
HAL Id: hal-01214033
https://hal.science/hal-01214033v1

Submitted on 9 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of illegal control flow in Android System:
Protecting private data used by Smartphone Apps

Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli

To cite this version:
Mariem Graa, Nora Cuppens-Bouhlahia, Frédéric Cuppens, Ana Cavalli. Detection of illegal control
flow in Android System: Protecting private data used by Smartphone Apps. FPS 2014 : the 7th
International Symposium on Foundations & Practice of Security, Nov 2014, Montréal, Canada. pp.337
- 346, �10.1007/978-3-319-17040-4_22�. �hal-01214033�

https://hal.science/hal-01214033v1
https://hal.archives-ouvertes.fr


Detection of illegal control flow in Android
System: Protecting private data used by

Smartphone Apps

Mariem Graa1,2, Nora Cuppens-Boulahia1, Frédéric Cuppens1, Ana
Cavalli2

1Telecom-Bretagne, 2 Rue de la Châtaigneraie, 35576 Cesson Sévigné - France
{mariem.benabdallah,nora.cuppens,frederic.cuppens}@telecom-bretagne.eu

2Telecom-SudParis, 9 Rue Charles Fourier, 91000 Evry - France
{mariem.graa,ana.cavalli}@it-sudparis.eu

Abstract. Today, security is a requirement for smartphone operating
systems that are used to store and handle sensitive information. How-
ever, smartphone users usually download third-party applications that
can leak personal data without user authorization. For this reason, the
dynamic taint analysis mechanism is used to control the manipulation of
private data by third-party apps [9]. But this technique does not detect
control flows. In particular, untrusted applications can circumvent An-
droid system and get privacy sensitive information through control flows.
In this paper, we propose a hybrid approach that combines static and
dynamic analysis to propagate taint along control dependencies in An-
droid system. To evaluate the effectiveness of our approach, we analyse
27 free Android applications. We found that 14 of these applications use
control flows to transfer sensitive data. We successfully detect that 8 of
them leaked private information. Our approach creates 19% performance
overhead that is due to the propagation of taint in the control flow. By
using our approach, it becomes possible to detect leakage of personal
data through control flows.

Key words: Android system; Smartphones; Dynamic analysis; Static
analysis; Control dependencies; Leakage of sensitive information

1 Introduction

Smartphone operating systems use has been increasing at an accelerated
rate in recent years. Android surpassed 80% market share in the third
quarter of 2013 [17] and it is the most targeted OS by the cyber crim-
inals with more than 98% of malware applications [9]. This is due to
the prevalence of third party app stores (48 billion apps have been in-
stalled from the Google Play store in May 2013[19]). These applications
are used to capture, store, manipulate, and access to data of a sensitive
nature in mobile phone. An attacker can launch control flow attacks to
compromise confidentiality of the Android system and can leak private
information without user authorization. In the study presented in the



Black Hat conference, Daswani [21] analyzed the live behavior of 10,000
Android applications and showed that more than 800 of them were found
to be leaking personal data to an unauthorized server. Therefore, there is
a need to provide adequate security mechanisms to control the manipu-
lation of private data by third-party apps. Many mechanisms are used to
protect sensitive data in the Android system, such as the dynamic taint
analysis that is implemented in TaintDroid [9].

Fig. 1. Implicit flow example.

The principle of dynamic taint analysis is to “taint” some of the data
in a system and then propagate the taint to data for tracking the infor-
mation flow in the program. Two types of flows are defined: explicit flows
such as x = y, where we observe an explicit transfer of a value from x
to y, and implicit flows (control flows) shown in Figure 1 were there is
no direct transfer of value from a to b, but when the code is executed, b
would obtain the value of a. The dynamic taint analysis mechanism does
not detect control flows which can cause an under tainting problem i.e.
that some values should be marked as tainted, but are not. The under
tainting problem can cause a failure to detect a leak of sensitive informa-
tion. Thus, malicious applications can bypass the Android system and get
privacy sensitive information through control flows. In a previous work
[12], we have proposed an approach that combines static and dynamic
taint analysis to propagate taint along control dependencies and to track
implicit flows in the Google Android operating system. Our approach en-
hances the TaintDroid approach by tracking control flows in the Android
system to solve the under-tainting problem. In this paper, we present im-
plementation details and experimental results of the proposed approach.
We show effectiveness of our approach to propagate taint in the condi-
tional structures of real Android applications and to detect leakage of sen-
sitive information. This paper is organized as follows: Section 2 presents
a motivating example. We discuss related work about static and dynamic
taint analysis and we analyze existing solutions to solve the under tainting
problem in Section 3. Section 4 describes the proposed approach and the
corresponding implementation details. We analyse a number of Android
applications to test the effectiveness of our approach and we study our ap-
proach taint tracking overhead in Section 5. Finally, Section 6 concludes
with an outline of future work.



2 Motivating example

An attacker can exploit an indirect control dependencies to leak private
data. Let us consider the control dependence attack shown in Figure 2.
The variable X contains the private data that is the user contact. The

Fig. 2. Control dependence attack

attacker tries to get the user contact name by comparing it with sym-
boles of Ascii table in the second loop. He stored the character of private
data founded in Y . At the end of the loop, the variable Y contains the
correct value of the user contact and it is not tainted because taint is not
propagated in the control flow statement. The attacker exploits untainted
variable that should be tainted (under tainting problem) to leak private
data. Thus, Y is leaked through the network without being detected.
Therefore, an attacker can leak a sensitive information by exploiting con-
trol flows.

3 Related Work

Many security mechanisms are used to protect sensitive data in smart-
phones. TaintDroid [9], an extension of the Android mobile-phone used to
control in realtime the manipulation of users personal data by third-party
applications. It implements a dynamic taint tracking and analysis system
to track the information flow and to detect when sensitive data leaves
the system. AppFence [15] extends Taintdroid to implement enforcement



policies. One limit of TaintDroid and AppFence approaches is that they
cannot propagate taint in control dependencies. The methods proposed in
[8, 5, 11] statically analyze third party application code for detecting data
leaks. But, these static analyses approaches cannot capture all runtime
configuration. Some approaches combine static and dynamic analysis to
solve the under-tainting problem. BitBlaze [20] presents a novel fusion
of static and dynamic taint analysis techniques to track all information
flow. DTA++ [16] uses Bitblaze and enhances the dynamic taint analysis
to limit the under-tainting problem. However DTA++ is evaluated only
on benign applications. Trishul [18] correctly identifies control flow to de-
tect a leak of sensitive information. Furthermore, these approaches are
not implemented in smartphones application. Fenton [10] defined a Data
Mark Machine, an abstract model, to handle control flows. This model
does not take into account the implicit flow when the branch is not exe-
cuted. Denning [7] enhances the run time mechanism used by Fenton with
a compile time mechanism to solve the under-tainting problem. Denning
inserts updating instructions whether the branch is taken or not. We draw
our inspiration from the Denning approach, but we define formally a set
of taint propagation rules to solve the under-tainting problem. In [12],
we propose a hybrid approach that tracks control flows in smartphones.
We define a set of formal propagation rules to solve the under-tainting
problem. We prove the correctness and completeness of these rules and
we propose a correct and complete algorithm to solve the under tainting
problem [13]. In [14], we show that our approach can resist to code obfus-
cation attacks based on control dependencies in the Android system using
the taint propagation rules. But, we do not evaluate the overhead and ef-
fectiveness of our approach and do not test a real Android applications.
We provide test exprimental results and we evaluate the overhead and
the false positives of our approach. We show that it successfully detects
sensitive information leakage by untrusted Android applications.

4 Approach Overview and Implementation

Our objective is to detect private information leakage by untrusted smart-
phone applications exploiting implicit flows. We control the manipulation
of private data by third party application in realtime.

Our approach consists of two main components: the StaticAnalysis
component and the DynamicAnalysis component (see Figure 3). We im-
plement our proposed approach in the TaintDroid operating system. We
add a StaticAnalysis component in the Dalvik virtual machine verifier
that statically analyzes instructions of third party application Dex code
at load time. Also, we modify the Dalvik virtual machine interpreter to
integrate the DynamicAnalysis component. We implement the two ad-
ditional rules using native methods that define the taint propagation.



Fig. 3. Our Approach Architecture

4.1 Static Analysis Component

In this component, we check the instructions of methods to create the
control flow graph (CFG). A CFG is composed of basic blocks and edges.
The basic blocks represent nodes of the graph. The directed edges rep-
resent jumps in the control flow. For each control instruction, we insert
a BasicBlock at the end of the basic blocks list. Then, we specify the
target of basic blocks. We perform the post dominator analysis (A node v
is post-dominated by a node w in the control flow graph G if every path
from v to Exit, not including v, contains w) on the control flow graph to
determine the flow of the condition dependencies from different blocks.
After this, we allocate a BitmapBits for tracking condition dependency.
We store the control flow graph using the DOT language of graphviz tool
[4] in the data directory of the smartphone.

4.2 Dynamic Analysis Component

The dynamic analysis is performed at run time by instrumenting the
Dalvik virtual machine interpreter. We assign a context taint to each ba-
sic block. The context taint includes the taint of the condition on which
the block depends. We compare arguments in the condition using the fol-
lowing instruction : res cmp = ((s4)GET REGISTER(vsrc1) cmp
(s4)GET REGISTER(vsrc2)). Based on the comparison result, we ver-
ify wether the branch is taken or not. We Combine the taints of different
variables of the condition as follows: SET REGISTER TAINT (vdst,
(GET REGISTER TAINT (vsrc1)|GET REGISTER TAINT
(vsrc2))) to obtain the Context Taint. If res cmp is not null then the
branch is not taken. Thus, we adjust the ordinal counter to point to the
first instruction of the branch by using the function ADJUST PC(2).
Otherwise, it is the second branch (else) which is not taken then we ad-
just the ordinal counter to point to the first instruction in this branch



by using the function ADJUST PC(br) where br represents the branch
pointer. We instrument different instructions in the interpreter to han-
dle conditional statements. For each instruction, we taint the variable
to which we associate a value (destination register). In the case of for
and while loops, we process by the same way but we test whether the
condition is still true or not in each iteration. We make a special treat-
ment for Switch instructions. We deal with all case statements and all
instructions which are defined inside Switch instructions. Note that, we
only taint variables and do not modify their values. Once we handle all
not taken branches, we restore the ordinal counter to treat the taken
branches and we assign taints to modified variables in this branch. We
make a special exception handling to avoid leaking information. If the
type of exception that occurred is listed in a catch block, the exception
is passed to the catch block. So, an edge is added in the CFG from the
throw statement to the catch block to indicate that the throw statement
will transfer control to the appropriate catch block. If an exception oc-
curs, the current context taint and the exception’s taint are stored. The
variables assigned in any of the catch blocks will be tainted depending on
the exception’s taint.

5 Evaluation

In this section, we analyse a number of Android applications to test the
effectiveness of our approach. Then, we study our taint tracking approach
overhead using standard benchmarks. We evaluate the false positives that
could occur using our approach. We use a Nexus One mobile device run-
ning Android OS version 2.3 enhanced to track implicit flows.

5.1 Effectiveness

To evaluate the effectiveness of our approach, we analyse 27 free Android
applications downloaded from the Android Market [1] that manipulated
private data. As shown in Table 1, five applications require permissions
for contacts and five applications require permissions for camera at install
time.

Most of these applications access to locations and phones identity.
Also, our analysis showed that these permissions are acquired by the
implicit or explicit consent of the user. For example, in the weather ap-
plication, when the user selects the option “use my location”, she gives
permission to the application to use and to send this information to the
weather server. We found that 14 of these 25 analyzed Android applica-
tions (marked with * in the Table 1) leak private information:

– The IMEI numbers that identify a specific cell phone on a network is
one of the information that is transmitted by 11 applications. Nine of
them do not present an End User License Agreement (EULA).



Table 1. Third party applications grouped by the requested permissions (L: location,
Ca: camera, Co: contacts, P: phone state).

Third party applications Permissions
L Ca Co P

The Weather Channel∗; Cestos; Solitaire; Babble; Manga
Browser (5)

x

Bump; Traffic Jam; Find It∗; Hearts; Blackjack; Alchemy;
Horoscope∗; Bubble Burst Free; Wisdom Quotes Lite∗; Paper
Toss∗; Classic Simon Free; Astrid∗ (12)

x x

Layar∗; Knocking∗; Coupons∗; Trapster∗; ProBasketBall (5) x x x
Wertago∗; Dastelefonbuch∗; RingTones∗; Yellow Pages∗;
Contact Analyser (5)

x x x

– Two applications transmitted the device’s phone number, the IMSI
and the ICC-ID number to their server.

– The location information is leaked by 15 third-party applications to
advertisement servers. These applications do not require implicit or
explicit user consent. Just two applications require an EULA.

Table 2. Third party applications used control flows

Category application
Name

Leaked
Data

Wertago x
Contact and Phone Iden-
tity

Dastelefonbuch x

Yellow Pages x
Camera Knocking x

ProBasketBall
The Weather
Channel

x

Cestos
Classic Simon
Free
Bubble Burst
Free

Location and Phone Iden-
tity

Bump

Traffic Jam
Horoscope x
Paper Toss x
Find It x

We use dex2jar tool [2] to translate dex files of different applications
to jar files. Then, we use jd-gui [3] to obtain the source code that will



be analysed. As shown in Table 2, we found that 14 of tested Android
applications listed by types of accessed sensitive data use control flows
to transfer private information. Eight of them leaked private data. Sen-
sitive data is used in the if ,for and while control flow instructions. We
verify that variables to which a value is assigned in these instructions
and that depend on a condition containing private data are not tainted
using TaintDroid. Our approach has succesfully propagated taint in these
control instructions and detected leakage of tainted sensitive data that is
reported in the alert messages.

5.2 Performance

In this part of the paper, we study our taint tracking approach overhead.
The static analysis is performed at load and verification time. At load
time, our approach adds 33% overhead with respect to the unmodified
system. At verification and optimization time, our approach adds 27%
overhead with respect to the unmodified system. This time increase is
due to the verification of method instructions and the construction of the
control flow graphs in the static analysis phase. We install the Caffeine-
Mark application [6] in our Nexus One mobile device to determine the
java microbenchmark. Note that the CaffeineMark scores roughly corre-
late with the number of Java instructions executed per second and do not
depend significantly on the amount of memory in the system or on the
speed of a computers disk drives or internet connection [6].

Fig. 4. Microbenchmark of java overhead

Figure 4 presents the execution time results of a Java microbench-
mark. We propagate taint in the conditional branches especially in the



loop branches and we add instructions in the processor to solve the un-
der tainting problem. Then, the loop benchmark in our approach presents
the greatest overhead. We taint results of arithmetic operations in explicit
and control flows. Thus, the arithmetic operations present the greatest
overhead. The string benchmark difference between unmodified Android
system and our approach is due to the additional memory required in
the string objects taint propagation. We observe that the unmodified An-
droid system had an overall score of 3625 Java instructions executed per
second. Whereas, our approach had an overall score of 2937 Java instruc-
tions executed per second. Therefore, our approach has a 19% overhead
with respect to the unmodified system.

5.3 False positives

Our analysis and tests indicated that almost of 50% of studied Android
applications use control flows and leak sensitive data. Our approach gen-
erates 25% of false positives. We detect an IMSI leakage vulnerability
when it is really used as a configuration parameter in the phone. Also,
we detect that the IMEI is transmitted outside of smartphone but it is
the hash of the leaked IMEI. Thus, we can not treat these applications
as privacy violations.

6 Conclusion

In order to detect the leakage of sensitive information by third-party
apps exploiting control flows in smartphones, we have proposed a hy-
brid approach that propagates taint along control dependencies to solve
under-tainting problem. We have analysed 27 free Android applications to
evaluate the effectiveness of our approach. We found that 14 applications
use control flows to transfer sensitive data and 8 leak private information.
We showed that our approach generates significant false positives that can
be reduced by considering expert rules (ad hoc rules). Also, we can use
an access control approach to authorize or not the transmission of the
data outside the system. Our approach incurs 19% performance overhead
that is due to the propagation of taint in the control flow. To improve
performance of our system, we suggest implementing the taint propa-
gation mechanism in Just In Time Compiler (JIT) that provides better
performance than the interpreter such as a minimal additional memory
usage. By implementing our approach in Android systems, we successfully
protect sensitive information and detect most types of software exploits
caused by control flows.

References

1. Android, http://www.android.com/



2. dex2jar, http://code.google.com/p/dex2jar/
3. Java decompiler, http://jd.benow.ca/
4. AT, Research, T.: Graphviz, http://www.graphviz.org/
5. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-

munication in android. In: Proceedings of the 9th international conference on Mo-
bile systems, applications, and services. pp. 239–252. ACM (2011)

6. CORPORATION, P.S.: Caffeinemark 3.0, http://www.benchmarkhq.ru/cm30/
7. Denning, D.: Secure information flow in computer systems. Ph.D. thesis, Purdue

University (1975)
8. Egele, M., Kruegel, C., Kirda, E., Vigna, G.: Pios: Detecting privacy leaks in

ios applications. In: Proceedings of the Network and Distributed System Security
Symposium (2011)

9. Enck, W., Gilbert, P., Chun, B., Cox, L., Jung, J., McDaniel, P., Sheth, A.: Taint-
droid: An information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proceedings of the 9th USENIX conference on Operating sys-
tems design and implementation. pp. 1–6. USENIX Association (2010)

10. Fenton, J.: Memoryless subsystem. Computer Journal 17(2), 143–147 (1974)
11. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifi-

cation of android applications. Manuscript, Univ. of Maryland, http://www. cs.
umd. edu/˜ avik/projects/scandroidascaa (2009)

12. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Detecting control flow
in smarphones: Combining static and dynamic analyses. In: Cyberspace Safety and
Security, pp. 33–47. Springer (2012)

13. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Formal Characteriza-
tion of Illegal Control Flow in Android System. In: 9th International Conference
on Signal Image Technology & Internet Systems (2013)

14. Graa, M., Cuppens-Boulahia, N., Cuppens, F., Cavalli, A.: Protection against Code
Obfuscation Attacks based on control dependencies in Android Systems. In: 8th
International Workshop on Trustworthy Computing (2014)

15. Hornyack, P., Han, S., Jung, J., Schechter, S., Wetherall, D.: These aren’t the droids
you’re looking for: retrofitting android to protect data from imperious applications.
In: Proceedings of the 18th ACM conference on Computer and communications
security. pp. 639–652. ACM (2011)

16. Kang, M., McCamant, S., Poosankam, P., Song, D.: Dta++: Dynamic taint anal-
ysis with targeted control-flow propagation. In: Proc. of the 18th Annual Network
and Distributed System Security Symp. San Diego, CA (2011)

17. Rob van der Meulen, J.R.: Gartner says smartphone sales accounted for 55 percent
of overall mobile phone sales in third quarter of 2013 (2013), http://www.gartner.
com/newsroom/id/2623415

18. Nair, S., Simpson, P., Crispo, B., Tanenbaum, A.: A virtual machine based infor-
mation flow control system for policy enforcement. Electronic Notes in Theoretical
Computer Science 197(1), 3–16 (2008)

19. News, B.: Bbc google activations and downloads update may 2013 (May 2013),
http://www.bbc.com/news/technology-22542725

20. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: Bitblaze: A new approach to computer
security via binary analysis. Information Systems Security pp. 1–25 (2008)

21. Wilson, T.: Many android apps leaking private information
(July 2011), http://www.informationweek.com/security/mobile/
many-android-apps-leaking-private-inform/231002162


