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in the plurigaussian models
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1Centre de Géosciences - MINES-ParisTech

Abstract

The plurigaussian model is particularly suited to describe categorical regional-
ized variables. Starting from a simple principle, the thresholding of one or several
Gaussian random fields (GRFs) to obtain categories, the plurigaussian model is well
adapted for a wide range of situations. By acting on the form of the thresholding
rule and/or the threshold values (which can vary along space) and the variograms
of the underlying GRFs, one can generate many spatial configurations for the cat-
egorical variables. One difficulty arising with the use of this model is to choose
variogram model for the underlying GRFs. Indeed, these latter are hidden by the
truncation and we only observe the simple and cross-variograms of the category
indicators. In this paper, we propose a method based on the pairwise likelihood to
estimate the empirical variogram of the GRFs. It provides an exploratory tool in
order to choose a suitable model for each GRF and later to estimate its parameters.
We illustrate the efficiency of the method with a Monte-Carlo simulation study. The
method presented in this paper is implemented in the R package RGeostats.

Keywords: Plurigaussian models ; empirical variography ; pairwise likelihood (PL)
; underlying Gaussian Random Fields (GRFs)

1 Introduction

Regionalized categorical variables often appear in several scientific domains. For
instance, in the earth sciences, some continuous soil properties (e.g the permeability,
the grade of an element, ...) can be better described by first categorizing the rock
types into lithofacies (or facies) which have a certain homogeneity regarding to
the studied variable. Then, the continuous variables are studied separatly in each
category. In the scope of conditional simulations, the lithofacies are first simulated
conditionally to the observed lithofacies, then the continuous variables are simulated
inside each simulated category according to their associated spatial distribution (see
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for instance Dubrule, 1993). To model and simulate a categorical random field, the
plurigaussian model is particularly appealing. Starting from a simple principle,
the truncation of one (Matheron et al., 1987) or several Gaussian Random Fields
(Le Loc’h and Galli, 1996; Le Loc’h et al., 1994), it allows to reproduce a wide
range of patterns. Applications of the plurigaussian model can be found for mineral
resources evaluation (Talebi et al., 2015), in hydrology (Mariethoz et al., 2009). In
petroleum, some authors use the plurigaussian models in link with history matching
(Hu, 2000; Liu and Oliver, 2004; Romary, 2010). In this paper, we suppose that we
directly observe the categorical variable.

When the underlying Gaussian Random Fields (GRFs) are supposed to be sta-
tionary, two ingredients are necessary to fully specify the plurigaussian model: the
coding function (or truncation rule) which defines the sets associated to each cate-
gory and which can vary along the space and the multivariate covariance function.

Concerning the coding function, some authors use a simple parametric form, for
instance a cartesian product of intervals and they allow the threshold values to vary
along the space. It is often the case vertically through the vertical proportion curves
(Felletti, 2004) but also laterally, for instance when one want to use auxiliary infor-
mation as seismic data in the model. Other authors concentrate on the estimation
of more complex coding functions constant in space (Astrakova and Oliver, 2014).
Finally, Allard et al. (2012) estimate complex coding function varying in space by
using auxiliary information.

As mentionned by Mariethoz et al. (2009), one of the main difficulty arising from
the use of the plurigaussian model is the inference of the variogram models of the
underlying GRFs. Indeed, the available empirical variograms are the variograms of
the indicator functions of the categories (one simple variogram per category and the
cross-variograms for all the bivariate combinations) while the variograms required
by the model are the variograms of the underlying GRFs whose realizations are
hidden by the truncation.

Until now, most of the methods to estimate the variogram of the underlying
GRFs rely on the indicator variograms. For instance Mariethoz et al. (2009) de-
termine the variogram model of the underlying GRFs by using simulations. More
precisely, they choose a parametric model for the underlying GRFs and they com-
pute the parameters value such as the indicator simple variograms of the simulations
are the closest to the data indicator variograms. The optimization is performed with
simulated annealing. Armstrong et al. (2011) exploits the mathematical relation-
ships between the underlying GRFs variogram models, the coding function and the
indicator simple and cross-variograms. Some industrial softwares (as Isatis R©, 2014)
also use these relations and the users have to choose the parameters of the variogram
models of the underlying GRFs by visual inspection of the resulting indicator var-
iograms. It is made by-trial-and-error (Galli et al., 1994). Emery (2007) performs
the numerical integration of the Gaussian density by using its expansion into the
normalized Hermite polynomials. All these methods are rather tedious as they have
a high computational cost or require a lot of trials. Dowd et al. (2003) and Xu
et al. (2006) propose to find the range parameters automatically by minimizing a
squared differences with a grid-search but the choice of the covariance models of the
underlying GRFs remains arbitrary and limited.

2



In this paper, we will supppose that the coding function is known and we will
concentrate on the estimation of the variograms of the underlying GRFs. We pro-
pose an original methodology based on the pairwise likelihood (PL) maximization
principle to directly compute the empirical variograms of the underlying and hidden
GRFs. More precisely, we consider the variogram at a given distance, or a given
vector for a directional variogram, as a parameter of the model and we maximize
the PL by selecting only the pairs of points approximately separated by this dis-
tance or vector. We iterate this calculation on all distances (respectively vectors).
Thereby, we obtain an empirical variogram which helps the user to choose a suitable
valid model that can then be fitted by least squares or estimated with a likelihood
based approach. Then, the simple and cross-variograms in the indicator scale can
be deduced and compared to the empirical variograms of the indicators to check the
quality of the resulting models.

In the first part, we will give the main notations of the paper and we will recall
the definition of the plurigaussian model. In section 3.1, the relationships between
variograms of GRFs and variograms of indicators are recalled for comparison pur-
poses. Then we present our method in section 3.2. First, we describe the general
principle which should make possible the estimation of a complex multivariate spa-
tial model. Then we describe with more details the implementation in the case
where the underlying GRFs are supposed to be independent. To assess the effi-
ciency of the method and to evaluate the uncertainty associated to the variogram
estimation, a Monte-Carlo study is performed and its results are summarized in
section 4. Our results are discussed in a conclusion where some perspectives are
given.

2 The data model

2.1 General formulation of the plurigaussian model

Let F = {f1, . . . , fK} a finite set with K categories. For a set of n sites {xi}1≤i≤n
of a domain D ⊂ Rd, we observe f = (f(x1), . . . , f(xn)) a F-valued vector. We
suppose that for a given location x ∈ D, the value f(x) is the realization of a
F-valued random variable F (x).

To characterize the spatial distribution of F (.), we use the plurigaussian model.
To describe this model, we adopt the same formulation as Armstrong et al. (2011).
Let

Y(.) = {Y(x), x ∈ D}

a q-variate centered and standardized GRF on D. In other words, for all x ∈ D,
Y(x) = (Y1(x), . . . , Yq(x)) is a random vector with q components and for all N ∈ N?
and for all (x1, . . . , xN ) ∈ DN , the N × q-vector

(Y(x1), . . . ,Y(xN )) = (Y1(x1), . . . , Y1(xN ), . . . , Yq(x1), . . . , Yq(xN ))

is a standard Gaussian vector with E[Yr(xi)] = 0 and Var[Yr(xi)] = 1 for all r ∈
[[1, q]] and i ∈ [[1, N ]]. In this paper, we will suppose that Y(.) is a second-order
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stationary multivariate function. In other words, there exists a matricial cross-
covariance function C such as Cov(Yr(x), Ys(x

′)) = Crs(x
′−x) for (r, s) ∈ [[1, q]]2 (see

Wackernagel, 2003, for an introduction on multivariate spatial random functions).
Let C a coding function on D such as, for all x ∈ D, C(x) = (C1(x), . . . , CK(x))

where, for k ∈ [[1,K]], the subsets Ck(x) form a (measurable) partition of Rq. The
model is defined by the following equivalence

F (x) = fk if and only if Y(x) ∈ Ck(x). (1)

Note that the formulation given by (1) provides a quite general class of models.
Indeed, it also contains the models defined by

F (x) = fk if and only if ϕ(Y(x)) ∈ C̃k(x)

for any surjective function ϕ from Rq to any set E where the sets C̃k(x) for [[1,K]]
form a partition of E. The subsets ϕ−1(C̃k(x)) have to be some measurable sets of
Rq. This remark aims to highlight the fact that the marginal gaussianity of the
random variables Yr(x) is arbitrary. Nevertheless, the multi-gaussian assumption is
a convenient way to describe the spatial multivariate relationships of the underlying
random function. It also provides a multivariate random function easy to simulate
(see e.g Lantuejoul, 2002).

We will note c(x) the set defined as:

c(x) = Ck(x)

where k ∈ [[1,K]] is the index of the category at location x. In other words, f(x) =
fk. In all the sequel, we will suppose that the classes Ck(x) are known.

3 Estimating the spatial structure

3.1 Indicators cross-variograms based methods

As already mentionned in the introduction, most of the methods to choose the
simple and cross-covariance models of the underlying GRFs rely on the indicator
simple and cross-variograms or covariances. Armstrong et al. (2011) or Isatis R©

(2014) use the mathematical relationships between the simple and cross-covariances
(or variograms) of the GRFs and the simple and cross-covariances (or variograms) of
the indicators of each category. In the current paper, we only use these relationships
to check the quality of the results given by our proposed method. We recall these
relationships below. For that purpose, we will note the random indicator function
of the category fk ∈ F as follows:

11fk(x) =

{
1 if F (x) = fk
0 otherwise

and 1fk(x) the associated true value.

4



3.1.1 Variogram between two points

For 1 ≤ k, l ≤ K, one can define the cross-variogram between indicators of facies k
and l, between two locations x and x′ of D:

γkl(x, x
′) =

1

2
E[(11fk(x′)− 11fk(x))(11fl(x

′)− 11fl(x))]

When k = l, we have

γkk(x, x
′) =

E[11fk(x)] + E[11fk(x′)]

2
− E[11fk(x′)11fk(x)] (2)

When k 6= l, we have

γkl(x, x
′) = −

E[11fk(x′)11fl(x)] + E[11fl(x
′)11fk(x)]

2
(3)

We note Σx and Σx,x′ the respective correlation matrices of the vectors Y(x)

and (Y(x),Y(x′)). Furthermore, g
(q)
Σ (u) stands for the centered and standardized

Gaussian density of dimension q and correlation matrix Σ computed for the q-vector
u.

With these notations, we can establish the link between γkl(x, x
′) and the cor-

relations between the underlying GRFs. Indeed, the expectation of the indicator of
facies k (which corresponds to its proportion at location x) is equal to:

E[11fk(x)] =

∫
Ck(x)

g
(q)
Σx

(u)du (4)

and

E[11fk(x)11fl(x
′)] =

∫
Ck(x)

∫
Cl(x′)

g
(2q)
Σx,x′

((u,v))dudv (5)

where each integration symbol represents an integration over a q-dimensional
space. These integrations and all the others mentionned in the current paper are
integral of the Gaussian probability density function. They can be computed nu-
merically with the efficient algorithm proposed by Genz (1992).

Note that it is sometimes useful to work with the non-centered covariances
E[11fk(x)11fl(x

′)] which can be computed in the same way. Indeed, it has the advan-
tage to capture asymetry in the model.

When the GRFs are stationary and the coding function C is constant over D,
the variograms of all the involved random functions only depend on the lag between
the points. Therefore, we can deduce the simple and cross-variograms of the indi-
cator for a given lag from the variograms value of the underlying GRFs by using
formulas (2), (3), (4) and (5). However, when the coding function varies over D,
the theoretical simple and cross-variograms of the indicators for a given lag don’t
exist anymore. Nevertheless, it is still possible to compute the associated empirical
variograms and compare them with an averaged version of the variograms between
two points computed in the indicators domain as described below.
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3.1.2 Variogram for a specific lag

For a given vector h ∈ Rd, we will note (i, j) ∈ V(h) when xj −xi ' h, i.e when the
pair (xi, xj) should be used to compute the empirical variogram for lag h (see e.g
Chilès and Delfiner, 2012, for details). N(h) stands for the number of pairs in V(h)

γ̂kl(h) =
1

2N(h)

∑
(i,j)∈V(h)

(1fk(xj)− 1fk(xi))(1fk(xj)− 1fk(xi)).

and try to fit them with the variogram models of indicators associated to the
observation locations {x1, . . . , xn} defined for (k, l) ∈ [[1,K]]2 by:

γkl(h) =
1

N(h)

∑
(i,j)∈V(h)

γkl(xi, xj). (6)

Its behaviour results from the spatial characteristics of Y(.) (defined through its
multivariate cross-covariance function in the stationary case) and from the spatial
variability of the set functions Ck.

3.2 Pairwise likelihood maximization

In this part, we describe a new methodology to perform the multivariate empirical
variography of the underlying gaussian random functions from the category observa-
tions. This methodology is based on the pairwise likelihood (PL) maximization. We
first recall the principle of the more general composite likelihood based approach.
Then we show how to apply it for the plurigaussian model. Finally, we describe more
precisely the algorithm in two particular cases: the monogaussian case (q = 1) and
the plurigaussian case in which the q-Gaussian random functions are independent
and the sets c(x) are cartesian products of real subsets.

3.2.1 General presentation of the methodology

The PL approach belongs to the family of the composite likelihood methods (see
e.g. Varin et al., 2011, for a comprehensive review). It is generally used to estimate
a parameters vector θ of a statistical model, for instance when the usual maximiza-
tion of the full likelihood is computationally cumbersome. In these cases, the full
likelihood is replaced by a weighted product of marginal or conditional likelihoods.
Lindsay (1988) defines the composite likelihood as follows: if W is a random vector
of size m with multivariate density f(w; θ) and {A1, . . . ,Ak} is a set of marginal
or conditional events with associated likelihoods Lk(θ;w) ∝ f(w ∈ Ak; θ), the com-
posite likelihood is the weighted product

LC(θ;w) =
D∏
d=1

Ld(θ;w)λd

where λd are nonnegative weights to be chosen.
Here we focus on the PL which corresponds to the particular case in which
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Ld(θ;w) = f(wi, wj ; θ)

are the bivariate densities for all (i, j) ∈ [[1,m]].
One of the advantages of the composite likelihood based approach is that they

enable to estimate only some components of θ. For instance, in the plurigaussian
model, we would like to estimate Σ(hα), the cross-covariance matrices of the vectors

(Y1(x), Y1(x+ hα), . . . , Yq(x), Yq(x+ hα))

for a set of nl separation vectors hα, α ∈ [[1, nl]]. We consider that θ = (Σ(hα))1≤α≤nl
is the set of parameters. Then, we group pairs of sites according to their separation
vector in the same way as the empirical variogram computation and we write the
log PL as follows:

Ld(θ; f) =

nl∑
α=1

∑
(i,j)∈V(hα)

log p
(q)
ij (Σ(hα)) (7)

where

p
(q)
ij (Σ) =

∫
c(xi)

∫
c(xj)

g
(2q)
Σ ((u,v))dudv

is the probability that F (xi) = f(xi) and F (xj) = f(xj) when the cross-
covariance matrix of the vector (Y1(x), Y1(x+hα), . . . , Yq(x), Yq(x+hα) is Σ. Note
that the weights λd attached to a pair (i, j) have been set to 1 if there exists α ≤ nl
such as the pairs belongs to V(hα) and to 0 otherwise.

Then, the maximum PL estimator is obtained by maximizing Ld with respect to
all the matrices Σ(hα). Note that to satisfy the stationarity of the resulting model,
the condition

Cov(Yr(xi), Ys(xi)) = Cov(Yr(xj), Ys(xj))

is required for all locations xi and xj and all variable indices (r, s) ∈ [[1, q]]2. It
implies that the 2q× 2q-matrices Σ(hα) belong to the set noted S2q and defined by

B ∈ S2q ⇔ b2r,2s = b2r−1,2s−1

for all (r, s) ∈ [[1, q]]1, where br,s stands for the (r, s)th element of the matrix B.
Furthermore, it is important to remark that all the matrices Σ(hα) share some

common terms to estimate, the ones corresponding to Crs(0). These two constraints
on the global solution make the problem numerically difficult to solve. For this
reason, we will focus on the simplified cases where the q GRFs are independent.
This assumption is generally made in most of the applications of the plurigaussian
model.

With this assumption, we have Crs(0) = 0 for all (r, s) ∈ [[1, q]]2 with r 6= s, so
the matrices Σ(hα) does not share some common terms to estimate simultaneously.

It results that the maximization of the log PL can be achieved by solving q× nl
simpler maximization problems:

Σ̂(hα) = arg max
Σ∈E2q

∑
(i,j)∈V(hα)

log p
(q)
ij (Σ) (8)
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where E2q is the subset of S2q such as all the terms Cov(Yr(xi), Ys(xj)) are equal
to 0 as soon as r 6= s.

We show more precisely how to apply this method in sections 3.2.2 and 3.2.3.

3.2.2 Application in the monogaussian case

In this part, we assume that q = 1. The only quantity to estimate for a given lag
hα is the spatial correlation of the underlying univariate Gaussian random function
ρ(hα) = Cor(Y (x), Y (x+ hα)) (or equivalently γ(hα) = 1− ρ(hα)).

The estimator of ρ(hα) by PL maximization is obtained by

ρ?(hα) = arg max
ρ∈]−1,1[

∑
(i,j)∈V(hα)

log p
(1)
ij (ρ) (9)

where

p
(1)
ij (ρ) =

∫
c(xi)

∫
c(xj)

g(2)
ρ (u, v)dudv.

In this formula, each integral symbol represents a single integral and g
(2)
ρ (u, v)

is a simplified notation standing for the centered standardized bi-Gaussian density
with correlation coefficient ρ computed for (u, v) ∈ R2.

Hence, the PL maximization problem (8) is reduced to a one dimensional opti-
mization problem over a bounded interval. Therefore, it can easily be solved, for
instance with the golden section search algorithm (Press et al., 2007).

3.2.3 Generalization to q ≥ 2

In this part, we assume that the random functions Y1(.), . . . , Yq(.) are independent.
In other words, for any (r, s) ∈ [[1, q]]2 and any x and x′ of Rd, we have

Crs(x− x′) = 0

as soon as r 6= s.
So the covariance matrices Σ(hα) are block diagonal and contain q two-dimensional

blocks corresponding to the correlation matrices of the sub-vectors (Yr(x), Yr(x +
hα)), r ≤ q. If we note for all r ∈ [[1, q]]

ρr(hα) = Cor(Yr(x), Yr(x+ hα)),

it results that

g
(2q)
Σ(hα)(u,v) =

q∏
r=1

g
(2)
ρr(hα)(ur, vr)

where u = (u1, . . . , uq) and v = (v1, . . . , vq).
Furthermore, we assume that all the sets Ck(x) are cartesian products of subsets

of R:

Ck(x) =
q

r=1
T rk (x)
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with T rk (x) ⊂ R.
We will note tr(x) = T rk (x) where k is such that f(x) = fk is the actual category

at site x.
Hence,

p
(q)
ij (Σ(hα)) =

q∏
r=1

∫
tr(xi)

∫
tr(xj)

g
(2)
ρr(hα)(u, v)dudv.

In other word, each ρr(hα) is estimated by:

ρ?r(hα) = argmax
ρ∈]−1,1[

∑
(i,j)∈V(hα)

log

∫
tr(xi)

∫
tr(xj)

g(2)
ρ (u, v)dudv.

which is equivalent to solve q problems similar to the problem (9) presented in
section 3.2.2.

4 Simulation results

In this section, we present two simulation studies to assess the efficiency of the
proposed method.

4.1 q = 1 and C is constant

On a 1-dimensional regular grid with mesh size 1 and 2000 nodes, 1000 realizations
of a GRF Y (.) with covariance function

C(h) = e−h
2/402

have been drawn. For each realization, y(.), one category among the set F =
{black, red, green} is assigned to each node x of the grid according to the following
rule:

f(x) =


black if y(x) ∈ C1(x) = (−∞, s1)
red if y(x) ∈ C2(x) = (s1, s2)
green if y(x) ∈ C3(x) = (s2,+∞)

where s1 = −s2 are chosen such as the probability that P (Y (x) ∈ Ci(x)) = 1
3 for

all i = 1, 2, 3. On figure 1, one realization of the resulting categories is displayed.
We also represent the underlying realization of the GRF, only known here as a
by-product of the simulation workflow.

The empirical variogram of the underlying GRF is computed by pairwise like-
lihood from the categories as described in section 3.2.2, for 150 distances ranging
regularly from 1 to 150. For comparison purpose, the traditional empirical var-
iogram has been computed directly on the realizations y(.) for the same set of
distances. The results are summarized on figure 2 (a) for the PL computed from
the categories and 2(b) for the traditional empirical variogram computed from the
realizations of the GRF. The average over all the simulations display a negligible
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bias. As expected, the variability of the estimator increases with the distance. The
variogram seems to be better estimated when computed from categories by PL than
with the original Gaussian values despite the loss of information due to the trunca-
tion. The reason is that we provide additional information by fixing the sill to 1 in
the computation by PL.

4.2 q = 1 and C is not constant

We use the same simulation scheme as in section 4.1 except that the covariance
model of the GRF is now given by:

C(h) = e−h/20

and the categories are assigned to each node x of the grid according to the following
rule:

f(x) =


black if y(x) ∈ C1(x) = (−∞, s1(x))
red if y(x) ∈ C2(x) = (s1(x), s2(x))
green if y(x) ∈ C3(x) = (s2(x),+∞)

where s1(x) and s2(x) have been simulated once for all simulations. The figure
3 displays one realizations of this process with the two functions s1(.) and s2(.).
The figure 4 shows results which are similar to the constant coding function case of
section 4.1.

4.3 q = 2, C is a constant cartesian product of intervals

In this example, we consider the same categories as previously. They are generated
by using two independent GRFs Y1(.) and Y2(.) with respective covariance functions

C1(h) = e−100h2

and

C2(h) = e−20h

The categories are assigned to a point x according to the following rule:

f(x) =


black if y(x) ∈ C1(x) = (s1,+∞)× R
red if y(x) ∈ C2(x) = (−∞, s1)× (−∞, t1)
green if y(x) ∈ C3(x) = (−∞, s1)× (t1,+∞)

where s1 = t1 = 0 such that
P ((Y1(x), Y2(x) ∈ C1(x)) = 1

2 and P ((Y1(x), Y2(x) ∈ Ci(x)) = 1
4 for i = 2, 3.

A scheme of this coding function is displayed fig. 5.
Then 1000 simulations are performed on 800 locations chosen uniformely on the

square [0, 1] × [0, 1] one time for all the simulations. A realization is displayed fig.
5.
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The results are summarized fig.6 and again, they are rather good compared to
the empirical variograms computed directly from the Gaussian data. Note that for
each simulation, the computation of the empirical variogram of the second Gaussian
from y(.) has been computed by using only the subset of locations for which the
first Gaussian is greater than 0.

5 Discussion

In this paper, we propose to use the pairwise likelihood principle to estimate em-
pirical variograms of the underlying GRFs in the plurigaussian model. The explicit
use of a composite likelihood based approach as an exploratory data analysis tool
seems original. Note that some existing tools as the classical empirical variogram
(Matheron, 1962) can be viewed as a maximum of a composite likelihood. Indeed,
let consider the marginal likelihood based on pairwise differences as a particular
case of composite likelihood (see for instance Curriero and Lele, 1999, for paramet-
ric estimation of the variogram). We can easily show that the usual estimator of the
semivariogram at a given distance maximizes this quantity under a bigaussian as-
sumption. Although, it is not explicity stated and the fundations of these methods
are rather based on moments considerations.

Once the empirical variograms of the underlying GRFs has been computed, we
can use it to choose a valid variogram model which can be fitted by least squares, for
instance by using the algorithm proposed in Desassis and Renard (2013) or estimated
by a likelihood based method. The likelihood will probably remain intractable since
it involves an integral on Rn where n is the number of samples. A composite
likelihood based approach should be used instead. Again, the PL seems well suited.

To conclude, note that the method presented in this paper is implemented in the
R-package RGeostats (Renard et al., 2015) in the function named vario.pgs. Some
demonstration scripts are provided through a tutorial on the dedicated website.

Further researches will concentrate on the generalization of the approach pre-
sented in this paper to the case where no independence assumption is made between
the underlying GRF. Indeed, one can model more complex transitions between cat-
egories with more general multivariate spatial models (see Galli et al., 2006). In
that case, one have to estimate all the elements (except the diagonal) of the cor-
relation matrices Σ(hα) with the constraints mentionned in section 3.2.1. This is
computationally much more challenging.

Finally, the PL likelihood approach to compute empirical variograms seems to be
a promising idea which could be applied to other similar context of hidden variable,
or variable known after a transformation.

To cite some of them:

• compute the empirical variogram of the underlying GRF in the hierarchical
geostatistical models (see e.g Diggle et al., 1998). Some authors have already
proposed a way to compute empirical variogram of underlying random fields
in hierarchical models: Oliver et al. (1993) treats the binomial case, Monestiez
et al. (2006) the poisson case. However, these estimators are based on the
method of moments and the distribution of the underlying random function is

11



not specified. Thus, the underlying intensity can only be predicted by kriging
but they can not be simulated. An approach based on the PL in a distribution
based framework could be a good alternative;

• perform the multivariate empirical variography of the underlying GRFs when
one have to deal with a continuous variable vs. discrete variable (Emery and
Silva, 2009), or even two discrete variables (Renard et al., 2008);

• compute the empirical variogram of a variable at punctual level when the
observations are some regularizations with different supports.
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Figure 1: One realization of F (up) and the associated y (down ), s1 and s2 ( )
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(b) Variogram from the Gaussian data

Figure 2: Actual model ( ), empirical variogram of ten arbitrary simulations ( ),
average of the empirical variograms over all the simulations ( ), 25th and 75th per-
centiles ( ), 5th and 95th percentiles ( ).
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Figure 3: One realization of F (up) and the associated y (down ), s1(x) and s2(x)
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(a) Variogram from the categorical data
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(b) Variogram from the Gaussian data

Figure 4: Actual model ( ), empirical variogram of ten arbitrary simulations ( ),
average of the empirical variograms over all the simulations ( ), 25th and 75th per-
centiles ( ), 5th and 95th percentiles ( ).
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Figure 5: Representation of the coding function C used for the simulation study, case
q = 2
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Figure 6: Actual model ( ), empirical variogram of ten arbitrary simulations ( ),
average of the empirical variograms over all the simulations ( ), 25th and 75th per-
centiles ( ), 5th and 95th percentiles ( ).
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