with an AIR have a frequency corre-
sponding to both the ETR and the AIR. Therefore, in
order to detect if a cycle from Gk (SR) contains an ETR
we have to remove the impact of the potential AIR from
the frequencies of the cycle arcs. The method, described
in Algorithm 1 detailed below, is applied for each
detected cycle c.
Algorithm 1: Cycle frequency cleaning
Input: The sets Vc and Ac of vertices and arcs of a

cycle c; the sets Ain − {ain} and Aout − {aout} of input
and output arcs of the vertices in c
Output: The frequency of the arcs in c corresponding

only to the ETR marked by (ain, aout);
1 facc ¬ 0;
2 for i ¬ 1 to |Ac| do
3 if i = |Ac| then
4 ai ¬ (vi, v1), ai ∈ Ac;
5 else
6 ai ¬ (vi, vi+1), ai ∈ Ac;
7 farc[ai] ¬ f (ai, SR);

8 finput[vi] ¬

∑

q = (x, vi)
q ∈ Aout − |{αin}

f (q, SR)

9 foutput[vi] ¬

∑

u = (vi, y)
u ∈ Aout − {αout}

f (u, SR)

10 facc ¬ max( facc + finput[vi] − foutput[vi], 0);
11 farc[ai] ¬ farc[ai] − facc;
12 foutput[vi] ¬ max(−facc, 0);
13 finput[vi] ¬ 0;
14 if facc >0 then
15 for i ¬ 1 to |Ac| do
16 if i = |Ac| then
17 ai ¬ (vi, v1), ai ∈ Ac;
18 else
19 ai ¬ (vi, vi+1), ai ∈ Ac;
20 facc ¬ max(facc − foutput[vi], 0);
21 farc[ai] ¬ farc[ai] − facc;
22 return farc [];
Let Vc be the set of vertices of c and Ac be the set of

its arcs. We start by computing for each cycle c the set
of input arcs Ain = {(x, v) with x ∉ Vc and v ∈ Vc} and

the set of output arcs Aout = {(v, y) with v ∈ Vc and y ∉ Vc}.
Unfortunately, the paths of the ETR and the AIR are not
known. Thus, we suppose that each couple (ain, aout) ∈
AinxAout is a potential marker for the beginning and the
end of an ETR ε in D, corresponding to the cycle c. There-
fore, the arcs in Ain − {ain} ∪ Aout − {aout} are the end-
points of the paths defined by all the AIR of ε.
In the beginning, the frequency farc[a] of an arc a ∈

Ac is initialized to f (a, SR) (computed from the number
of occurrences of the corresponding (k+1)-mer in SR as
described before). We start traversing c and for each
vertex vi ∈ Vc, we compute the incoming frequency
finput[vi] and the outgoing frequency foutput[vi]. We then
use a cumulative frequency facc to remove the impact of
the AIR from the arcs in c. Initially, the cumulative
frequency facc is equal to 0. For each vertex vi we add
to facc the difference between finput[vi] and foutput[vi]. If
facc >0 then its value represents the frequency of the
AIR, and thus in excess, of the arc ai = (vi, vi+1) and we
remove it from farc[ai]. Otherwise, its absolute value
corresponds to the frequency in excess of the arc ai =
(vi−1, vi) and it is removed in a second pass through the
cycle. In this case, foutput[vi] = |facc| and we set facc = 0.
In both cases, we set finput[vi] = 0 since its impact is
now included in facc.
In order to deduce a potential ETR pattern from c,

the remaining frequency of the arcs of c has to respect
Property 1. In this case, we construct the ETR ε of the
pattern p spelled by the cycle c in the following man-
ner. Let l be the number of vertices of c, then ε = v1 +
v2[k] + . . . + vl[k]. As mentioned before, l = |p| and
thus p = ε[1, l].

Pattern validation
The cycle analysis we just described can only return
potential patterns of ETR, and thus, of robust TR. How-
ever, some of the information given by the short reads
is lost because of their hashing into k-mers. As a conse-
quence, the set of patterns obtained from the de Bruijn
graph may contain false positives. Hence, for each
obtained pattern we have to validate its presence in at
least one TR from the target DNA fragment D. For this,
we use the set LR because of the significant length of its
reads.
With a variable length that can range from 1 kbp to

20 kbp [23], the reads in LR can span most TR in D.
The hypothesis that we make is weaker: we assume that
each pattern p of a TR has at least two neighbouring
copies spanned by at least one read in LR. Thus, we
validate a pattern if we identify at least two copies of it
located next to each other in at least one long read.
Otherwise the pattern is considered as a false positive
and is discarded.
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The difficulty raised by this approach is to correctly
identify two neighbouring copies of a pattern in spite of
the high error rate of long reads, which is of approxi-
mately 16%. A possible solution is the use of a long read
correction procedure [25-28]. However, in case of com-
plex genomes, even the most efficient methods are not
able to correct all the errors from the long reads (see
Results and discussion section for more details). Thus,
our pattern search method allows the use of corrected
and also non-corrected long reads.
In order to validate a pattern p, we start by searching

an approximate copy of p in the reads in LR. Let c be a
cycle detected at the previous step, and let v be the
vertex of c having the highest number of occ in SR. As
described in the previous step, v satisfies the condition
occ(v, LR) >0. Let p be the potential pattern deduced
from the analysis of c, i.e. p is the pattern of the ETR
spelled by c. If |p| < k or if v = Suff (p, x) + Pref (p,
k − x) for an integer 1 ≤ × < k, then v occurs in a
string obtained by successive concatenations of p.
Otherwise, v occurs directly in p. For a fast validation
of the pattern p, we limit the search for copies of p to
each long read r containing v. Let s be a string initially
identical to p. If occ(v, s) = 0, we extend s by succes-
sive concatenations of p in such way that s is the
shortest string for which occ(v, s) >0. The process is
finite since v occurs in the ETR of p spelled by c.
Let pos be a position in a long read r such that

r[pos, k] = v. We then try to identify an occurrence of
s in r by searching for the alignment with the highest
score between s and a substring of r around pos.
Approximately 70% of the errors in LR are insertions
[24]. Thus, we consider for our alignment a substring
of length 2|s| from r and we compute the maximum
semi-global alignment score t = sgAmax(s, r[pos − |s|,
2|s|]). We then use a parameter τ , which is a thresh-
old for our score t. The value of τ is set according to
the approximate percentage of errors of the long reads we
used, raw or corrected. If t/|s| < τ , then p is considered as
a false positive. Otherwise, either occ(p + p, s) >0 and the
pattern p is validated or we repeat the process for s = s + p.

TR sequence assembly
Because of the high error rate of long reads, the partial
TR detected in the second step of MixTaR contains a sig-
nificant amount of erroneous bases. Thus, in the last step
of our algorithm, we need to find the exact sequence for
each TR. For this, we use once again the set SR. The TR
of each pattern p are constructed by a local assembly of
the set SRp of short reads overlapping p.
To construct the set SRp for each p we introduce two

parameters g and ϑ.
The smaller the length of the pattern p is, the higher

is the probability that a read in SR overlaps p. Hence,

the size of SRp and the running time of its assembly can
be significant for short p. Let s be a string initially iden-
tical to p. In order to limit the number of short reads r
used in the local assemblies, if |s| < g, we extend s by
successive concatenations of p such that s is the shortest
string for which |s| ≥ g. The value for g depends on the
length of the short reads in SR, and has to be small
enough to maximize the number of reads spanning a
part of a TR of p included in SRp while limiting its size.
We then construct the set SRp by searching the short

reads overlapping s. MixTaR allows approximate over-
laps since p can be a pattern of an ATR. For each short
read r ∈ SR, we compute the overlap alignment score t
= max(oAmax(s, r, g), oAmax(r, s, g)). If t ≥ ϑ, then r is
added to SRp. The value for ϑ depends on the error rate
of the reads in SR and on the difference allowed
between a pattern and its copies for an ATR.
Once the set SRp is computed, we assembly it. For

this, we use a greedy assembler. This choice was made
because of its short running time needed in order to
obtain satisfying results [15]. A greedy assembler com-
putes a specific scoring function for the overlap between
each pair of short reads. Then the short reads are
assembled in larger sequences, called contigs, by succes-
sive assemblies of the short reads with the overlap with
the highest score.
In each contig output by the greedy assembler, we may

find several TR, and we have to identify their positions in
the contig. To do so, we use a TR sequence search tool
(see [8] for examples) which gives us the positions of the
TR in each contig. The set of contigs is then analysed. In
some cases, we can obtain contigs that do not contain
any TR. Since these contigs are not significant for our TR
detection, they are removed. In the case where a TR
occurs at an end of a contig, we can suppose that this TR
is not complete. Thus the contig becomes a seed. Each
seed is then extended in order to obtain the complete
sequence of the TR. The extension of the seeds is done
using the greedy assembler with the set of reads
SR − Up∈�SRp , where � is the set of all patterns vali-
dated during the second step of MixTaR. Once all the
seeds are extended, we run the TR sequence search tool
for a complete identification of the TR on the set of
seeds. In the end, we output the TR obtained on the
seeds along with the TR from the contigs.

Results and discussion
Experimental setup
In this section, we present the adaptations included to
MixTaR for the real case of non-homogeneous coverage
depth data along with the tools and libraries used for
the experiments.
For the first step of MixTaR (Step I. in Figure 1) we

use the de Bruijn graph library GATB-lib [39] for the
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construction of the de Bruijn graph. In this step, the
result of the arc frequencies computations presented in
Algorithm 1 depends on the homogeneity of the cover-
age depth used for obtaining the set SR. Let c be a cycle
in Gk (SR) formed by an ETR ε from the target DNA
fragment D. In the real case of non-homogeneous cover-
age depth of SR, the bases of ε are not always covered
by the same number of short reads. Thus, the frequen-
cies of the arcs in c may fluctuate. Therefore, Property 1
is verified using an interval rather than a specific value
for the frequency of an arc. This interval is computed
based on the coverage depth for the set SR and on the
mean frequency of the arcs in c.
In the pattern validation step of MixTaR (Step II. in

Figure 1), we compute the maximum semi-global align-
ment score between the patterns and the long reads
using the overlap alignment method proposed by the
library SeqAn [40]. This method is also used at the end
of our algorithm (Step III. in Figure 1) for computing
the overlap between the patterns and the short reads.
To compute the local greedy assemblies, we chose
SSAKE [41] due to its low running time and simple
setup needed to obtain satisfying results [17].
For our experiments we run the TR sequence search

tool called mreps [10] in order to identify the TR from
the contigs obtained with SSAKE. Mreps is a software
tool designed for a fast identification in DNA sequences
of both ETR and ATR with primitive patterns. We also
used mreps for identifying TR in the reference DNA
sequences of the tested organisms. Due to the significant
number of TR in the tested organisms, mreps was para-
meterised each time to find TR with at least two com-
plete copies.
Since the DNA strand of the contigs obtained with

SSAKE, and thus of the TR detected, is not known in
advance, when we detect a TR and its reverse comple-
ment, we consider that they represent the same TR.
Thus, a detected TR can be represented either by its
sequence or by both its sequence and its reverse com-
plement. In our analysis we consider for the target DNA
fragment D only its reference strand. Thus a TR has
been correctly identified if we detected its sequence
(alone or together with its reverse complement). Thus,
each TR can be classified in:

• True Positive (T P) if we detect the complete
sequence (i.e. with the right copy number) of the TR
from D;
• True Positive Incomplete (T Pi) if we detect only a
part of the TR from D;
• False Negative (F N) if we do not detect the TR
from D;
• False Positive (F P) if we detect the TR but its
sequence does not occur in D.

The accuracy of our method is then measured using
the two following statistics:

• Precision = (T P + T Pi)/(T P + T Pi + F P) which
measures the fraction of retrieved TR that are pre-
sent in D;
• Sensitivity = (T P + TPi)/(T P + T Pi + F N) which
measures the fraction of TR from D that are cor-
rectly identified.

For each step of MixTaR, the main parameters that
need to be set are:

• Step 1: Pattern detection
- the length k of the k-mers for the de Bruijn
graph construction.
- the minimum number of occurrences s of a
k-mer in SR. The value of this parameter
depends on the coverage depth of SR.
- the maximal length Λmax of cycles detected
from each vertex v.
- the maximal number of arcs h explored from
each vertex v when looking for cycles of maximal
length Λmax. The values of Λmax and h depend
on the size of the de Bruijn graph and on the
running time allowed by the user.
- the maximal length lmax of cycles detected for
a vertex v once the maximal number of arcs h
was visited for v. The value of lmax (lmax ≤
Λmax) also depends on the size of the de Bruijn
graph and on the running time allowed by the
user.

• Step 2: Pattern validation
- the minimum alignment score τ allowed
between a pattern and a long read. The value for
this parameter depends on the error rate of the
long reads.

• Step 3: TR sequence assembly
- the minimum length g of the pattern used for
selecting the short reads for the local assemblies.
From our experiments, the best results for a
length of short reads of 100 bp were obtained for
g = 10.
- the minimum alignment score ϑ allowed between
a pattern and a short read and also between the
pattern and its copies. From our experiments, the
best results were obtained for ϑ = 10.

Long read correction quality. MixTaR is conceived in
order to work with both corrected and non-corrected
long reads in the input. For our experiments we used
long reads that were simulated with PBSIM [42] (on the
first chromosome of C. elegans and on the Philadelphia
strain of L. pneumophila) or obtained with the PacBio
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sequencing technologies (for the 130b strain of
L. pneumophila). For a complete analysis of the impact
of long reads errors on MixTaR, we corrected these
sets of long reads with LoRDEC [26]. LoRDEC is a
long read error correction tool based on a de Bruijn
graph constructed from a short read set. The main
parameter for LoRDEC is k, the k-mer length for the
de Bruijn graph. We run LoRDEC with different odd
values for k ∈ [15, 31] and aligned the corrected long
reads on their reference DNA sequences with the
method used by GAGE [16]. The percentage of aligned
bases of the corrected long reads on their reference
DNA sequences are presented in Figure 3. Each time
the best results were obtained with k = 19, as for the
results presented in the paper describing LoRDEC [26].
Even for the optimal value of k we can notice that, for
the first chromosome of C. elegans, GAGE was not
able to align approximately 30% of corrected long
reads bases on the reference sequence [GenBank:
GCA_000002985.3]. The values presented in Figure 3
are obtained for long reads with a coverage depth of
20x. For long reads with a coverage depth of 100x we
obtained similar values. This high percentage of una-
ligned bases is due to the complex structure of the
chromosome whose length is approximately 15 Mb.
Mreps identifies on it a significant number of TR as
will be shown in the following paragraphs. In the case
of the Philadelphia strain of L. pneumophila the per-
centage of aligned bases is significantly higher. Because
of a smaller set of repeats and the short length (3.4 Mb)
of the genome [GenBank: GCA_000008485.1], the cor-
rection of the long reads is more accurate. As for the
first chromosome of C. elegans, similar results were
obtained for long reads with a coverage depth of 20x
and 100x. In Figure 3 we present the ones obtained for
the set with a coverage depth of 20x. For the 130b
strand of L. pneumophila, we corrected a set of real long
reads [SRA:ERX620205]. The corrected long reads were
then aligned on the draft genome constituted of

159 contigs [GenBank:GCA_000211115.2]. The low per-
centage of aligned bases of the corrected long reads on
the draft genome is probably caused by the error per-
centage in the set of real long read which is higher than
the announced 16% [24].
In the following, we present the results obtained with

MixTaR on both simulated and real data sets. As men-
tioned before, our algorithm is set to analyse all the
cycles of maximum length lmax from the de Bruijn
graph and only a part of the cycles of length between
lmax and Λmax. Also, the length of a pattern deduced
from a cycle is equal to the number of vertices of the
cycle. Hence, for the TR detected with MixTaR we pre-
sent two separate analyses. At first, we describe the
results obtained on the TR with a pattern length of maxi-
mum lmax bp. Then we extend our analysis to the TR
with a pattern length of maximum Λmax bp. These ana-
lyses are conducted on both the set of robust TR (those
that the algorithm targets) and on the set of general TR
from the chromosome. Some of the general TR do not
have an internal ETR that forms a cycle in the de Bruijn
graph and are therefore not directly targeted but are
found by MixTaR.

Simulated data sets
For our experiments, we needed a complex organism
presenting numerous TR. We chose Caenorhabditis ele-
gans, which is a transparent nematode widely used as a
model organism. As presented in [17], C. elegans is an
organism for which assemblers need high computation
time for a low percentage of correctly mapped contigs.
This is mainly due to the important number of repeats,
such as TR. Its genome was downloaded from GenBank
[GenBank:GCA 000002985.3]. For our experiments, we
used the first chromosome of C. elegans. This chromo-
some, of length of approximately 15 Mb, has a very
complex structure and contains more TR than many
complete genomes. We run mreps [10] to identify the
TR from its reference sequence and we obtained a set of
39,006 TR with pattern p satisfying 2 ≤ |p| ≤ 100.
Paired-end short reads datasets with length of 100 bp

and a coverage depth of 20x were obtained using the
GemSIM read simulator [43]. To test the impact of the
sequencing errors of the short reads on the results quality
of MixTaR, the first dataset is errorless (SR-NE, for Short
Reads with No Error), while the second one (SR-E, for
Short Reads with Errors) simulates Illumina errors. Two
other sets of paired-end short reads were obtained by cor-
recting the set SR-E: one (SR-CE1, for Short Reads with
Corrected Errors 1) by using the trimming tool proposed
by SSAKE [41] and the other one (SR-CE2 for Short Reads
with Corrected Errors 2) by using the correcting tool pro-
posed by ALLPATHS [44], one of the most efficient error
correction methods for short reads [16].

Figure 3 Percentage of aligned bases of the corrected long
reads on the reference DNA sequences.
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Long reads datasets of coverage depth of 20x and 100x
were obtained using the PacBio reads simulator PBSIM
[42] (LR-E x20 and x100, for Long Reads with Errors).
Two other sets were obtained by correcting LR-E x20
and x100 with LoRDEC (LR-CE x20 and x100 Lond
Reads with Corrected Errors) as presented before.
For the experiments on the first chromosome of C.

elegans, we used the following values for the MixTaR
parameters. Since the short reads have a length of
100 bp, for the de Bruijn construction we tested all the
odd values for k ∈ [17, 47]. Due to the coverage depth
of short reads (x20) we applied the cycle search algo-
rithm for all k-mers with a frequency of at least s = 10.
The de Bruijn graph for the first chromosome of C. elegans
has a significant number of cycles, thus for the cycle search
we set h = 10, 000 arcs for cycles of maximal length Λmax
= 100 and then lmax = 20. For the minimum alignment
score τ we used the value τ = 10 for the non-corrected long
reads and τ = 20 for the corrected ones.
In the following paragraphs, the results obtained with

MixTaR are analysed from two points of view: the per-
centage and the pattern length range of detected TR
from the first chromosome of C. elegans.
Percentage of detected TR depending on the quality of

long reads In order to evaluate the impact of the errors
from the long reads on the quality of the results obtained
by MixTaR, we run it on the four sets of long reads
described in the previous paragraph, i.e. LR-E and LR-CE
with a coverage depth of x20 and x100. In order to evalu-
ate only the impact of long reads errors, we place ourself
in the case of optimal conditions for the short reads.
Hence, for these runs, we used the set without errors for
the short reads, SR-NE, and different odd values for k ∈
[17, 47]. In the following, we present the results obtained
for k = 17, the value for which MixTaR returns the lar-
gest set of TR. Figure 4 describes the results obtained on
the set of robust TR. After running mreps on the first
chromosome of C. elegans, we extracted, from the set of
TR returned by mreps, the robust TR. For k = 17, we
obtained 1,144 robust TR with |p| ≤ 20 and 2,054 robust
TR with |p| ≤ 100. Each bar from Figure 4 presents the

number of TR for the four types of TR presented above
(TP , TPi, FP and FN). MixTaR is able to detect the com-
plete sequence of more than 94% of the robust TR with
|p| ≤ 20 from the chromosome. The percentage drops to
82.8% for the robust TR with |p| ≤ 100, due to the fact
that MixTaR can not explore all the cycles with length
between 20 and 100 vertices. This percentage could be
increased by allowing a longer running time and a higher
value for the parameter h (i.e. the maximum number of
arcs explored for a vertex in order to find cycles of maxi-
mal length of 100 vertices). Moreover, the percentage of
FP is about 0.3% for TR with |p| ≤ 20 and at most 12%
for TR with |p| ≤ 100. The FP obtained are due to the
greedy assemblies. Even if the set of short reads is error-
less, SSAKE can make wrong choices when assembling
the set of reads for a TR pattern. This happens when, due
to long repeats, two reads have the longest overlap but
are not located in the same region in the chromosome.
However, by selecting the adequate short reads for the
local greedy assemblies, we are able to limit the number
of FP obtained, contrary to a global assembly.
The exact values for the precision and the sensitivity

obtained on the set of robust TR with |p| ≤ 100 are pre-
sented in the first two columns of Table 1. There is no
notable difference between the set of TR obtained on
the four sets of long reads. This is probably due to the
fact that, in the case of a complex organism with signifi-
cant number of repeats, correcting long reads remains a
difficult task. By using the long reads only for the valida-
tion of the TR patterns, MixTaR is robust with respect
to the error rate of long reads.
Besides the robust TR, MixTaR also detects general TR

as presented in Figure 5. A main reason for the detection
of general TR is the fact that many TR from the first
chromosome of C. elegans have their pattern highly simi-
lar to at least one pattern of a robust TR. In this case, by
selecting all the short reads overlapping a pattern of a
robust TR, we are also able to assembly the general TR of
this pattern or of a similar pattern. Another reason is the
location of the general TR. Indeed, by assembling the
sequences of the robust TR we obtain also their flanking

Figure 4 Number of robust TR detected from the first chromosome of C. elegans using long reads with different error rates. The results
are obtained with the 4 sets of simulated long reads with coverage depth of x20 and x100, non-corrected LR-E and corrected LR-CE. For each
run, we used the set SR-NE of short reads and k = 17.
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regions; thus MixTaR can identify the general TR that are
in these regions.
The results of mreps on the first chromosome of

C. elegans showed 37,584 TR with |p| ≤ 20 and 39,006
TR with |p| ≤ 100. The results of MixTaR are even better
on these sets of general TR, with more than 98% of TR
detected and less than 1.3% of FP. This is due to the fact
that the first chromosome of C. elegans contains a signifi-
cant number of TR with similar patterns. By selecting the
most significant short reads for the local assemblies, we
are able to detect a high percentage of general TR with-
out introducing errors. The precision and sensitivity
values on the set of general TR with |p| ≤ 100 are given
on the the third and fourth column of Table 1. Once
again, we observe, overall, that the correction of the long
reads does not have a true influence on the quality of the
results. We can notice however than the number of FP
obtained with the set LR-CE x20 on the TR with maximal
pattern length of 100 bp is at most 45% lower that the
one obtained with the other three sets (see Figure 5). But
this represents only about 0.6% of all the TR detected by
MixTaR. Since in general the cost of correcting the reads
in terms of running time and memory usage is signifi-
cant, in the following we present the results obtained
using the set of long reads non-corrected LR-E with the
lowest coverage depth, x20. The differences observed
between the results obtained with this set of long reads
and with the three others are similar to the ones pre-
sented in this paragraph.

Percentage of detected TR depending on the quality of
short reads and on the k-value variance. The robustness
of MixTaR with respect to the error rate in the short
reads is analysed by running the algorithm on the four
sets of short reads described in the previous paragraph:
SR-NE, SR-E and the two sets of corrected reads, SR-
CE1 and SR-CE2. The set of long reads used is LR-E
with a coverage depth of x20. For each set of short
reads, we executed several runs of MixTaR with differ-
ent odd values of k ∈ [17, 47]. In this paragraph, we
present the results obtained for four significant values of
k, namely 17, 27, 37 and 47. As for the previous para-
graph, we start our analysis with the set of robust TR.
Figure 6 presents the results obtained for the robust TR
and for which |p| ≤ 20. The number of robust TR dif-
fers depending on the value of k we use. After running
mreps on the first chromosome of C. elegans, we found
1,114 robust TR for k = 17, 362 robust TR for k = 27,
192 robust TR for k = 37 and the number is reduced to
131 robust TR for k = 47. Each bar in Figure 6 repre-
sents the set of robust TR for the respective value of k
along with the set of FP returned by MixTaR. The best
results are obtained for k = 17, which can be explained
by the fact that the smaller the value for k, the higher
the fragmentation of the reads. Hence, the number of
TR forming a cycle in the de Bruijn graph is increasing,
and our algorithm has then the possibility of analysing
and detecting them. Also, the high fragmentation of the
short reads obtained with small values for k allows a

Figure 5 Number of general TR detected from the first chromosome of C. elegans using long reads with different error rates. The
results are obtained with the 4 sets of simulated long reads with coverage depth of x20 and x100, non-corrected LR-E and corrected LR-CE. For
each run, we used the set SR-NE of short reads and k = 17.

Table 1. Precision and sensitivity values for the detection of robust TR and of general TR with maximal pattern length
of 100 bp from the first chromosome of C

Robust TR General TR

Precision Sensitivity Precision Sensitivity

LR-E x20 0.909 0.909 0.990 0.984

LR-E x100 0.892 0.908 0.988 0.984

LR-CE x20 0.909 0.912 0.993 0.984

LR-CE x100 0.883 0.911 0.987 0.984

elegans. The results are obtained with the set SR-NE of short reads and k = 17.
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better identification of the the arc frequency variation
caused by the coverage depth. Thus MixTaR is able to
better identify the case when a TR pattern can be
deduced from the cycle.
The results obtained for the robust TR with |p| ≤ 100

are described in Figure 7. We obtained with mreps on
the first chromosome of C. elegans 2,054 robust TR for
k = 17, 1,093 robust TR for k = 27, 712 robust TR
for k = 37 and 558 robust TR for k = 47. We observe
once again that the quality of results increases when
we decrease the value of k. The main reason is the one
mentioned in the previous paragraph: the fragmentation
of the reads creates more cycles and implies a better
computation of the arc frequency by MixTaR. Moreover,

the correction of SR-E can decrease the number of FP
obtained with more than 90%. Surprisingly, with these
set of short reads (SR-CE1 et SR-CE2) the number of
TP can decrease also, with up to 63% of TP. This is
probably due to the error correction methods for the
short reads, that are too strict with the short reads base
quality.
Figure 8 presents the results obtained on the set of gen-

eral TR. The efficiency of a small value of k is once again
proven by the percentage of TP we obtain. We can lose
up to 41% of TP when k varies from 17 to 47 for a same
set of short reads. The values for the precision and the
sensitivity obtained for each value of k are presented in
Table 2. In this table, one can notice that the quality of

Figure 6 Number of robust TR with maximal pattern length of 20 bp detected from the first chromosome of C. elegans. The results are
obtained with the set LR-E of long reads with a coverage depth of x20.

Figure 7 Number of robust TR with maximal pattern length of 100 bp detected from the first chromosome of C. elegans. The results
are obtained with the set LR-E of long reads with a coverage depth of x20.
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results obtained for k = 17 remains rather stable depend-
ing on the percentage of errors from the short reads, the
variation of the values for precision being from 0.998 to
0.872. This is due to the fact that the high fragmentation
of the reads allows a correct analysis of a significant
number of cycles, independently of the error rate of the
short reads.
On Figure 8 we can also observe the effect of error-

correction procedures on short reads. The number of
FP can decrease by more than 90% only by trimming

the reads and even with 100% with the error correction
method proposed by ALLPATHS. But once again, the
number of lost TP can be significant. By correcting the
low quality parts of the short reads, the error correcting
procedures can remove parts of correct TR. The arc fre-
quency variance is then increased in the cycles formed
by these TR, implying supplementary difficulties for
MixTaR to correctly identify them.
The pattern length range of detected TR. In the

results returned by mreps for 2 ≤ |p| ≤ 100, we

Figure 8 Number of general TR with maximal pattern length of 20 bp and 100 bp detected from the first chromosome of C. elegans.
The results are obtained with the set LR-E of long reads with a coverage depth of x20.

Table 2. Precision and sensitivity values for the detection of general TR with maximal pattern length of 100 bp from
the first chromosome of C

K = 17 K = 27 K = 37 K = 47

Prec. Sens. Prec. Sens. Prec. Sens. Prec. Sens.

SR-NE 0.990 0.984 0.994 0.980 0.996 0.948 0.997 0.884

SR-E 0.872 0.917 0.942 0.862 0.961 0.758 0.968 0.638

SR-CE1 0.984 0.939 0.994 0.906 0.997 0.777 0.997 0.579

SE-CE2 0.998 0.818 0.999 0.764 0.999 0.669 0.999 0.565

elegans. The results are obtained with the set LR-E x20 of long reads.
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observe that about 96% of the general TR of the first
chromosome of C. elegans have 2 ≤ |p| ≤ 20. But the
interval 21 ≤ |p| ≤ 100 is also very well covered, since
the chromosome has at least one TR for most of the
pattern lengths.
Figure 9 describes the distribution of general TR

depending on the pattern length for these two intervals.
Along with the TR from the chromosome, we present
the results obtained with the four different sets of short
reads and for the value of k = 17, for which we obtained
the highest number of TR. We can notice that on the
interval 2 ≤ |p| ≤ 20, the difference on the quality of
results obtained with the four different sets of short reads
is not very significant. This is due to the fact that MixTaR
detects all the cycles of maximal length of 20 vertices for
every run and that the fragmentation of the short reads
for k = 17 allows a correct analysis of them independently
of the error rate. On the interval 21 ≤ |p| ≤ 100 though,
the sets of erroneous reads allow the detection of less TR
than with the set of SR-NE. Moreover, the error

correction method of ALLPATHS eliminates the possibi-
lity of detecting TR with |p| ≥ 71, while with the sets SR-
E and SR-CE1 we detect TR with |p| up to 89 bp and
with SR-NE even up to 100 bp. This limitation is due to
the shorter length of the reads in SR-CE2 compared to
the three others. Thus, by cutting the short reads, the
sequences of TR with long patterns are collapsed and can
not form cycles in the de Bruijn graph.

Real data sets
Legionella pneumophila is an intracellular parasite found
in human monocytes and responsible of a severe pneu-
monia known as Legionnaires’ disease. Several studies
such as [45,46] are focused on the biological role of TR
from the genome of L. pneumophila and the Philadelphia
strain.
For our experiments on the strain Philadelphia, we

used a set of paired short reads obtained with Illumina
technology with a coverage depth of approximately
190x [SRA:SRX258262]. In the following, we refer to

Figure 9 Pattern length distribution for general TR from the first chromosome of C. elegans. The results obtained with MixTaR with the
four different sets of short reads, the set LR-E x20 of long reads and k = 17 are compared to the ones from the first chromosome of C. elegans.
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this set of reads with SR-RP for Short Reads Real for
Philadelphia. Since no long reads sets are available for
this strain, we simulated two sets of long reads with
PBSIM with a coverage depth of 20x and 100x (LR-EP
x20 and LR-EP x100 for Long Reads with Errors for
Philadelphia). Two other sets of long reads were
obtained by correcting LR-EP x20 and LR-EP x100 with
LoRDEC using the set of real short reads and k = 19.
These sets are denoted LR-CEP x20 and LR-CEP x100
for Long Reads with Corrected Errors for Philadelphia.
The genome has a length of approximately 3.4 Mb
[GenBank:GCA 000008485.1].
In order to test MixTaR with both long and short read

real data sets, we also used for our experiments a sec-
ond strain of L. pneumophila, the 130b strain. For our
experiments, we used two sets of reads downloaded
from the Sequence Read Archive at the NCBI: one set
of paired short reads obtained with Illumina sequencing
with a coverage depth of approximately 120x [SRA:
ERX313832] and a set of long reads obtained with Pac-
Bio sequencing [SRA:ERX620205]. In the following, we
refer to these two sets of reads with SR-R130b (for
Short Reads Real for 130b) and LR-R130b (for Long
Reads Real for 130b). A second set of long reads (LR-
RC130b, for Long Reads Real Corrected for 130b) was
obtained by correcting the set LR-R130b with LoRDEC
using the set SR-R130b and k = 19. The draft genome is
constituted of 159 contigs [GenBank:GCA 000211115.2].
For the experiments on both strains of L. pneumo-

phila that we present, we used the following values for
the algorithm parameters. Due to the the short reads
length of 100 bp we tested all the odd values for k ∈
[17, 47]. In the following paragraphs we present the
results obtained for k = 17, the value for which we
obtained the best results. Since the size of the genome
is significantly smaller than the size of the first chromo-
some of C. elegans, the sizes of the set of k-mers and of
the de Bruijn graph are also smaller. Therefore we
included in our cycle search all k-mers with at least s =
30 frequency. For the cycle search we set h = 10, 000
arcs for cycles of maximal length Λmax = 100 and then
lmax = 30. For the minimum alignment score τ we

used the value τ = 10 for the long reads non-corrected
and τ = 20 for the corrected ones.
Results obtained on the Philadelphia strain of L. pneu-

mophila On the Philadelphia strain mreps obtained
2,227 TR with 2 ≤ |p| ≤ 100. Among these TR, only 17
are robust TR for k = 17. MixTaR detects, depending on
the set of LR we use, at least 13 of them completely, as
shown in Figure 10. Note that there are no FP. The TR
detected by our algorithm are either complete (T P) or
with a lower number of copies but correctly located on
the Philadelphia strain (T Pi). This is explained by the
selection of significant short reads in the local assem-
blies. The greedy assemblies can introduce FP when two
overlapping reads are not located in the same region of
the genome. As mentioned before, this case appears
mostly because of repeats. Since the Philadelphia strain
contains a low number of repeats and since we limit the
number of short reads used in the assemblies, the num-
ber of FP is significantly low. This behaviour is also
noticed for the general TR, with less than 0.75% of FP
on the sets of general TR detected by MixTaR. How-
ever, the percentage of general TR detected by our algo-
rithm is lower that the one obtained for C. elegans. This
is explained by the fact that the general TR on the Phi-
ladelphia strain are not always located in the flanking
regions of robust TR or having the same pattern with a
robust TR. We can miss up to 30% of the general TR
from the Philadelphia strain. Unlike for the first chro-
mosome of C. elegans, the difference between the results
quality obtained with the non-corrected and corrected
long read sets is now more significant. The quality dif-
ference is also underlined by the values for sensitivity
from Table 3. The main reason is the use of real short
read set for the error correction procedure of the long
reads. LoRDEC is not able to detect all the errors from
the TR in the long reads.
The TR of the Philadelphia strain have patterns with

lengths ranging from 2 to 48, as presented in Figure 11.
Due to the length of the analysed cycles, our algorithm
is able to cover the entire pattern length interval.
Several TR from the Philadelphia strain of L. pneumo-

phila were studied for their biological significance [45,46].

Figure 10 Number of robust TR and general TR detected from the genome of L. pneumophila (Philadelphia strain). The results are
obtained with the real set of short reads SR-RP and k = 17.
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We present in Table 4 the results obtained by MixTaR for
all the TR with 2 ≤ |p| ≤ 100 presented in [45,46]. The set
of TR from the Philadelphia strain used in the results pre-
sented before in this paragraph was obtained by mreps
with the highest value for the alignment score between the
copies of an ATR. Papers [45,46] do not specify the exact
sequence of the analysed TR, but only the approximate
location on the strain (the gene), the pattern length and
the number of copies. Thus, in order to retrieve their
sequence, we run mreps on the specified regions (genes)
of the Philadelphia strain and we decreased the alignment
score parameter until finding a TR corresponding to the
pattern length and the number of copies given in [45,46].
The name of the TR and of the genes presented in Table 4
are the ones mentioned in [45,46]. We then searched their
sequences on the results obtained by MixTaR, and, as pre-
sented in Table 4 most of the TR are completely detected
by our algorithm. An additional table shows the exact
sequences and positions returned by mreps for the TR
presented in Table 4 [see Additional file 1].
Results obtained on the 130b strain of L. pneumophila.

After running mreps on the contigs of the 130b strain
for TR with 2 ≤ |p| ≤ 100, we obtained 2,230 TR. Only
14 of them are robust TR for k = 17. As on the Philadel-
phia strain, MixTaR obtains good results, as shown in
Figure 12. Once again, our algorithm outputs no FP and

the TR it detects are either complete (T P) or with a
lower number of copies but correctly located on the 130b
strain (T Pi). In spite of the small number of TR that can
form a cycle in the de Bruijn graph for k = 17, MixTaR is
able to detect more than 51% of all the TR detected by
mreps on the genome (Figure 12). As before, the TR that
are missing from our output have either patterns very dif-
ferent from the ones of the robust TR, or are located at a
significant distance from these. Also, the lower number of
robust TR of the 130b strain compared to the Philadel-
phia strain decreases the chances for MixTaR to detect
general TR.
The results obtained by our algorithm contain a low

percentage of FP. With the set LR-R130b only 8.8% of the
TR detected are FP, the value decreasing to 8.6% for the
set LR-RC130b. The precision and sensitivity values for
both sets of TR are presented in Table 5. Contrary to
results obtained with the long reads on the Philadelphia
strain, MixTaR showed slightly better results on the set
of corrected long reads than on the one non-corrected.
This is probably caused by a higher error rate of the real
long reads than of the simulated ones.
The TR of L. pneumophila have patterns with length

ranging from 2 to 25, as presented in Figure 13. Again,
due to the length of the analysed cycles, the results
obtained with both sets of long reads cover the entire
pattern length interval.

Conclusion
This paper presents a new algorithm, MixTaR, that
represents an efficient solution to the problem of de
novo detection of TR. The method focuses only on the
parts of the genome where potential TR can be located,
and does not compute global assemblies. By mixing the
quality of short reads with the length of long reads, we
introduced a robust approach. We obtained high quality
results on complex organisms, and using sets of reads
with different error rates. Keeping low false positive
rates, our method detects accurate TR with pattern
lengths varying within a significant interval.
MixTaR identifies a significant number of TR on both

real and simulated read sets. However, the complexity of
the target DNA fragment influences the amount of

Table 3. Precision and sensitivity values for the detection of robust TR and of general TR from the genome of L

Robust TR General TR

Precision Sensitivity Precision Sensitivity

LR-EP x20 1 1 0.997 0.789

LR-CEP x20 1 0.941 0.993 0.639

LR-EP x100 1 0.882 0.997 0.600

LR-CEP x100 1 0.941 0.992 0.590

pneumophila (Philadelphia strain).

Figure 11 Pattern length distribution for general TR detected
from the genome of L. pneumophila (Philadelphia strain). The
results obtained with MixTaR with the four different sets of long
reads, the real set SR-RP of short reads and k = 17 are compared to
the ones from the Philadelphia strain.
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general TR detected. As mentioned before, the initial
target imposed by our approach is the set of robust TR.
By assembling the short reads spanning the robust TR
patterns, we are able to identify a significant amount of
non-robust TR. This is due either to the fact that they
are located in the flanking regions of the robust TR, or
to the similarity between the patterns of non-robust and
robust TR. As a consequence, the number of detected

TR increases with the number of robust TR presented
in the target DNA fragment. Thus, the performances of
MixTaR increase with the complexity of the target DNA
fragment.
Future improvements and extensions are planned to

be included in our algorithm and in our study. Each
tool that detects TR in a reference DNA sequence has
its own definition of ATR and the sets of detected TR

Table 4. Biologically significant TR detected by MixTaR from the genome L

Name Gene Pattern length Copy number LR-EP x20 LR-CEP x20 LR-EP x100 LR-CEP x100

LPG0451 30 bp 5.9 Complete - - -

LPG0688 9 bp 6 Complete Complete Complete Complete

LPG1038 12 bp 4.17 Complete Complete Complete Complete

Lpms35 LPG1299 18 bp 3 Complete - - -

LPG1555 21 bp 2 Complete Complete Complete Complete

LPG1602 90 bp 9.2 Complete Complete Complete Complete

LPG1948 90 bp 7.08 Complete - Complete -

LPG1958 87 bp 13.59 Complete - Complete -

LPG2392 87 bp 6.49 - - - -

LPG2559 12 bp 4.08 Complete Complete Complete Complete

Lpms31 LPG2644 45 bp 19.44 Incomplete Incomplete Incomplete Incomplete

(11 copies) (11 copies) (11 copies) (11 copies)

Lpms3 LPG2793 96 bp 7.58 Complete - - -

Lpms01 LPG2854 45 bp 7.64 Incomplete - - -

(6 copies)

Lpms13 LPG1488 24 bp 9.75 Incomplete Incomplete Incomplete Incomplete

(6 copies) (6 copies) (6 copies) (6 copies)

Lpms17 LPG0854 89 bp 2.28 - Complete - Complete

Lpms19 Intergenic 21 bp 4.05 - Complete - Complete

pneumophila (Philadelphia strain) and presented in [45,46].

Name Gene Pattern length Copy number LR-EP x20 LR-CEP x20 LR-EP x100 LR-CEP x100

Figure 12 Number of robust TR and general TR detected from the genome of L. pneumophila (130b strain). Results obtained with the
real set SR-R130b of short reads and k = 17.

Table 5. Precision and sensitivity values for the detection of robust TR and of general TR from the genome of L

Robust TR General TR

Precision Sensitivity Precision Sensitivity

LR-R130b 1 0.857 0.957 0.516

LR-RC130b 1 0.929 0.959 0.525

pneumophila (130b strain).
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are different [8]. In this paper, we used mreps [10] for
our analysis, but the study can be extended to other TR
search tools, for instance, Tandem repeats finder [11].
Also, the results are presented in this paper from the

point of view of the TR sequences. The algorithm and also
the TR quality study can be extended to include the flank-
ing regions of the TR. Thus, instead of only comparing TR
sequences between our results and the target DNA
sequence, we can also provide more information concern-
ing the location of each TR.

Additional material

Additional file 1: Sample additional file title. Positions and sequences
for the biologically significant TR detected by MixTaR on the Philadelphia
strain of L. pneumophila and presented in [45,46].
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