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Abstract. Covariate shift is a specific class of selection bias that arises
when the marginal distributions of the input features X are different in
the source and the target domains while the conditional distributions
of the target Y given X are the same. A common technique to deal
with this problem, called importance weighting, amounts to reweighting
the training instances in order to make them resemble the test distribu-
tion. However this usually comes at the expense of a reduction of the
effective sample size. In this paper, we show analytically that, while the
unweighted model is globally more biased than the weighted one, it may
locally be less biased on low importance instances. In view of this result,
we then discuss a manner to optimally combine the weighted and the
unweighted models in order to improve the predictive performance in
the target domain. We conduct a series of experiments on synthetic and
real-world data to demonstrate the efficiency of this approach.

1 Introduction

Selection bias, also termed dataset shift or domain adaptation in the litera-
ture [8], occurs when the training distribution P (x, y) and the test distribution
P ′(x, y) are different. It is pervasive in almost all empirical studies, including
Machine Learning, Statistics, Social Sciences, Economics, Bioinformatics, Bio-
statistics, Epidemiology, Medicine, etc. Selection bias is prevalent in many real-
world machine learning problems because the common assumption in machine
learning is that the training and the test data are drawn independently and
identically from the same distribution. The term ”domain adaptation” is used
when one builds a model from some fixed source domain, but wishes to deploy it
across one or more different target domains. The term ”selection bias” is slightly
more specific as it assumes implicitly that there exists a binary variable S that
controls the selection of examples in the training set, in other words we only
have access to the examples that have S = 1. For instance, case-control stud-
ies in Epidemiology are particularly susceptible to selection bias, including bias
resulting from inappropriate selection of controls in case-control studies, bias
resulting from differential loss-to-follow-up, incidence-prevalence bias, volunteer
bias, healthy-worker bias, and nonresponse bias [4].



It is well known that one may account for the difference between P (x, y)
and P ′(x, y) by re-weighting the training points using the so-called importance
weight, denoted as β(x, y) = P ′(x, y)/P (x, y). Formally, let {hθ∗}θ∈Θ be a model
family from which we want to select an optimal model hθ∗(x) = h(x, θ∗) for our
learning task and let l(y, h(x, θ)) be the loss function we would like to minimize,
the optimal model we are searching for is the one that minimizes the expected
loss over the test (or target) distribution:

θ∗ = argmin
θ∈Θ

∑
(x,y)∼P

β(x, y)P (x, y)l(y, h(θ, x))

So in practice, weighting the empirical loss of the training instances by β(x, y)
provides a well-justified solution to the selection bias problem.

In general, the estimation of β(x, y) with two different distributions P (x, y)
and P ′(x, y) is unsolvable, as the two terms could be arbitrarily far apart. One
simple assumption we can make about the connection between the distributions
of the source and the target domains is that P (x, y) and P ′(x, y) differ only in
P (x) and P ′(x) while their conditional distribution P (y|x) remains unchanged.
This specific selection bias is known as covariate shift in the literature [10]. In this
case, the weighting term reduces to β(x) = P ′(x)/P (x) and effective adaptation
is possible. At first glance, it may appear that covariate shift is not a problem
because, for classification, we are only interested in P (Y |X) which remains un-
changed. In fact, Shimodaira [10] showed that there are circumstances under
which the predictive performance is jeopardized by covariate shift. This happens
typically when the parametric model family {P (Y |X, θ)}θ∈Θ is misspecified, that
is, there does not exist any θ ∈ Θ such that P (Y |X = x, θ) = P (Y |X = x) for
all x ∈ X , so none of the models in the model family can exactly match the true
relation between X and Y .

The intuitive reason why covariate shift under model misspecification is a
problem is that the optimal (misspecified) model performs better in dense regions
of the input space than in sparse regions, because the dense regions dominate
the average classification error, which is what we want to minimize. If the dense
regions of X are different in the training and test sets, the optimal model on
the training set will no longer be optimal on the test set. In other words, the
optimal model depends on P (x), and if P ′(x) 6= P (x), then the optimal model
for the target domain differs from that for the source domain. It was proven
that, if the support of P ′(x) (the set of x for which P ′(x) > 0) is contained in
the support of P (x), then the optimal model that maximizes this re-weighted log
likelihood function asymptotically converges to the optimal model for the target
domain [10] and a large body of research has been devoted to the estimation of
P ′(x)/P (x) e.g. [13], [5], [11], [2], [1], [6], [7], [9]. However, reweighting methods
do not necessarily improve the prediction accuracy as they also dependent on
the extent to which the model is misspecified [12].

In this paper, we show analytically that, despite the fact that the unweighted
model is globally more biased than the weighted one, the former may locally be



less biased on low importance instances. In view of this result, we design a simple
algorithm that combines the weighted and the unweighted models in order to
improve the predictive performance in the target domain. More specifically, we
prove that an optimal B? always exists such that, in the region where β(x) ≤ B?,
the biased model trained on the unweighted sample should be preferred to the
unbiased one, and vice-versa. We propose a practical procedure to estimate this
threshold value from training data.

The remainder of this paper is structured as follows. In Section 2, we define
some key concepts used along the paper and state some results that will support
our analysis. Then in Section 3, we conduct a theoretical analysis to prove that
an optimal (but not necessarily unique) B? always exists and discuss a manner
to optimally combine the weighted and the unweighted models in order to im-
prove the predictive performance in the target domain. In section 4, a series of
experiments are carried out on toy problems and real-world data sets to assess
the effectiveness of this approach.

2 Preliminaries

In this section, we define some key concepts used along the paper and state
some results that will support our analysis. Consider the supervised learning
problem where we observed n training samples, denoted by ((xt; yt) : t = 1, ..., n),
where xt ∈ X ⊂ Rd are i.i.d training input points drawn from some probability
distribution p(x) and yt ∈ Y ⊂ R are the corresponding training output values
drawn from a conditional probability distribution p(y|x). We are interested in
predicting the output value y at an input point x using a model hθ(x) = h(x, θ)
parameterized by θ ∈ Θ ⊂ Rm. Under covariate shift assumption, the test inputs
follow a different probability distribution p′(x) while the conditional probability

distribution of test output p(y|x) remains unchanged. The ratio β(x) = p′(x)
p(x) is

called the importance of x. Given a loss function l(y, h(x, θ)) : X × Y × Y →
[0,∞), we shall consider throughout this paper, the following loss functions:

– EL-Tr: Expectation of loss over training distribution p(x, y) = p(x)p(y|x)

Loss0(hθ) = Ex,y∼p[l(y, h(x, θ))] =

∫
p(x)

∫
p(y|x)l(y, h(x, θ))dydx

– EL-Te: Expectation of loss over test distribution p′(x, y) = p′(x)p(y|x)

Loss1(hθ) = Ex,y∼p′ [l(y, h(x, θ))] =

∫
p′(x)

∫
p(y|x)l(y, h(x, θ))dydx

– EL-IWTr: Expectation of Importance-weighted loss over training distribu-
tion

Lossβ(hθ) = Ex,y∼p[β(x)l(y, h(x, θ))]



– B-LEL-Te: We then define Local Expectation of loss over test distribution
given β(x) ≤ B of any given hypothesis hθ:

loss(hθ, β(x) ≤ B) =

∫
β(x)≤B

p′(x)

∫
Y
p(y|x)l(y, h(x, θ))dydx

We also define the optimal parameters of EL-Tr, EL-Te and EL-IWTr:
θ0 = argminθ Loss0(hθ)

θ1 = argminθ Loss1(hθ)

θβ = argminθ Lossβ(hθ).

It may easily be shown that EL-IWTr is equal to EL-Te,

Ex,y∼p[β(x)l(y, h(x, θ))] =

∫
p(x)

∫
p(y|x)

p′(x)

p(x)
l(y, h(x, θ))dydx

=

∫
p′(x)

∫
p(y|x)l(y, h(x, θ))dydx

Therefore, minimizing EL-IWTr is equivalent to minimizing EL-Te. Nonethe-
less, while hθβ is globally less biased than hθ0 , we will show next that it is
more biased than hθ0 on low-importance instances. Note that B-LEL-Te can be
rewritten as:

loss(hθ, β(x) ≤ B) =

∫
β(x)≤B

β(x)

∫
Y
p(x)p(y|x)l(y, h(x, θ))dydx

Suppose β(x) takes on continuous value in [b0, bM ] where b0 > 0, we may
rewrite B-LEL-Te as following:

loss(hθ, β(x) ≤ B) =

∫ B

b0

b

∫
β(x)=b

∫
Y
p(x)p(y|x)l(y, h(x, θ))dydxdb

Let L(hθ, β(x) = b) =
∫
β(x)=b

∫
Y p(x)p(y|x)l(y, h(x, θ))dydx, then:

loss(hθ, β(x) ≤ B) =

∫ B

b0

bL(hθ, β(x) = b)db

Similarly, if β(x) takes on discrete values in {bi}Mi=0 such that b0 < b1 < ... <
bM , we rewrite B-LEL-IWTr as:

loss(hθ, β(x) ≤ B) =

k(B)∑
i=0

biL(hθ, β(x) = bi)

where k(B) is the largest integer such that bk(B) ≤ B. From the definitions
above, we may write




Loss1(hθ) = loss(hθ, β(x) ≤ bM ),

Loss0(hθ) =
∫∞
b0
L(hθ, β(x) = b)db, for continuous β(x),

Loss0(hθ) =
∑M
i=0 L(hθ, β(x) = bi), for discrete β(x).

As aforementioned, a model h(x, θ) is said to be correctly specified if there
exist parameter θ∗ ∈ Θ such that h(x, θ∗) = f(x), otherwise it is said to be
misspecified. It is obvious that if a model is correctly specified, the optimal
parameter θ of EL-Tr, EL-Te, and any B-LEL-Te coincide. Therefore, the model
that minimizes EL-Tr will perform well on the test data globally (i.e., minimizing
EL-Te) as well as locally (i.e., B-LEL-Te) in any region of the form β(x) < B.
Yet, in practice, almost all models are more or less misspecified. So minimizing
EL-Tr θ0 is not necessarily equivalent minimizing EL-Te. Since EL-Te is equal
to EL-IWTr, the parameter minimizing of EL-IWTr θβ , which can be estimated
from data, will also minimize EL-Te as shown in [10], [13]. However, due to the
model misspecification, θβ does not necessarily minimize B-LEL-Te. In fact, we
will prove that there exist some B∗(hθβ ) ∈ [b0, bM ] such that B-LEL-Te of θβ
exceeds that of θ0 by proving a stronger conclusion that for all model hθ, with
θ ∈ Θ, there exist some B∗(hθ) ∈ [b0, bM ] such that B*-LEL-Te of hθ exceeds
that of hθ0 , in other words any hθ is locally more biased than hθ0 when
predicting instance with β(x) ≤ B∗.

In addition, the estimation of θβ may subject to high variance since it involves
instance weighting, which is known to reduce the effective samples size [2], [3].
Hence the idea to use hθ0 of instead of hθβ to predict the test instances with
β(x) ≤ B∗.

3 Problem analysis

In this section, we conduct theoretical analyses for a simple and then a more gen-
eral selection bias mechanism. Those analyses will be used to derive a practical
procedure aiming at reducing the bias due to covariate shift with misspecified
regression or classification learning models.

We first show how EL-Tr is related to B-LEL-Te,

Lemma 1. Suppose β(x) takes on continuous value in [b0, bM ] with bM > b0 >
0, then:

Loss0(hθ) =
1

bM
loss(hθ, β(x) ≤ bM ) +

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB

Proof. For continuous β(x):∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB =

∫ bM

b0

loss(hθ, β(x) ≤ B)d

(
−1

B

)
= loss(hθ, β(x) ≤ B)

(
−1

B

)
|bMb0 −

∫ bM

b0

−1

B
d(loss(hθ, β(x) ≤ B))



By definition, loss(hθ, β(x) ≤ B) =
∫ B
b0
bL(b, hθ)db, so loss(hθ, β(x) ≤ b0) = 0

and d(loss(hθ, β(x) ≤ B)) = BL(hθ, β(x) = B)dB. Thus:

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB =

−1

bM
loss(hθ, β(x) ≤ bM )

+

∫ bM

b0

1

B
(BL(hθ, β(x) = B)dB)

By definition, we have Loss0(hθ) =
∫ bM
b0
L(hθ, β(x) = B)dB, so:

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB = − 1

bM
loss(hθ, bM ) + Loss0(hθ)

which concludes the proof ut

A similar results holds in the discrete case.

Corollary 1. Suppose β(x) takes on discrete values {bi}Mi=0 such that b0 < b1 <
... < bM , then:

Loss0(hθ) =
1

bM
loss(hθ, β(x) ≤ bM ) +

M−1∑
k=0

(
1

bk
− 1

bk+1

)
loss(hθ, β(x) ≤ bk)

Proof.

M−1∑
k=0

(
1

bk
− 1

bk + 1

)
loss(hθ, β(x) ≤ bk) +

1

bM
loss(hθ, β(x) ≤ bM )

=

(
1

b0
− 1

b1

)
[b0L(hθ, β(x) = b0)]

+

(
1

b1
− 1

b2

)
[b0L(hθ, β(x) = b0) + b1L(hθ, β(x) = b1)]

+ ...

+

(
1

bM−1
− 1

bM

)
[b0L(hθ, β(x) = b0) + ...+ bM−1L(hθ, β(x) = bM−1)]

+
1

bM
[b0L(hθ, β(x) = b0) + b1L(hθ, β(x) = b1) + ..+ bML(hθ, β(x) = bM )]



= b0L(hθ, β(x) = b0)

[(
1

b0
− 1

b1

)
+

(
1

b1
− 1

b2

)
+ ...+

(
1

bM−1
− 1

bM

)
+

1

bM

]
+ ...

+ bM−1L(hθ, β(x) = bM−1)

[(
1

bM−1
− 1

bM

)
+

1

bM

]
+ bML(hθ, β(x) = bM )

[
1

bM

]
=

M∑
i=0

L(hθ, β(x) = bi) = Loss0(hθ) ut

In view of Corollary 1, we may now state the following theorem,

Theorem 1. Suppose there exists two real values, b0 and b1, such that b0 < 1 <
b1 and a subset X0 ⊂ X such that

β(x) =

{
b0 if x ∈ X0

b1 if x /∈ X0,

then there exists a threshold B∗ such that:

loss(hθ1 , β(x) ≤ B∗) ≥ loss1(hθ0 , β(x) ≤ B∗).

In fact, B∗ can take any value in [b0, b1).

Proof. By definition, Loss0(hθ0) ≤ Loss0(hθ1), using Lemma 1, we may write:

Loss0(hθ0) =
1

b1
loss(hθ0 , β(x) ≤ b1) +

(
1

b0
− 1

b1

)
loss(hθ0 , β(x) ≤ b0)

=
1

b1
Loss1(hθ0) +

(
1

b0
− 1

b1

)
loss(hθ0 , β(x) ≤ b0)

Similarly,

Loss0(hθ1) =
1

b1
Loss1(hθ1) +

(
1

b0
− 1

b1

)
loss(hθ1 , β(x) ≤ b0)

Thus,

1

b1
Loss1(hθ0) +

(
1

b0
− 1

b1

)
loss(hθ0 , β(x) ≤ b0) ≤ 1

b1
Loss1(hθ1)

+

(
1

b0
− 1

b1

)
loss(hθ1 , β(x) ≤ b0)

Finally,

loss(hθ1 , β(x) ≤ b0)− loss(hθ0 , β(x) ≤ b0) =
b0

b1 − b0
[Loss1(hθ0)− Loss1(hθ1)]



It is easily shown that the right hand side of inequality above is non-negative
due to the definition of θ1. It follows that

loss(hθ1 , β(x) ≤ b0)− loss(hθ0 , β(x) ≤ b0) ≤ 0

which, given the assumption about β(x), is equivalent to,

loss(hθ1 , β(x) = b0)− loss(hθ0 , β(x) = b0) ≤ 0

Thus the Theorem is true when B∗ = b0. It is also true for any other B∗ ∈ [b0, b1)
as a consequence. ut

When the assumptions of Theorem 1 holds, we say that the covariate shift
scheme follows a simple step distribution. The equality in Theorem 1 only occurs
when θ0 minimizes EL-Te and θ1 minimizes EL-Tr. Such condition indicates
that covariate shift does not have an effect on searching for optimal θ, which
is a rare case as shown by other studies. Theorem 1 shows that for simple step
distribution where inclusion in the training sample is either proportional to b−10

(over-sampled instances), or to b−11 (under-sampled instances), hθ0 exhibits a
lower bias compared to hθ1 on the low importance test instances. This type of
selection bias mechanism is actually quite common. For instance, prospective
cohort studies in epidemiology are by design prone to covariate shift because
selection criteria are associated with the exposure to potential risk factors.

Theorem 2. For all θ ∈ Θ, there exists a threshold B∗(hθ) such that

loss(hθ, β(x) ≤ B∗(hθ)) ≥ loss(hθ0 , β(x) ≤ B∗(hθ)) (1)

B∗(hθ) could take any value in the set below:

B∗(hθ) = argmax
B

(loss(hθ, β(x) ≤ B)− loss(hθ0 , β(x) ≤ B))

The equality occurs whenever θ1 is also a minimum for EL-Tr.

Proof. We prove by contradiction that Theorem 2 holds. Assume that inequality
1 does not hold for B∗(hθ) defined above:

loss(hθ, β(x) ≤ B∗(hθ))− loss(hθ0 , β(x) ≤ B∗(hθ)) < 0 (2)

By definition of B∗(hθ), we may show that, for all B ∈ [b0, bM ],

loss(hθ, β(x) ≤ B)− loss(hθ0 , β(x) ≤ B) < 0

Thus, for all B ∈ [b0, bM ]

loss(hθ0 , β(x) ≤ B) > loss(hθ, β(x) ≤ B)

Now, using Lemma 1 for continuous β(x), we have:



Loss0(hθ0) =
1

bM
loss(hθ0 , β(x) ≤ bM ) +

∫ bM

b0

1

B2
loss(hθ0 , β(x) ≤ B)dB

>
1

bM
loss(hθ, β(x) ≤ bM ) +

∫ bM

b0

1

B2
loss(hθ, β(x) ≤ B)dB = Loss0(hθ)

Hence, Loss0(hθ0) > Loss0(hθ), contradicts the fact that θ0 = argminθ Loss0(hθ)
is the optimal hypothesis under the unweighting scheme and θ 6= argminθ Loss0(hθ).

If the two terms in inequality1 are equal, then we can prove similarly that
Loss0(hθ0) = Loss0(hθ), which implies that θ1 is also a minimal solution of EL-
Tr. The demonstration for discrete β(x) values follows similarly. ut

Theorem 2 states that any model hθ with θ ∈ Θ is outperformed by hθ0
learned from the unweighted training samples in terms of bias when predicting
examples with β(x) ≤ B∗(hθ). This is also applied to model hθβ which minimizes
EL-IWTr. In addition, the estimation of θβ may exhibit a higher variance due to
the effective sample size reduction as discussed in [2, 3]. These results altogether
suggest that hθ0 should be preferred to hθβ for predicting the instance’s outputs
in the region β(x) ≤ B∗(hθ), termed low-importance region. Therefore, for
any learning task with covariate shift, we shall train two distinct models, one
with and the other without the importance weighting scheme. Then, we shall use
the latter to predict instances satisfying β(x) ≤ B∗(hθ) and use the former to
predict the remaining instances. The optimal value for B∗(hθ) may be estimated
from the training data. The set of all possible empirical threshold B̂∗(hθβ ) can
be obtained empirically by solving the following problem :

B̂∗(hθ) = argmax
B

1

n

∑
i∈{1,..,n}
β(xi)≤B

β(xi)[l(yi, h(xi, θβ))− l(yi, h(yi, θ0))] (3)

As n grows to infinity, it follows from the law of large numbers that,

B̂∗(hθ)→ B∗(hθ)

Therefore, B∗(hθβ ) could be estimated empirically either from training data
or by cross validation. In this study, we use a 5-fold importance weighted cross
validation to estimate B∗(hθβ ) as suggested in [11]. It should be emphasized that
B∗(hθβ ) is not necessarily unique. For instance, any value between b0 and b1 in
Theorem 1 is admissible as mentioned earlier.

4 Experiments

In this section, we assess the ability of our ”hybrid approach” to reduce the
learning bias under covariate shift based on Theorem 2. We first discuss the
strategies employed to estimate the importance weights: one is based explicitly
on the true bias mechanism, the other is based on linear density-ratio model.



We emphasize that the latter does not require any prior knowledge of the true
sampling probabilities to estimate the β(x) values, and uses the test input fea-
tures instead. In fact, the estimation of distribution is a hard problem, thus it
is more appealing to directly estimate β(x). Indeed, a large body of work has
been devoted to this line of research e.g. [13], [5], [11], [9], [2], [1], [6]. From the
many references, we choose the Unconstrained Least-Square Importance Fitting
(uLSIF) estimator for β(x) that was proved to be successful with covariate shift.
We then study a toy regression problem to show if covariate shift corrections
based on our method reduces prediction error on the test set when the learning
model is misspecified. We then test our approach on real world benchmark data
sets, from which the training examples are selected according to various biased
sampling schemes as suggested in [6].

4.1 Importance ratio estimation

As aforementioned, we use two weighting schemes in ours experiments, one is
derived from the true selection bias mechanism an one is Unconstrained Least-
Square Importance Fitting (uLSIF), a method based on linear density-ratio mod-
els [6]. Formally, it assumes that the density ratio β(x) can be approximated by

a linear model β̂(x) =
∑M
i=1 αihi(x) where the basis functions hi, i = 1, ...,M

are chosen so that hi(x) ≥ 0 for all input value x. The coefficients α1, ..., αM
are parameters of the linear model and are estimated from data by minimizing
the empirical square error between weighted biased distribution (from training
data) and the bias-free distribution of x:

min
α

1

2n

n∑
i=1

(β̂(xi))
2 − 1

n′

n′∑
i=1

β̂(x′i) + λ.Reg(α)

where {xi}ni=1 and {x′i}n
′

i=1, are the training and test inputs, Reg(α) is the
regularization term, introduced to avoid overfitting. A heuristic choice of hi(x)
proposed in [6] is a Gaussian kernel centered at the test points {xi}n

′

i=1 when
the number of test points is small (less than 100) or at template points {x′i}100i=1,
which is a random subset of test set when the number of test points is large for
computation advantage. The kernel width and the regularization term Reg(α)
are optimized by cross-validation with grid search.

4.2 Toy regression problem

Consider the following training data generating process: x ∼ N(µ0, σ0) and
y = f(x) + ε, where µ0 = 0, σ0 = 0.5, f(x) = −x+ x3, and ε ∼ N(0, 0.3). In the
test data, we have the same relationship between x and y but the distribution
of the covariate x is shifted to x ∼ N(µ1, σ1), where µ1 = 0, σ1 = 1. The
training and test distributions, along with their ratio are depicted in Fig. 1a and
1b. The minimization of EL-Tr is obtained using the unweighted Least Square
Regression (uLSR) method for the normal regression while minimization of EL-
Te is performed by the weighted Least Square Regression (wLSR). As shown in
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Fig. 1: An illustrative example of fitting a function f(x) using a linear model
with/without the weight importance scheme (wLSR/uLSR) and a combination
of both (termed ”Mix”).



[10], wLSR is unbiased thus it should perform better than uLSR, which is biased,
on test data. However, as can be seen in Fig. 1c, uLSR (red dashed line) seems to
better approximate the y = f(x) curve (in blue) than wLSR (black dashed line)
on instances in the interval (−1, 1). As may be seen in Fig.1d, the hybrid model
that optimally combines wLSR and uLSR, based on Theorem 1, achieves a lower
Mean Square Error (MSE) compared to wLSR. The experiment was repeated 30
times for each number of sample size. It should be noted that the hybrid model
always outperforms the weighted model and the gain in performance on the test
set is more noticeable for larger training sizes.

4.3 Simple step sample selection distribution

In this second experiment, we consider a simple step distribution with known or
estimated selection probabilities and we apply this selection scheme on a variety
of UCI data sets in order to assess the efficiency of our bias correction procedure
in more realistic scenarios. We use a SVM classifier for both classification and
regression tasks. Experiments are repeated 100 times for each data set. In each
trial, we randomly select an input feature xc to control the bias along with 300
training samples. We then apply the following single step probability distribution
as discussed in Theorem 1,

P (s = 1|x = xci ) = ps =

{
p1 = 0.9 if xci ≤ mean(xc)

p2 = 0.9
1+exp(r)otherwise

where r is a parameter that controls the strength of the selection bias. In each
trial r takes a random value from a normal distribution N(2, 0.1). With these
parameters, the selection probability for instances having an xc value (e.g. a
degree of exposure to some risk factor) above the mean is between 7 to 10 times
smaller than for those having of a lower value. This is a scenario that typically
arises in epidemiological cohort studies when subjects are includes in the study
according to some exposure factor. Consider the two following weighting schemes.
The first one: β = p′(x)/p(x) = p(s = 1)/p(s = 1|x) ∼ 1/ps assumes that the
bias mechanism is known exactly.

β(x) ∼ p−1s ∼

{
b1 = 1 if xci ≤ mean(xc)

b2 = 1 + exp(r)otherwise

In practice, however, the selection probability is rarely known exactly. So let
us assume that the estimation of β is subject to some error and let us consider
the following approximate weighting scheme:

β̂(x) ∼ p−1s ∼

{
b1 = 1 if xci ≤ mean(xc)

b2 = 1 + exp(r̂) if otherwise

where r̂ = r+N (0, 0.1) is our noisy estimate of r. For each weighting scheme,
we fit a true weighted model (denoted as P in Table 1) and an approximated



weighted model (denoted as P̂ in Table 1). As p1 < 1 and p2 > 1, our weighting
mechanism satisfies the assumptions of Theorem 1, so we set B∗ = 1. We report
the mean square errors (MSE) in Tab.1. All values are normalized by the MSE
of the unweighted model (our gold standard). As may be seen from the plots
in Fig.2a and 2b, the combined models outperform the weighted ones. That is,
when using either exact probability ratio, the results obtained with Pmix are
better than that of P . The same observation can be made when the estimated
probability ratios are used instead (i.e., P̂mix versus P̂ ) and except on the Ban-
knote data set. The gain is significant at the significance level 5% using the
Wilcoxon signed rank test.

Table 1: Mean test error averaged over 200 trials with different weighting schemes
on 15 UCI data sets. Data sets marked with ’*’ are regression problems. P denotes
the weighting scheme using the true selection probability and P̂ denotes the
weighting scheme using a noisy selection probability. For each pair of weighted
and mix models, the better prediction value is highlighted in boldface

Data set No weighting P P mix P̂ P̂ mix

India diabetes 1.000 ± 0.020 0.966 ± 0.019 0.960 ± 0.018 0.968 ± 0.019 0.962 ± 0.018
Ionosphere 1.000 ± 0.128 0.915 ± 0.105 0.902 ± 0.107 0.911 ± 0.104 0.897 ± 0.106
BreastCancer 1.000 ± 0.039 1.020 ± 0.044 1.013 ± 0.044 1.020 ± 0.044 1.013 ± 0.043
GermanCredit 1.000 ± 0.008 1.000 ± 0.007 0.996 ± 0.008 1.000 ± 0.008 0.996 ± 0.008
Australian credit 1.000 ± 0.006 0.963 ± 0.008 0.947 ± 0.010 0.964 ± 0.008 0.947 ± 0.010
Mushroom 1.000 ± 0.068 0.090 ± 0.057 0.872 ± 0.060 0.888 ± 0.058 0.874 ± 0.056
Congressional Voting 1.000 ± 0.033 1.026 ± 0.039 0.993 ± 0.038 1.030 ± 0.038 1.000 ± 0.037
Banknote 1.000 ± 0.040 0.970 ± 0.043 0.978 ± 0.038 0.969 ± 0.042 0.975 ± 0.039
Airfoil self noise* 1.000 ± 0.023 0.997 ± 0.015 0.961 ± 0.012 0.993 ± 0.015 0.958 ± 0.012
Abanlone* 1.000 ± 0.032 0.984 ± 0.020 0.960 ± 0.020 0.985 ± 0.021 0.961 ± 0.020
Auto MGP* 1.000 ± 0.084 0.939 ± 0.066 0.933 ± 0.067 0.939 ± 0.066 0.930 ± 0.067
Boston Housing* 1.000 ± 0.057 1.037 ± 0.053 0.994 ± 0.050 1.037 ± 0.053 0.994 ± 0.050
Space GA* 1.000 ± 0.009 1.021 ± 0.007 0.962 ± 0.008 1.018 ± 0.008 0.961 ± 0.008
Cadata* 1.000 ± 0.013 1.038 ± 0.022 1.029 ± 0.017 1.037 ± 0.022 1.029 ± 0.017

4.4 General covariate selection mechanisms

In this last experiment, we use the same setting as above but we use a more
general distribution:

P (s = 1|x = xci ) = ps =


p1 = 0.9 if xci ≤ mean(xc)

p2 = 0.1 if xci > mean(xc) + 0.8× 2σ(xc)

p3 = 0.9− xci−mean(x
c)

2σ(xc) otherwise.

where σ(xc) denotes the standard deviation of xc. As may be observed, the
assumptions required in Theorem 1 do no hold anymore with this more general



sample selection distribution. According to Eq.3, we need to estimate B̂∗(hθ)
empirically from data. We consider again two importance weighting schemes:
one is based on the true underlying probability and is referred to as P , while
the other is based on the uLSIF estimator. As may be observed from Table 2
and Figures 2c and 2d that performances of the hybrid models are significantly
improved with respect to the weighted models, except with the Congressional
Voting and Banknote data sets.
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Fig. 2: MSE gain of the mix model vs. MSE gain of the weighted model. Points
below the diagonal line indicate that the mix model outperforms the weighted
model. Figures (a) and (b): simple step distribution covariate shift used in the
first experiment with the weighted model based on (a) the true selection proba-
bility and (b) based on the estimated selection probability. Figures (c) and (d):
covariate shift in used in the second experiment when the weighted model based
was based on: (c) true selection probability; (d) on uLSIF.

5 Conclusions

In this paper, we showed that the standard importance weighting approach used
to reduce the bias due to covariate shift can easily be improved when misspecified



Table 2: Mean test error averaged over 200 trials for different weighting schemes
on UCI data set. Data sets marked with * are for regression problems. P denotes
the weighting scheme based on the true selection probability and uLSIF denotes
the weighting scheme using the uLSIF estimator. For each pair of weighted and
mix models, the better prediction value is highlighted in boldface.

Data set No weighting P P mix uLSIF uLSIF mix

India diabetes 1.000 ± 0.021 0.980 ± 0.018 0.975 ± 0.018 1.016 ± 0.021 1.006 ± 0.021
Ionosphere 1.000 ± 0.087 1.006 ± 0.087 0.988 ± 0.085 1.028 ± 0.093 1.007 ± 0.087
BreastCancer 1.000 ± 0.019 1.004 ± 0.018 0.993 ± 0.019 1.000 ± 0.018 0.993 ± 0.019
GermanCredit 1.000 ± 0.008 1.003 ± 0.008 0.999 ± 0.008 1.009 ± 0.008 1.001 ± 0.008
Australian credit 1.000 ± 0.009 0.972 ± 0.007 0.967 ± 0.007 1.007 ± 0.008 1.005 ± 0.008
Mushroom 1.000 ± 0.558 1.011 ± 0.054 0.963 ± 0.051 0.991 ± 0.054 0.989 ± 0.054
Congressional Voting 1.000 ± 0.037 1.023 ± 0.036 1.010 ± 0.037 0.987 ± 0.036 0.997 ± 0.036
Banknote 1.000 ± 0.060 1.083 ± 0.057 0.962 ± 0.062 0.962 ± 0.061 0.979 ± 0.058
Airfoil self noise* 1.000 ± 0.007 0.995 ± 0.007 0.995 ± 0.007 1.011 ± 0.008 1.001 ± 0.008
Abanlone* 1.000 ± 0.007 1.001 ± 0.008 1.001 ± 0.007 1.005 ± 0.007 0.998 ± 0.006
Auto MGP* 1.000 ± 0.026 0.990 ± 0.025 0.970 ± 0.025 1.015 ± 0.027 0.994 ± 0.026
Boston Housing* 1.000 ± 0.043 0.984 ± 0.031 0.940 ± 0.032 1.036 ± 0.040 0.989 ± 0.042
Space GA* 1.000 ± 0.006 1.005 ± 0.005 0.980 ± 0.006 1.000 ± 0.005 0.996 ± 0.005
Cadata* 1.000 ± 0.012 1.008 ± 0.013 1.006 ± 0.012 1.023 ± 0.013 1.010 ± 0.012

training models are used. Considering a simple class of selection bias mechanisms,
we proved analytically that the unweighted model exhibits a lower prediction bias
compared to the globally unbiased model in the low importance input subspace.
Even for more general covariate shift scenarios, we proved that there always ex-
ist a threshold for the importance weight below which the test instances should
be predicted by the globally biased model. In view of this result, we proposed a
practical procedure to estimate this threshold and we discussed a simple proce-
dure to combine the weighted and unweighted prediction models. The method
was shown to be effective in reducing the bias on several UCI data sets.
Acknowledgments: This work was partially supported by a grant from the
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