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Introduction

Regionalized categorical variables often appear in several scientific domains. For instance, in the earth sciences, some continuous soil properties (e.g the permeability, the grade of an element, ...) can be better described by first categorizing the rock types into lithofacies (or facies) which present a certain homogeneity with respect to the studied variable. Then, the continuous variables are studied separately in each category. In the scope of conditional simulations, the lithofacies are first simulated conditionally to the observed lithofacies, then the continuous variables are simulated inside each simulated category according to their associated spatial distribution. To model and simulate a categorical random field, the plurigaussian model is particularly appealing. Based upon the simple truncation of one [START_REF] Matheron | Conditional simulation of the geometry of fluvio deltaic reservoirs[END_REF] or several Gaussian Random Fields (Le Loc'h and [START_REF] Loc'h | Truncated plurigaussian method: theoretical and practical point of view[END_REF][START_REF] Loc'h | Improvement in the truncated gaussian method: combining several gaussian functions[END_REF], it allows to reproduce a wide range of patterns. Applications of the plurigaussian model can be found for mineral resources evaluation [START_REF] Carrasco | Application of the truncated gaussian simulation method to a porphyry copper deposit[END_REF][START_REF] Riquelme | Truncated gaussian and plurigaussian simulations of lithological units in mansa mina deposit[END_REF][START_REF] Talebi | Stochastic rock type modeling in a porphyry copper deposit and its application to copper grade evaluation[END_REF], in hydrology [START_REF] Mariethoz | Truncated plurigaussian simulations to characterize aquifer heterogeneity[END_REF]. In petroleum, some authors use the plurigaussian models in link with history matching [START_REF] Hu | Gradual deformation and iterative calibration of gaussian-related stochastic models[END_REF][START_REF] Liu | Automatic history matching of geologic facies[END_REF][START_REF] Romary | History matching of approximated lithofacies models under uncertainty[END_REF]. In this paper, we suppose that we directly observe the categorical variable.

When the underlying Gaussian Random Fields (GRFs) are supposed to be stationary, two ingredients are necessary to fully specify the plurigaussian model: the coding function (or truncation rule) which defines the sets associated to each category and which can vary along the space and the multivariate covariance function.

Concerning the coding function, some authors use a simple parametric form, for instance a cartesian product of intervals and they allow the threshold values to vary along the space. It is often the case vertically through the vertical proportion curves [START_REF] Felletti | Statistical modelling and validation of correlation in turbidites: an example from the tertiary piedmont basin (castagnola fm., north italy)[END_REF] but also laterally, for instance when using an auxiliary information as seismic data in the model. Other authors concentrate on the estimation of more complex coding functions constant in space [START_REF] Astrakova | Truncation map estimation for the truncated bigaussian model based on univariate unit-lag probabilities[END_REF]. Finally, [START_REF] Allard | Nonparametric diagrams for pluri-gaussian simulations of lithologies[END_REF] estimate complex coding function varying in space by using auxiliary information.

As mentionned by [START_REF] Mariethoz | Truncated plurigaussian simulations to characterize aquifer heterogeneity[END_REF], one of the main difficulty arising from the use of the plurigaussian model is the inference of the variogram models of the underlying GRFs. Indeed, the available empirical variograms are the variograms of the indicator functions of the categories (one simple variogram per category and the crossvariograms for all the bivariate combinations) while the variograms required by the model are the variograms of the underlying GRFs whose realizations are hidden by the truncation.

Until now, most of the methods to estimate the variogram of the underlying GRFs rely on the indicator variograms. For instance [START_REF] Mariethoz | Truncated plurigaussian simulations to characterize aquifer heterogeneity[END_REF] determine the variogram model of the underlying GRFs by using simulations. More precisely, they choose a parametric model for the underlying GRFs and they compute the parameters value such as the indicator simple variograms of the simulations are the closest to the data indicator variograms. The optimization is performed with simulated annealing. [START_REF] Armstrong | Plurigaussian simulation in geosciences[END_REF] exploit the mathematical relationships between the underlying GRFs variogram models, the coding function and the indicator simple and cross-variograms. Some industrial softwares (as Isatis R , 2014) also use these relations and the users must choose the parameters of the variogram models of the underlying GRFs by visual inspection of the resulting indicator variograms through a trial-and-error procedure [START_REF] Galli | The pros and cons of the truncated gaussian method[END_REF]. [START_REF] Emery | Simulation of geological domains using the plurigaussian model: New developments and computer programs[END_REF] performs the numerical integration of the Gaussian density by using its expansion into the normalized Hermite polynomials. All these methods are rather tedious as they have a high computational cost or require a lot of trials. [START_REF] Dowd | Plurigau: a computer program for simulating spatial facies using the truncated plurigaussian method[END_REF] and [START_REF] Xu | A flexible true plurigaussian code for spatial facies simulations[END_REF] propose to find the range parameters automatically by minimizing a squared differences with a grid-search but the choice of the covariance models of the underlying GRFs remains arbitrary and limited.

In this paper, we will supppose that the coding function is known and we will concentrate on the estimation of the variograms of the underlying GRFs. We propose an original methodology based on the pairwise likelihood (PL) maximization principle to directly compute the empirical variograms of the underlying and hidden GRFs. More precisely, we perform a semiparametric estimation by considering the variogram at a given lag (distance in the omnidirectional case or vector otherwise) as a parameter of the model. Then, we maximize the PL by grouping the pairs of points approximately separated by this lag in the same way as for the classical empirical variogram estimation [START_REF] Matheron | Traité de Géostatistique appliquée[END_REF]. We iterate this calculation on all distances (respectively vectors). Thereby, we obtain an empirical variogram which helps the user to choose a suitable valid model that can then be fitted by least squares or estimated with a likelihood based approach. Then, the simple and cross-variograms in the indicator scale can be derived and compared to the empirical variograms of the indicators to check the quality of the resulting models.

In the first part, we give the main notations of the paper and we recall the definition of the plurigaussian model. In section 2.2, the relationships between variograms of GRFs and variograms of indicators are recalled for comparison purposes. Then we present our method in section 3. First, we describe the general principle which should make the estimation of a complex multivariate spatial model possible. Then we describe with more details the implementation in the case where the underlying GRFs are considered as independent. To assess the efficiency of the method and to evaluate the uncertainty associated to the variogram estimation, a Monte-Carlo study is performed and its results are summarized in section 4. We finish with some perspectives offered by the method to simplify the inference of the hierarchical spatial models.

The data model 2.1 General formulation of the plurigaussian model

Let F = {f 1 , . . . , f K } be a finite set with K categories. For a set of n sites {x i } 1≤i≤n of a domain D ⊂ R d , we observe f = (f (x 1 ), . . . , f (x n )) a F-valued vector. We suppose that for a given location x ∈ D, the value f (x) is the realization of a F-valued random variable F (x).

To characterize the spatial distribution of F (.), we use the plurigaussian model as described in [START_REF] Armstrong | Plurigaussian simulation in geosciences[END_REF]. Let Y(.) = {Y(x), x ∈ D} be a q-variate centered and standardized GRF on D: for all x ∈ D, Y(x) = (Y 1 (x), . . . , Y q (x)) is a random vector with q components and for all N ∈ N and for all (x 1 , . . . , x N ) ∈ D N , the N × q-vector

(Y(x 1 ), . . . , Y(x N )) = (Y 1 (x 1 ), . . . , Y 1 (x N ), . . . , Y q (x 1 ), . . . , Y q (x N )) is a standard Gaussian vector with E[Y r (x i )] = 0 and Var[Y r (x i )] = 1 for all r ∈ [[1, q]] and i ∈ [[1, N ]].
In this paper, we supose that Y(.) is a second-order stationary multivariate function, i.e there exists a matricial cross-covariance function [START_REF] Wackernagel | Multivariate Geostatistics -An Introduction with Application, 3rd Edition[END_REF], for an introduction on multivariate spatial random fields).

C such as Cov(Y r (x), Y s (x )) = C rs (x -x) for (r, s) ∈ [[1, q]] 2 (see
Let C be a coding function on D such as, for all

x ∈ D, C(x) = (C 1 (x), . . . , C K (x)) where, for k ∈ [[1, K]], the subsets C k (x) form a (measurable) partition of R q .
The model is defined by the following equivalence

F (x) = f k if and only if Y(x) ∈ C k (x).
(1)

Note that the formulation given by ( 1) provides a quite general class of models. Indeed, it also contains the models defined by

F (x) = f k if and only if ϕ(Y(x)) ∈ Ck (x)
for any surjective function ϕ from R q to any set E where the sets Ck (x) for [[1, K]] form a partition of E. The subsets ϕ -1 ( Ck (x)) have to be some measurable sets of R q . This remark aims to highlight the fact that the marginal gaussianity of the random variables Y r (x) is arbitrary. Nevertheless, the Gaussian assumption is a convenient way to describe the spatial multivariate relationships of the underlying random fields. It also provides a multivariate random field easy to simulate (see e.g [START_REF] Lantuejoul | Geostatistical Simulation: models and algorithms[END_REF]).

We will note c(x) the set defined as:

c(x) = C k (x)
where k ∈ [[1, K]] is the index of the category at location x. In other words, f (x) = f k . In all the sequel, we will suppose that the classes C k (x) are known.

Indicators cross-variograms based methods

As mentionned in the introduction, most of the methods to choose the covariance model of the underlying GRFs rely on the indicator simple and cross-variograms or covariances. [START_REF] Armstrong | Plurigaussian simulation in geosciences[END_REF] or Isatis R (2014) use the mathematical relationships between the simple and cross-covariances (or variograms) of the GRFs and the simple and cross-covariances (or variograms) of the indicators of each category. In the current paper, we only use these relationships to check the quality of the results given by our proposed method. We recall these relationships below. For that purpose, we will note the random indicator function of the category f k ∈ F as follows:

1 1 f k (x) = 1 if F (x) = f k 0 otherwise
and 1 f k (x) the associated true value.

Variogram between two points

For (k, l) ∈ [[1, K]] 2
, one can define the variograms between indicators of facies k and l, between two locations x and x of D by:

γ kl (x, x ) = 1 2 E[(1 1 f k (x ) -1 1 f k (x))(1 1 f l (x ) -1 1 f l (x))]
When k = l, we have the simple variogram:

γ kk (x, x ) = E[1 1 f k (x)] + E[1 1 f k (x )] 2 -E[1 1 f k (x )1 1 f k (x)] (2) 
When k = l, we have the cross-variogram:

γ kl (x, x ) = - E[1 1 f k (x )1 1 f l (x)] + E[1 1 f l (x )1 1 f k (x)] 2 (3)
We note Σ x and Σ x,x the respective correlation matrices of the vectors Y(x) and (Y(x), Y(x )). Furthermore, g Σ (u) stands for the centered and standardized Gaussian density with correlation matrix Σ computed for the vector u.

With these notations, we can establish the link between γ kl (x, x ) and the correlations between the underlying GRFs. Indeed, the expectation of the indicator of facies k (which corresponds to its proportion at location x) is equal to:

E[1 1 f k (x)] = C k (x)
g Σx (u)du ( 4)

and

E[1 1 f k (x)1 1 f l (x )] = C k (x) C l (x ) g Σ x,x ((u, v))dudv (5) 
where each integration symbol represents an integration over a qdimensional space. These integrations and all the others mentionned in the current paper are integral of the Gaussian probability density function. They can be computed numerically with the efficient algorithm proposed by [START_REF] Genz | Numerical computation of multivariate normal probabilities[END_REF].

Note that it is sometimes useful to work with the non-centered covariances E[1 1 f k (x)1 1 f l (x )] which can be computed in the same way. Indeed, it has the advantage to capture asymetry in the model.

When the GRFs are stationary and the coding function C is constant over D, the variograms of all the involved random fields only depend on the lag between the points. Therefore, we can deduce the simple and cross-variograms of the indicator for a given lag from the variograms value of the underlying GRFs by using formulas (2), ( 3), ( 4) and ( 5). However, when the coding function varies over D, the theoretical simple and cross-variograms of the indicators for a given lag do not exist anymore. Nevertheless, it is still possible to compute the associated empirical variograms and compare them with an averaged version of the variograms between two points computed in the indicators domain as described below.

Variogram for a specific lag

For a given vector h ∈ R d , we will note x j -x i h when the pair (x i , x j ) is used to compute the empirical variogram at lag h (see e.g Chilès and Delfiner, 2012, for details). N (h) stands for the number of such pairs. γkl (h) = 1 2N (h)

x j -x i h (1 f k (x j ) -1 f k (x i ))(1 f k (x j ) -1 f k (x i )).
This is the quantity that many authors suggest to fit with the image of the variogram model of the GRFs in the indicators scale which is defined for (k, l) ∈ [[1, K]] 2 by:

γ kl (h) = 1 N (h) x j -x i h γ kl (x i , x j ). ( 6 
)
This quantity depends on the spatial characteristics of Y(.) (defined through its multivariate cross-covariance function in the stationary case) and from the the set functions C k through the values at the observation locations {x 1 , . . . , x n } 3 Estimating the variogram by using pairwise likelihood

In this part, we describe a new methodology to perform the multivariate empirical variography of the underlying GRFs from the category observations. This methodology is based on the pairwise likelihood (PL) maximization. We first recall the principle of the more general composite likelihood based approach. Then we show how to apply it for the plurigaussian model. Finally, we describe more precisely the algorithm in two particular cases: the monogaussian case (q = 1) and the plurigaussian case in which the q GRFs are independent and the sets c(x) are cartesian products of real subsets.

Composite likelihood maximization

The PL approach belongs to the family of the composite likelihood methods (see e.g. [START_REF] Varin | An overview of composite likelihood methods[END_REF], for a comprehensive review). It is generally used to estimate a parameters vector θ of a statistical model, for instance when the usual maximization of the full likelihood is computationally cumbersome. In these cases, the full likelihood is replaced by a weighted product of marginal or conditional likelihoods. [START_REF] Lindsay | Composite likelihood methods[END_REF] defines the composite likelihood as follows: if W a random vector with multivariate density f (w; θ) and {A β , β ∈ I} is a set of marginal or conditional events with associated likelihoods L β (θ; w) ∝ f (w ∈ A β ; θ) for a finite set I, the composite likelihood is the weighted product

L C (θ; w) = β∈I L β (θ; w) λ β
where λ β are nonnegative weights to be chosen.

One of the advantages of the composite likelihood based approaches is that they enable to estimate only some components of the parameters vector θ. We use this idea below to derive a semiparametric estimator of the underlying variograms. Before that, we present an introductive example to show that, under suitable assumptions, the usual empirical variogram can be considered as a maximum of a composite likelihood.

The empirical variogram as a solution of an optimization problem

Suppose that we observe (y(x 1 ), . . . , y(x n )) derived from an intrinsec GRF with variogram γ.

Curriero and Lele (1999) model γ with a parametric form γ θ and estimate θ by maximizing the marginal likelihood based on pairwise differences:

L C (θ; w) = n-1 i=1 n j=i+1 f (v ij ; θ) λ ij (7)
where f (v ij ; θ) stands for the density of the increment V ij = Y (x j )-Y (x i ) and λ ij are some weights to choose.

Here we adopt a semiparametric approach, (as [START_REF] Im | Semiparametric estimation of spectral density with irregular observations[END_REF], with the spectral density). We suppose that θ contains the variogram values γ(h α ) for a set of n l lags h α , α ∈ [[1, n l ]]. Then we group the pairs of points (x i , x j ) according to their distance as follows: when their exists α such as x j -x i h α , we set λ ij to 1 and we consider that γ(x j -x i ) = γ(h α ); otherwise, if it is not possible to associate a pair (x i , x j ) to a lag, its weight is set to 0. Then, it is straightforward to show that the quantity which maximizes the associated marginal likelihood based on pairwise differences (7) is nothing but the traditional empirical variogram estimator of [START_REF] Matheron | Traité de Géostatistique appliquée[END_REF]. We use the same idea to estimate the underlying variograms in the plurigaussian model.

Adaptation to the plurigaussian case

We would like to estimate Σ(h α ), the cross-covariance matrices of the vectors

(Y 1 (x), Y 1 (x + h α ), . . . , Y q (x), Y q (x + h α )) for a set of n l separation vectors h α , α ∈ [[1, n l ]].
The particular composite likelihood which is adapted to this problem is the pairwise likelihood

L C (θ; w) = n-1 i=1 n j=i+1 f (w i , w j ; θ) λ ij
where f (w i , w j ; θ) are the bivariate densities of (W i , W j ) for all (i, j

) ∈ [[1, m]] 2 .
To estimate the covariance matrices Σ(h α ), we consider that θ contains all the unknown elements of the matrices Σ(h α ) for α ∈ [[1, n l ]]. Then, we group the pairs of sites according to their separation vector in the same way as the empirical variogram computation and we write the log PL as follows:

l C (θ; f) = n l α=1 x j -x i hα log p ij (Σ(h α )) (8) 
where

p ij (Σ) = c(x i ) c(x j ) g Σ ((u, v))dudv
is the probability that F (x i ) = f (x i ) and F (x j ) = f (x j ) when the cross-covariance matrix of the vector (Y 1 (x), Y 1 (x+h α ), . . . , Y q (x), Y q (x+ h α ) is Σ. Again, the weights λ ij attached to a pair (i, j) have been set to 1 if there exists α ∈ [[1, n l ]] such as x j -x i h α and to 0 otherwise.

Then, the PL estimator is obtained by maximizing l C with respect to all the matrices Σ(h α ). Note that to satisfy the stationarity of the resulting model, the condition

Cov(Y r (x i ), Y s (x i )) = Cov(Y r (x j ), Y s (x j ))
is required for all locations x i and x j and all variable indices (r, s) ∈ [[1, q]] 2 . It implies that the 2q × 2q-matrices Σ(h α ) belong to the set noted S 2q defined by

B ∈ S 2q ⇔ b 2r,2s = b 2r-1,2s-1
where b r,s stands for the (r, s) th element of the matrix B. Furthermore, it is important to remark that all the matrices Σ(h α ) share some common terms to estimate, the ones corresponding to C rs (0). These two constraints on the global solution make the problem numerically difficult to solve.

In this paper, we focus on the simplified cases where the q GRFs are independent which is a quite ordinary assumption for the practitionners of the plurigaussian models. Then, C rs (h) = 0 for all (r, s) ∈ [[1, q]] 2 and all h ∈ R d . Therefore, the matrices Σ(h α ) do not share any common term to estimate simultaneously. Furthermore, the positive definiteness of the matrices Σ(h α ) is satisfied as soon as its non-zero off-diagonal elements belong to ] -1, 1[. It results that the maximization of the log PL can be achieved by solving n l simpler maximization problems: for each α ∈ [[1, n l ]], we can estimate the "parameters" q-vector θ α with r th element ρ r (h

α ) = Cor(Y r (x), Y r (x + h α )) by θα = arg max ρ∈]-1,1[ q x j -x i hα log c(x i ) c(x j ) q r=1
g ρr (u r , v r )du r dv r (9)

where ρ = (ρ 1 , . . . , ρ q ). In the monogaussian case (q = 1), the only quantity to estimate for a given lag h α is the spatial correlation of the underlying univariate GRF,

ρ(h α ) = Cor(Y (x), Y (x + h α )) or equivalently γ(h α ) = 1 - ρ(h α ).
Hence, the PL maximization problem ( 9) is reduced to a one dimensional optimization problem over a bounded interval; it can easily be solved, for instance with the golden section search algorithm [START_REF] Press | Numerical Recipes: The Art of Scientific Computing[END_REF].

For q > 1, the generalization is straightforward if we assume that all the sets C k (x) are cartesian products of subsets of R:

C k (x) = q r=1 T r k (x) with T r k (x) ⊂ R, By denoting t r (x) = T r k (x)
where k is such that f (x) = f k is the actual category at site x, we have:

p ij (Σ(h α )) = q r=1 tr(x i ) tr(x j ) g ρr(hα) (u, v)dudv.
In other word, each ρ r (h α ) is estimated by:

ρ r (h α ) = argmax ρ∈]-1,1[ x j -x i hα log tr(x i ) tr(x j ) g ρ (u, v)dudv.
which is equivalent to solve q problems similar to the monogaussian case.

C 1 (h) = e -h/20 C 2 (h) = e -(h/40) 2
4.1 The monogaussian case, q = 1 On a 1-dimensional regular grid with mesh size 1 and 2000 nodes, for i = 1, 2, 1000 realizations of standardized GRF Y i (.) with covariance C i (h) have been drawn. For each realization, y(.), one category among the set F = {black, red, green} is assigned to each node x of the grid according to the following rule:

f (x) =    orange if y(x) ∈ C 1 (x) = (-∞, s 1 (x)) black if y(x) ∈ C 2 (x) = (s 1 (x), s 2 (x)) green if y(x) ∈ C 3 (x) = (s 2 (x), +∞)
We consider two coding function cases:

• the constant case: s 1 (x) = -s 2 (x) are chosen such as the probability that P (Y (x) ∈ C i (x)) = 1 3 for all i = 1, 2, 3 and all x ∈ R d , • the varying case where s 1 (x) and s 2 (x) have been simulated once for all simulations.

Hence, 4 different categorical random fields have been considered by crossing all the possibilities (C 1 or C 2 vs. constant or varying coding function). The empirical variogram of the underlying GRF is computed by pairwise likelihood from the categories as described in section 3.3, for 150 distances ranging regularly from 1 to 150. For comparison purpose, in each case, the traditional empirical variogram has been computed directly on the realizations y(.) for the same set of distances.

The results are summarized on figure 3. In each case, the average over all the simulations display a negligible bias. As expected, the variability of the estimator increases with the distance. The variogram seems to be better estimated when computed from categories by PL than with the original Gaussian values despite the loss of information due to the truncation. The reason is that we provide additional information by fixing the sill to 1 in the computation by PL. If we compare the results with respect to the covariance model, the simulations with model C 1 always display more important statistical fluctuations than with C 2 . The comparison between the constant coding function case and the varying one shows that the statistical fluctuations around the mean are greater for the latest. It is probably due to the fact that with the constant proportions 1/3 of each category, a lot of transitions occur, bringing more information on the spatial correlation structure of the GRF than in the varying case. Indeed, for this latter case, the values of the probability of a given category are very strong in some areas, leading to few transitions and therefore less information on the hidden field.

4.2 The independent bigaussian case, q = 2 with C a constant cartesian product of intervals

In this example, we consider the same categories as previously. They are generated by assuming that Y 1 (.) and Y 2 (.) are independent with respective covariance function C 1 and C 2 . The categories are assigned to a point x according to the following rule:

f (x) =    black if y(x) ∈ C 1 (x) = (-∞, s 1 ) × R orange if y(x) ∈ C 2 (x) = (s 1 , +∞) × (-∞, t 1 ) green if y(x) ∈ C 3 (x) = (s 1 , +∞) × (t 1 , +∞)
where s 1 = t 1 = 0 such that P ((Y 1 (x), Y 2 (x) ∈ C 1 (x)) = 1 2 and P ((Y 1 (x), Y 2 (x) ∈ C i (x)) = 1 4 for i = 2, 3. A scheme of this coding function is displayed fig. 1 (b). Then 1000 simulations are performed on 800 locations chosen uniformely on the square [0, 1] × [0, 1] one time for all the simulations. A realization is displayed fig. 5.

For each simulation, an empirical omnidirectional variogram is computed for 30 distances ranging from 0 and 150 with a tolerance factor on the distance. The results are summarized fig. 5 and again, they are rather good compared to the empirical variograms computed directly from the Gaussian data. Note that for each simulation, the computation of the empirical variogram of the second Gaussian from y(.) has been computed by using only the subset of locations for which the first Gaussian is greater than 0.

Discussion

In this paper, we propose to use the pairwise likelihood principle to estimate empirical variograms of the underlying GRFs in the plurigaussian model. The use of a composite likelihood based approach to provide an exploratory data analysis tool is apparently original, even if, as above-mentionned, the usual empirical variogram can be seen as the solution of an optimization involving a composite likelihood.

Once the empirical variograms of the underlying GRFs have been computed, we can use them to choose a valid multivariate variogram model. They can be fitted by least squares, for instance by using the algorithm proposed in [START_REF] Desassis | Automatic variogram modeling by iterative least squares: Univariate and multivariate cases[END_REF] or their parameters can be estimated by a likelihood based method. The likelihood will probably remain intractable since it involves at least an integral on R n where n is the number of samples. Again, a composite likelihood based approach should be used instead. Again, the PL seems well suited.

To conclude, note that the method presented in this paper is implemented in the R-package RGeostats [START_REF] Renard | RGeostats: The geostatistical package[END_REF] in the function named vario.pgs. Some demonstration scripts are provided through a tutorial on the dedicated website.

Further researches will concentrate on the generalization of the approach presented in this paper to the case where no independence assumption is made between the underlying GRF. Indeed, more complex transitions between categories can be investigated, with more general multivariate spatial models (see [START_REF] Galli | An application of the truncated plurigaussian method for modeling geology[END_REF]. In that case, all the elements (except the diagonal) of the correlation matrices Σ(h α ) must be estimated with the constraints mentionned in section 3.3. This is computationally much more challenging. Another natural extension could be to adapt the local variogram kernel estimator proposed in [START_REF] Fouedjio | A generalized convolution model and estimation for non-stationary random functions[END_REF] to the plurigaussian context by using PL. Then, it would be possible to deduce a non-stationary model for the underlying GRFs, for instance with varying anisotropies.

Finally, the PL likelihood approach to compute empirical variograms seems to be a promising idea which could be applied to other similar context of hidden variable, or variable known after a transformation.

To cite some of them:

• compute the empirical variogram of the underlying GRF in the hierarchical geostatistical models (see e.g [START_REF] Diggle | Model based geostatistics[END_REF].

Some authors have already proposed a way to compute empirical variogram of underlying random fields in hierarchical models: [START_REF] Oliver | Estimating the risk of childhood cancer[END_REF] treats the binomial case, [START_REF] Monestiez | Geostatistical modelling of spatial distribution of balaenoptera physalus in the northwestern merditerranean sea from sparse count data and heterogeneous observation efforts[END_REF] the poisson case. However, these estimators are based on the method of moments and the distribution of the underlying random field is not specified. Thus, the underlying intensity can only be predicted by kriging but they can not be simulated. An approach based on the PL in a distribution based framework could be a good alternative;

• perform the multivariate empirical variography of the underlying GRFs when one has to deal with a continuous variable vs. discrete variable [START_REF] Emery | Conditional co-simulations of continuous and categorical variables for geostatistical applications[END_REF], or even two discrete variables [START_REF] Chagneau | A hierarchical bayesian model for spatial prediction of multivariate nongaussian random fields[END_REF][START_REF] Renard | Heterotopic bicategorical variables in plurigaussian simulation[END_REF];

• compute the empirical variogram of a variable at punctual level when the observations are some regularizations with different supports. ), average of the empirical variograms over all the simulations ( ), 25th and 75th percentiles ( ), 5th and 95th percentiles (

).
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 12 Figure 1: Example of coding functions for (a) q = 1 and (b) q = 2.
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 34 Figure 3: Simulation results in the monogaussian cases with covariance C 1 (left) and C 2 (right), in the constant coding function case (up) and in the varying case (middle). The down figures stand for the Gaussian case. Actual model ( ), empirical variogram of ten arbitrary simulations ( ), average of the empirical variograms over all the simulations (), 25th and 75th percentiles (), 5th and 95th percentiles ( ).

Illustration on simulationsIn this section, we present two simulation studies to assess the efficiency of the proposed method. We work with two covariance models:
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