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Abstract. Ensuring confidentiality of outsourced data continues to be
an area of active research in the field of privacy protection. Almost all
existing privacy-preserving approaches to address this problem rely on
heavyweight cryptographic techniques with a large computational over-
head that makes inefficient on large databases. In this paper, we address
this problem by improving on an existing approach based on a combina-
tion of fragmentation and encryption. We present a method for optimiz-
ing and executing queries over distributed fragments stored in different
Cloud storage service providers. We then extend this approach by pre-
senting a Private Information Retrieval (PIR) based query technique to
enforce data confidentiality under a collaborative Cloud storage service
providers model.
Keywords: Data confidentiality, Privacy-preserving, Data fragmenta-
tion, Data outsourcing

1 Introduction

In the last few years, database outsourcing has become an important tool in IT
management, as it offers several advantages to the client companies, especially
for small ones with limited IT budget. In most models of database outsourcing,
data storage and management (e.g. data backup and recovery) are completely
operated by external service providers that take advantages of economies of
scale to reduce the cost of maintaining computing infrastructure and data-rich
applications in comparison with the cost of in-house data management.

Nonetheless, outsourcing gives rise to major security issues due to the usu-
ally sensitive nature of information saved in databases. Storing such sensitive
information with external service providers requires them to be trusted and that
they should protect data against external threats. Even if these service providers
protect data adequately and process queries accurately, they may be curious
about the stored data and may attempt to profit by disclosing this sensitive
information to third parties. This raises the question of whether it is possible to
protect confidentiality and privacy of the outsourced data. A recent study [10] by
the Ponemon Institute indicates that since 2005 more than 250 million customer
records containing sensitive information have been lost or stolen. The same study
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reports the average organizational cost of data leakage between 2005 and 2009,
to be about $6.6 million. Hence, there seems to be a clear financial motivation
to protect data privacy and confidentiality even when records are leaked.

Related Work. One approach to protect confidentiality and privacy of the
outsourced data is based on encrypting all tuples in outsourced databases [8,
7]. With this approach, one crucial question is that of how to efficiently execute
queries. Clearly, when using deterministic encryption techniques equality-match
queries are simple to evaluate. However, range queries and aggregations become
more difficult to perform as we must decrypt all records to evaluate this kind of
queries, which makes query execution on the outsourced encrypted data much
more difficult. Therefore, our main focus in this paper is about preserving both
privacy and confidentiality of outsourced database while ensuring a secure way
for querying outsourced data. One promising method to meet this requirement is
to use data fragmentation. Basically, data fragmentation procedures are not par-
ticularly designed for preserving data security, they are aimed to improve data
manipulation process, optimize storage, and facilitate data distribution. Never-
theless, in the last few years two significant alternatives have been proposed. The
first one [9, 3] relies on data fragmentation alone to protect confidentiality. The
distribution model used in this approach is composed mainly of two domains: a
trusted local domain from which the data originates, and a honest but curious
domain in which the data will be distributed. Because of its trustworthiness,
the local domain is used to store fragments that contain highly sensitive data
without the need to encrypt them. This is not so efficient in that it forces data
owners to always protect and manage fragments containing highly sensitive data.
A more promising alternative [4, 6] attempts to combine data fragmentation to-
gether with encryption. In this proposal, the main idea is to partition the data
to be externalized across two or more independent service providers, and fur-
thermore to encrypt all information which can not be secured by fragmentation
(e.g. employees’ bank account numbers of a company). While they do constitute
an interesting way to ensure confidentiality of outsourced database, these ap-
proaches have the major limitation that it assumes that data to be outsourced is
represented within a single relation schema (or table). Clearly, this assumption is
too strong and seldom satisfied in the real environments, as generally, relational
databases are normalized to minimize redundancy and dependency by dividing
large tables into smaller (and less redundant) tables and defining relationships
between them.

In this paper, we strive to protect the confidentiality and the privacy of sen-
sitive outsourced database using both encryption and fragmentation, combining
the best features of both approaches. Furthermore, we aim to overcome the
previously mentioned limitations of [4, 6] by presenting an approach which is
able to deal efficiently with multi-relation normalized databases. In a distributed
environment, the problems encountered in one-relation1 databases take on ad-
ditional complexity when working with multi-relation normalized databases as

1 Databases composed from a single relation shema
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it gives rise to new problems such as protecting the relatioships between rela-
tional schemas and defining a secure and efficient technique allowing authorized
users to query these sensitive relationships. We will show how to protect data
unlinkability of different fragments of the original database by protecting user
query privacy using a practical Private Information Retrieval (PIR) technique.
Unlinkability of two items of interest (e.g., records stored into different frag-
ments) means that within the system, from an adversary point of view, these
items of interest are no more and no less related. In our approach, a relation
containing sensitive information will be fragmented into two or more fragments.
Unlinkability of fragments means that despite the fact that an adversary has
knowledge about the fragments of a relation, it remains unable to link records
from different fragments.

The remainder of the paper is organized as follows. Section 2 illustrates
through an example the problem and need for an approach like ours. In Section 3,
we detail the threat model, security model, and assumptions. Section 4 describes
our approach to enforce privacy and confidentiality of outsourced data. Section 5
presents the query optimization and execution model. In Section 6, we present
a PIR-based technique to achieve query privacy and enforce data confidentiality
under a collaborative Cloud storage service providers model. Finally, we conclude
the paper in section 7.

2 Motivating Example

Consider a relational hospital database D with relations: Patient(Id, Name,ZIP,
Illness, Id Doctor *) and Doctor(Id, Name, Specialty) where Id Doctor is a
foreign key referencing the column Id of the relation Doctor. Let us assume
that the hospital is going to outsource the database to a third party. Sensitive
information contained in D should be protected. If we look carefully, we can
consider that the list of patients and their attributes (Id,Name,Zip) are not
sensitive, and also that the list of illnesses could be made public. Nevertheless, the
relationship between these two lists (list of patients and list of illnesses) should
be protected. Therefore if we can find a way (e.g. vertical fragmentation [11])
to break relationships between patients and their respective illnesses, there is
no need to encrypt all records of the Patient relation. On the other hand, the
relationship between a patient and his doctor should be protected. Since the
list of doctors itself is not sensitive, the simplest way to protect the relationship
between the two relations Patient and Doctor consists in encrypting the foreign
key Id Doctor. Actually, we can either encrypt the foreign key Id Doctor of the
relation Patient or the primary key Id of the relation Doctor, because in the
two cases, relationship between relations Patient and Doctor will be protected.
However, encrypting the foreign key seems to be more beneficial as a foreign key
references only one relation (only the relationship between the two relations is
protected) while a primary key can be referenced by many relations. Therefore, if
we encrypt the primary key, we will protect all relationships between the relation
containing the primary key and other relations referencing the encrypted primary
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key. Thus, when the security requirement specifies that only the a relationship
between data is sensitive, our apporach is more appropriate than the one based
on full encryption.

3 Threat Model and Security Assumptions

Our approach is based on a typical client-server architecture, where servers are
managed by different service providers. These service providers are considered
”honest-but-curious”, in agreement with most related work [3, 4, 7, 9]. Service
providers are assumed to be ”honest” in that they do not manipulate outsourced
data in order to respond incorrectly to user queries. In other words, we suppose
that responses to user queries received from these service providers are always
accurate. In the first part of this paper, we will assume that service providers
are ”curious” in that they will try to infer and analyze outsourced data, and
will also actively monitor all received user queries and try to derive as much
information as possible from these queries. In the second part of the paper, we
further assume that service providers can collude and cooperate together to link
outsourced data. The client part of this architecture is assumed to be trustworthy
and all interactions between the user and the client are secured. Protecting the
client part against external attacks is beyond the scope of this article.

4 Confidentiality using fragmentation and encryption

Our approach extends in several ways the vertical fragmentation-based approach
described in [4, 6]. This approach considers that all data is stored in a single re-
lation, while in our approach data can be stored in several relations, which is
the case in typical database environments. In our approach, we consider that
databases to be externalized are normalized so that two relations can be only
associated together through a primary key/foreign key relationship. For this
purpose, we introduce a new type of confidentiality constraint for fragmenta-
tion, the inter-table fragmentation constraint. The aim of this new fragmenta-
tion constraint is to protect the relationship between relations. This section first
presents the different kinds of confidentiality constraints used to achieve our
goals of protecting the confidentiality by encryption and fragmentation, and sec-
ond formalises the concept of fragmentation in our approach which extends ideas
presented in [4–6].

Definition 1 (Confidentiality Constraint). Consider that data to be se-
cured are represented with a relational database D, which is composed of a list
of relational schemas R = (R1, . . . , Rn), with each of these relational schemas Ri

containing a list of attributes ARi = (a1,i, a2,i, . . .). A confidentiality constraint
over D can be one of the following:
Singleton Constraint (SC). It is represented as a singleton set SCRi

= {aj,i}
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over the relation Ri. This kind of confidentiality constraint means that the at-
tribute aj,i of the relational schema Ri is sensitive and must be protected, typi-
cally by applying encryption.
Association Constraint (AC). This kind of confidentiality constraint is rep-
resented as a subset of attributes ACRi

= {a1,i, . . . , aj,i} over the relational
schema Ri. Semantically, it means that the relationship between attributes of
the subset ACRi is sensitive and must be protected.
Inter-table Constraint (IC). It is represented as a couple of relational schemas
IC = {Ri, Rj} of the relational database D. Relations Ri and Rj should be as-
sociated through a primary key/foreign key relationship. The use of this kind
of confidentiality constraint ensures protection of the primary key/foreign key
relationship between the two relational schemas concerned with the inter-table
constraint IC.

Note that protecting the relationship between two tables relies on protect-
ing the primary key/foreign key relationship and storing involved relations sep-
arately. The association constraint can also be addressed through encryption
(encrypt at least one of attributes involved in the constraint), but clearly this
will increase the number of encrypted attributes and make interrogation of the
database more complicated. A more adapted way to resolve this kind of confi-
dentiality constraint was proposed in [4], which is based on splitting involved
attributes in a manner that their relationships cannot be reconstructed.

In the case of an inter-table confidentiality constraint, protecting the foreign
key using encryption is the simplest way to secure the relationship between the
two relational schemas. However encrypting only the foreign key is not enough
to keep the relationship between relational schemas secure, as service provider
may be able to link records in two relational schemas by observing and analyzing
user queries over these relational schemas. To overcome this problem, the two
relational schemas in question should be split into different fragments, and each
of these fragments should be distributed to a different Cloud storage provider.
An interesting approach for modeling constraints and resolving the data frag-
mentation problem was proposed in [6], that efficiently computes data frag-
ments that satisfy the confidentiality constraints. It is based on Boolean formulas
and Ordered Binary Decision Diagrams (OBDD) and uses only attribute-based
confidentiality constraint (Singleton Constraints and Association Constraints).
However, it cannot deal as-is with Inter-table Constraints. In order to use this
approach, we define a way to reformulate Inter-table Constraint as a set of Sin-
gleton Constraints and Association Constraints. We explain this transformation
in the definition and theorem below.

Definition 2 (Inter-table Constraint transformation). Consider a rela-
tional database with two relations R1(a1, . . . , an) and R2(b1, . . . , bm∗). Let us
assume that R1 and R2 are related through a foreign key/primary key relation-
ship in which the foreign key bm of the relation R2 references the primary key a1
of relation R1. We assume that R1 and R2 contain respectively p and q records,
with p > 1 and q > 1. An Inter-table Constraint c = {R1, R2} over relations
R1 and R2 states that the relationship between these two relations must be
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protected by encrypting the foreign key bm and by storing R1 and R2 in two
different fragments. Therefore, the constraint c can be written as follows:

i A singleton constraint SC = {bm} to state that the value of bm should be
protected.

ii A list of (m×n) association constraints AC = {(ai, bj)|i ∈ [1, n], j ∈ [1,m]}.

We propose the notion of a correct transformation of Inter-table constraints.
A transformation of an Inter-table constraint c to a set of confidentiality con-
straints C is correct if the satisfaction of C enforce the protection of the unlinka-
bility between records of the two relations involved in c. The following Theorem
formalizes this concept.

Theorem 1 (Transformation correctness). Given a relational database D
composed from two relational schemas R1(a1, . . . , an) and R2(b1, . . . , bm∗) re-
lated through relationship between the foreign key bm of R2 and the primary
key a1 of R1. Let c = {R1, R2} be an Inter-table constraint, the set of constraints
C be the result of the transformation of c, and F = {F1, . . . Fq} be a fragmenta-
tion of D that satisfies C. The Inter-table constraint c is correctly transformed
into a set of constraints C if all the following conditions hold :

1. bm does not appear in clear in any fragment of F .
2. ∀ ACi,j = {ai, bj} ∈ C, i ∈ [1, n], j ∈ [1,m], if ai ∈ Fk and bj ∈

Fl then k 6= l

The main advantage of the Inter-table constraint is that it allows treatment
of multi-table relational databases. In addition, it gives a simple way to formu-
late confidentiality constraints between relations. As we have seen in Item (i)
of Definition 2, the attribute bm (foreign key of the relation R2) should be en-
crypted. However, to be able to query data and construct relationship between
relations, the chosen encryption algorithm must be deterministic [1] in order
to preserve uniqueness and allow the construction of relationship between re-
lations (e.g. through JOIN queries). As is known, in normalized multi-relation
databases, three types of relationship between relations exist: (1) one-to-one, (2)
one-to-many and (3) many-to-many relationships. Inter-table constraints over
relations associated using (1) or (2) can be simply transformed as shown in
Definition 2, while others associated using (3) need a pre-transformation step
before applying the transformation of Definition 2, as they are normally linked
through a third relation known as a linking table. The pre-transformation steps
is described in the example below.

Definition 3 : Fragmentation [5]
Let us consider a relational database D with relations R1, . . . , Rn and A the list
of all attributes contained in different relations. Given Af the list of attributes
to be fragmented, the result of the fragmentation is a list of fragments F =
{F1, . . . , Fm} where each of these fragments satisfies:

i ∀Fi ∈ F, i ∈ [1..m], Fi ⊆ Af .
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ii ∀a ∈ Af ,∃Fi ∈ F : a ∈ Fi.
iii ∀Fi, Fj ∈ F, i 6= j : Fi ∩ Fj = ∅.

Note that the list of attributes to be fragmented Af contains all attributes in A,
except those concerned with Singleton Constraints (attributes to be encrypted).
Condition (i) guarantees that only attributes in Af are concerned by the frag-
mentation, condition (ii) ensures that any attribute in Af appears in clear at
least in one fragment and condition (iii) guarantees unlinkability between differ-
ent fragments.

Logically, to be able to get information about the original database, we should
be able to reconstruct original database from fragments. So after defining the
fragmentation process, we shall define a mechanism to combine fragmentation
and encryption. More clearly, a mechanism to integrate attributes involved in
the Singleton Constraints (attributes to be encrypted) in the suitable fragment.
These encrypted attributes allow only authorized users (users who know the
encryption key) to construct the sensitive relationships. Based on the defini-
tion of Physicalfragment proposed in [4], we define our mechanism called
Securefragment to combine fragmentation and encryption.

Definition 4 : Secure Fragment : Let D be a relational database with a list of
relations R = {R1(a1,1, . . . , aj,1), . . . , Rn(a1,n, . . . , ak,n)}, F = {F1, . . . , Fm} a
fragmentation of D and Af be the list of fragmented attributes. Each fragment
Fi ∈ F is composed of a subset of attributes Ai ⊆ Af . Each Ai is composed of
a subset of attributes of one or more relations Rj ∈ R. We denote by RFi

the
list of relations in R which a subset of their attributes belongs to the fragment
Fi ∈ F . The secure fragment of Fi is represented by a set of relations schema Re

Fi

in which each relation is represented as follows Re
j(salt, enc, a1, . . . , ak) where

{a1, . . . , ak} ⊂ Ai ∩Rj and enc is the encryption of all attributes of Rj that do
not belong to {a1, . . . , ak} (all attributes of Rj involved in a singleton constraint
except those concerned by a singleton constraint over the foreign key), combined
before encryption in a binary XOR with the salt. All foreign key attributes which
are involved in singleton constraints are encrypted using a deterministic encryp-
tion algorithm (e.g., AES) to ensure their indistinguishability. The Algorithm
1 shows the construction of secure fragments.The main reason for reporting all
original attributes (except foreign keys involved in the Singleton constraints) in
an encrypted form for each relation in a fragment, is to guarantee that a query
Q over the original relation Rj can be executed by querying a single fragment
(which contains Re

j) while preserving confidentiality of sensitive relationships,
so we do not need to reconstruct the original relation Rj to perform the query
Q. Furthermore, encrypting foreign keys ensure the protection of sensitive rela-
tionships between relations involved into Inter-table constraints. However, using
deterministic encryption algorithm has two issues. First, a major advantage is
to enforce indistinguishability of records which allows only authorized users who
know the encryption key to execute queries associating these relations. Second,
a minor drawback is that it allows an adversary to infer information about re-
peatedly occurring values of the encrypted foreign keys, but this information
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does not allow the adversary to break the unlinkability between relations. The
attribute salt which is used as a primary key of different relations in the secure
fragments protects encrypted data against frequential attacks. In addition, there
is no need to secure the salt attribute because knowledge of the value of this
attribute will not give any advantage when attacking encrypted data.

Example 4.2. Assume that we have a relational database D of a medical insur-
ance company that contains two relations Patient and Doctor represented re-
spectively in Table 1 and Table 2. The insurance company has defined the a set of
confidentiality constraints CC = {C1 = {SSN}, C2 = {Name pat, Illness}, C3 =
{Patient,Doctor}}. As shown before, the first step in the fragmentation pro-

Table 1. Patient relation

SSN Name pat Dob Illness Id doc

865746129 A. Barrett 20-08-1976 Illness1 doc 3
591674603 C. Beat 18-01-1981 Illness2 doc 3
880951264 N. Baines 14-09-1986 Illness1 doc 2
357951648 S. Brandt 18-01-1981 Illness3 doc 1

Table 2. Doctor relation

Id doctor Name doc

doc 1 C. Amalia
doc 2 D. Annli
doc 3 P. Amadeus

cess consists in transforming Inter-table constraint (C3). Relations Patient and
Doctor are linked through the foreign key Id doc in the relation Patient, there-
fore C3 will be replaced by C4 = {Id doc} and all possible Association constraints
composed of an attribute of the relation Doctor and an attribute of the relation
Patient (Guarantee that the relation Patient will not be in the same fragment
as the relation Doctor). In our example, attributes SSN and Id doc of the re-
lation Patient are involved in singleton constraints C1 and C4 respectively. So
they will not be concerned by the fragmentation. As a result C3 will be replaced
by :
• C4 = {Id doc} • C8 = {Dob,Name doc}
• C5 = {Name pat, Id doctor} • C9 = {Illness, Id doctor}
• C6 = {Name pat,Name doc} • C10 = {Illness,Name doc}
• C7 = {Dob, Id doctor}

A possible fragmentation of D that satisfies all confidentiality constraints
is the set of fragments {F1, F2, F3} with: F1 = {Patient(Name pat,Dob)},
F2 = {Patient(Illness)} and F3 = {Doctor(Id doctor,Name doc)}. Next step
is the Securefragmentation transformation (Definition 3). We assume that en-
cryption of the protected attributes uses the deterministic encryption algorithm
E with the encryption key K. The result of applying the SecureFragmentation
over different fragments is represented as follows.
• F1 : Patient(salt, enc,Name pat,Dob,Ek(Id doc)) with
enc = EK(〈SSN, Illness〉

⊕
salt)

• F2 : Patient(salt, enc, Illness, Ek(Id doc)) with
enc = EK(〈SSN,Name pat,Dob〉

⊕
salt)

• F3 : Doctor(Id doctor,Name doc)

Note that F3 has not been changed because there is no singleton constraints over
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the Doctor attributes. Lastly data fragments F1, F2 and F3 are distributed to
different Cloud storage providers.

5 Query Execution Model

Before discussing techniques for processing query over distributed fragments, we
will first present the architecture of our proposed approach. It includes three
principal entities : (1) a User which attempts to execute queries over the orig-
inal database, (2) a Client which rewrites user queries by splitting them to
create an optimized distributed Query Execution Plan QEP; QEP is a set of
sub-queries and other operations (e.g., decryption, join...), it is created by the
Query Transformative based on the MetaData which contains information
(relations, clear attributes, encrypted attributes, selectivity of attributes) about
data distribution in different fragments. Furthermore, the Query Executor exe-
cutes each of these sub-queries over the appropriate fragments and sends back the
results to the client. (3) Server represented by different Cloud storage providers
in which data fragments are distributed.

Query Transformation and Optimization: In our querying model, query
transformation is performed by the Query Transformative (QT ) entity on the
client side. When receiving a user query, the query is analyzed syntactically and
semantically so that incorrect queries are rejected as earlier as possible. Next,
based on the Metadata stored on the client side, the QT will attempt to find a
fragment on which the user query can be executed, i.e. a fragment in which QT
can find all attributes and relations involved in the user query. If such a frag-
ment does not exist, QT will decompose the user query into queries expressed
in relational algebra, find out which fragments are involved in the query, and
finally transform the user query into a set of fragments queries. Using this set
of fragment queries and other operations such as encryption, decryption, join
and aggregation, the QT creates a QEP and sends it to the Query Executor. A
query can have more that one QEP. Logically, each QEP may have a different
execution cost. Thus, the QT should have the capability to pick out the best
QEP in terms of execution cost. This capability is explained later in the Query
Optimization section.

For multi-fragment query2, QT will use local join operations as it should
combine results of execution of subqueries over fragments. There are two different
ways to perform local join operation : (1) Execute all sub-queries in a parallel
manner, then join the result on the client side. (2) Execute sub-queries in a
sequential manner to have the ability to perform semi-joins using the result of
previous sub-queries. While (1) can be cheaper than (2) in terms of sub-query
execution, it is much more costly in the join operation because in (1), sub-queries
results might contain a lot of records that will not be part of the final results.

In addition to traditional query optimization methods such as selecting con-
ditions as earlier as possible, the QT attempts to minimize the execution cost

2 i.e. a query that cannot be executed over only one fragment
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of the created QEP by applying the selection condition with the most selective
attribute, i.e the selection condition which is satisfied by the smallest number of
tuples. To give this ability to the QT , we assign a selectivity3 to each attribute
contained in the original database to the Metadata stored in the Client. We
apply the optimization method to the example below.

6 Preserving Data Unlinkability

Ensuring data confidentiality is achieved by preserving unlinkability between
different data fragments and by encrypting all sensitive information that cannot
be protected using only fragmentation. However, we have seen in the previous
section that evaluation of some queries may use semi join in order to join data
from different fragments. This will not be a concern in the case of non-colluding
Cloud storage providers, but it becomes a serious concern when Cloud Storage
Providers (CSP) can collude. In this section, we present our solution to overcome
this privacy concern when we assume that CSP can collude to link data stored
in different fragments.

To overcome this problem, the Client should have the ability to execute
semi join queries and retrieve data from a fragment without the CSP (which
stores the fragment) learning any information about the semi join condition
values. To meet this requirement, we will use a Private Information Retrieval
keyword-based technique. PIR keyword-based was presented in [2] to retrieve
data with PIR using keywords search over many data structures such as binary
trees and perfect hashing. Later, [12] investigated the use of SQL for PIR, based
on the use of B+ tree. In the next part of this paper, we will explain how we
can use technique presented in [12] to ensure our semi join queries privacy
requirement.

Theorem 2. Let D be a multi-relation normalized database, F = {F1, F2} be
a fragmentation of D, and Q be a multi-fragment query that joins records from
both fragments F1 and F2. Consider that SCPs in which the fragments F1 and
F2 are stored can collude to link data stored in these fragments, and that Q is
evaluated using semi join operations. Sensitive relationships between F1 records
and F2 records remain protected if and only if the privacy of the semi join sub-
queries is guaranteed.

PIR System design. In the Client of our architecture, we give to Query Executor
the ability to communicate with different Cloud storage providers through the
PIR keyword-based protocol. In the Server, we add on each CSP a PIR Server
as a front-end entity to answer Query Executor’s PIR queries. An adversary
(a Cloud storage provider administrator) who can observe Query Executor’s
PIR-encoded queries is unable to find out the clear content of the queries. En-
forcing integrity on the PIR server side is straightforward since we assume that
PIR servers will not attempt to wrongly answer Query Executor’s PIR queries.

3 Provides an approximation of the number of tuples that satisfies a predicate
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Keyword Index Structures. The main purpose for using PIR keyword-based
is to ensure the privacy of semi join queries. In our approach, this kind of
queries is mainly executed over primary or foreign key attributes. Therefore
each PIR Server will create a B+ Tree over each indexed attribute (Primary
or foreign key). The advantage of such an index structure is that data appears
only in the leaves while other nodes are used to control the search. On the leaves
of B+ tree and for each key in the tree, we store the tuple corresponding to
the key as the data part linked to the key. We consider the act of retrieving a
node’s data as a PIR operation over all nodes in the B+ tree. In all existing PIR
schemes, a common assumption is that the client should know the address of the
block or the item to be retrieved. To satisfy this assumption in our approach, the
PIR server after creating the index structure, sends an index helper containing
the B+ tree’s root node to the client.

Semi-Join PIR keyword-based query. Using the PIR keyword-based query
requires a setup phase in which the Query Executor and the PIR server ex-
change information. This setup phase is divided into two steps:

1. The Query Executor sends the Relation schema name and the attribute
name over which the semi join query is to be performed to the corresponding
PIR server.

2. When receiving the Relation schema name and the attribute name, the
PIR server selects the corresponding B+ tree and sends its root node to
the Query Executor.

After receiving the root node sent by the PIR server, the Query Executor
will compare the list of keys contained in the root node with values used in
the condition of the Semi join query in order to find out the indexes of the
next nodes to be retrieved. The Query Executor will subsequently perform PIR
queries over chosen indexes to retrieve corresponding nodes. Once all items have
been retrieved, The Query Executor combines them to build the result of the
original Semi join query. Refer to Appendix D for a description of the PIR
keyword-based protocol algorithms used in the Client and the Server parts.

7 Conclusion

Existing approaches based on fragmentation and encryption have focused on
single-relation schema database which is a strong and rarely encountered as-
sumption in real environment. In this paper, we have presented a new approach
based on fragmentation, encryption and query privacy techniques which ensures
confidentiality of outsourced multi-relation databases. We have presented also a
way to optimize and execute queries over distributed data fragments.

Our future work will include the implementation of our approach. It will
also include enhanced query optimization and execution techniques to overcome
some limitations of our approach, such as processing nested queries.
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A Secure fragmentation algorithm

Algorithm 1 : Secure fragmentation

Require:
D = {R1, R2, · · · , Rn} /* Normalized relational database */
C = {C1, C2, · · · , Cm} /* Confidentiality constraints */

Ensure:
Fs = {F s

1 , F
s
2 , · · · , F s

p } /*The set of secure fragments*/
Main
Cf = {Ci ∈ C : |Ci| > 1} /* The list of association constraints */
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Afkey = {a ∈ Ci, Ci ∈ C : |Ci| = 1 and isForeignKey(a) = True}
/* Afkey : The set of foreign keys to be encrypted*/
F := Fragment(D, Cf )
for all Fi = {ai1 , ai2 , · · · , ain} in F do
Rf = classifyAttributes(Fi) /* Classify attributes*/
for all Rfi in Rf do

for all r in Rfi do
rs[salt] := GenerateSalt(Rfi , r) /* r : record */
rs[enc] := Ek(t[aj1 , · · · , ajq ]⊕ rs[salt]) /* aj1 , · · · , ajq = Ri −Rfi */
for all a in Rfi do

rs[a] := r[a] /* a : attribute */
end for
for all a in Afkey do

if a ∈ Ri then
rs[a] := Ek(r[a]) /* a : the foreign key of the relation Ri */

end if
end for
InsertRecord(rs, Rs)

end for
AddRelationToFragment(Rs, F s)

end for
end for

B Proof of Theorem 1

Proof. According to Item (ii) of Definition 2, the Inter-table constraint will be
replaced by all possible associations constraint composed from an attribute of
relation R1 and another from relation R2. Due to the fact that an association
constraint between two attributes means that the relationship between these
attributes will be protected using fragmentation (each attribute will be stored
in different fragments), Item (ii) guarantees that relations R1 and R2 will be
stored in different fragments which hold condition (2).

Item (i) of Definition 2 creates a singleton constraint over the foreign key
bm of the relation R2. Thus bm will be considered as a sensitive attribute and
will be protected using encryption, which means that the foreign key bm will not
appear in clear in any fragment. As a result, if an adversary succeeds in having
access to the fragments in which R1 and R2 have been stored, she is unable to
link data stored in these relations.

C Proof of Theorem 2

Proof. To prove the Theorem 2, we will use the following two sketches. The fist
sketch proves that without ensuring semi join sub-queries privacy, collabora-
tive CSPs can, in some cases, break data unlinkability, while the second sketch
proves that, under a collaborative Cloud storage service providers model, pro-
tecting data unlinkability can only be guaranteed with the protection of the
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privacy of the semi join sub-queries.

SKETCH without using the PIR keyword-based protocol: Suppose
that the Cient wants to execute a query which joins records from two fragments
F1 and F2. Let us consider that the sub-query Q1 executed over the fragment
F1 has returned n tuples. And the semi-join query Q2 executed over F2 has re-
turned m tuples. Therefore, if CSPs that store F1 and F2 collude together to link
tuples from Q1 and Q2 results, the probability to guess correctly the relationship
between tuples is:

PROB[Result(Q1)↔ Result(Q2)] = 1
m×n

Clearly, if m and n are small, CSPs will have a great chance to break data
unlinkability.

SKETCH using the PIR keyword-based protocol: Let us consider that
the Client attempts to perform a query which joins records from two fragments
F1 and F2. According to our defined PIR keyword-based protocol, the Client
will execute Q1 over the fragment F1 without using the keyword-based protocol.
Next, the Client will send the table name T and the attribute name a on which
the semi-join will be performed, the Server replies with the root node of the
corresponding B+ tree. It is clear from the previous step that the CSP which
stores F2 can only know the attribute name and the table name on which the
semi-join will be performed. After receiving the root node, the Client will use
the PIR protocol to retrieve internal corresponding nodes until the leaves of the
B+ tree are reached. The PIR protocol will ensure that the server will not know
which nodes were retrieved by the Client. Moreover, all tuples are stored in the
leaf level of the B+ tree. Therefore, in order to retrieve each record, the Client
shall execute the same number of PIR queries. Rightfully, the only revealed
information when using the PIR keyword-based protocol is the table name and
the attribute name on which the semi-join has been performed. Therefore, if
CSPs storing F1 and F2 collude together to break data unlinkability, they will
be able only to infer that the relation T1 in F1 over which Q1 has been executed
is linked to the relation T through the attribute a. Due to the fact that the
foreign key in T1 referencing the attribute a in T is encrypted, linking records is
not possible.

D SemiJoin PIR keywordbased query algorithms
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Algorithm 2 SemiJoin PIR keywordbased query (server)

Require:
BPT = {B1, . . . , Bn} /* B-Plus Tree over indexed attributes*/
loop

Request← handle client request()
if Request is PQR then

/* PQR : Pre-Query Request */
(TabName, AttriName)← Request
B ← GetAssociatedBPT (TabName, AttriName)
RootB ← GetRootNode(B)
ReplyToClient(RootB)

else {Request is PIRQ}
/* PIRQ : PIR Query */
result← compute(Request)
ReplyToClient(result)

end if
end loop

Algorithm 3 SemiJoin PIR keywordbased query (client)

Require:
tabName, attrName /* Table and Attribute where the semi-join will be per-
formed*/
value /* Semi-join condition value*/
Node← send PQR request(tabName, attrName)
repeat

for all elem in Node do
findLink ← false
if Key(elem) < value then

Node← PIR Query(IndexOfLeftChild(elem))
findLink ← true
break /* terminates the for loop*/

end if
end for
if findLink =false then

Node← PIR Query(IndexOfRightChild(elem))
end if

until Node is leaf node
for all elem in Node do

if Key(elem) = value then
return Data(elem)

end if
end for


