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MSME UMR 8208 CNRS, 5 bd Descartes, F-77454 Marne-la-Vallée, France.
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Abstract

In this work, a formulation is developed within the phase field method for mod-
eling interactions between interfacial damage and bulk brittle cracking in complex
microstructures. The method is dedicated to voxel-based models of highly complex
microstructures, as obtained from X-ray microtomography images. A smoothed dis-
placement jump approximation is introduced by means of level-set functions to
overcome the issue of pixelized interfaces in voxel-based models. A simple technique
is proposed to construct the level-set function in that case. Compared to recent
work aiming at modeling cohesive cracks within the phase field method, our frame-
work differs in several points: the formulation is such that interfaces are not initially
damaged; no additional variables are required to describe the discontinuities at the
interface and fatigue cracks can be modeled. The technique allows interaction be-
tween bulk and interface cracks, e.g. nucleation from interfaces and propagation
within the matrix, and for arbitrary geometries and interactions between cracks.
Several benchmarks are presented to validate the model. The technique is illus-
trated through numerical examples involving complex microcracking in X-ray CT
image-based models of concrete microstructures.

Key words: Cracks, Phase field, Highly heterogenous materials, Interfacial
damage, Voxel-based models, Microcracking
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1 Introduction

Microtomography or X-ray CT-scan experimental setups [33] have been de-
mocratized in the recent years and realistic models of microstructures obtained
from 3D imaging techniques can now be routinely generated for many mate-
rials at various scales. Furthermore, it is now possible to use these models in
numerical simulations to evaluate mechanical and other physical properties of
complex materials like bones [34,11], concrete [43,30], coke blend [36], filled
elastomers [1], among many others.

Beyond evaluating linear properties, a major objective is to predict the strength
and failure of materials by simulating damage and microcracking at the micro-
scopic level in X-ray CT scan voxel models. In complex materials like concrete
or cementitious materials, both matrix cracking and interfacial damage can
occur and interact. For example, it has been suggested that the strength of
concrete is largely attributed to the properties of mortar-aggregate interfaces
[16,19]. The interaction of an interphase on a matrix crack has been studied
in ceramic matrix composites [24]. Damage by fibre cracking or decohesion in
metallic composites reinforced by brittle fibres has been studied in [37].

Many numerical methods have been developed to investigate interface damage,
including thin interphases with graded properties [40], or cohesive zone models.
Because of its versatility, cohesive zone modeling (CZM) is one of the primary
method to handle discrete crack propagation in diverse types of materials.
This concept was introduced by Barenblatt [4] and Dugdale [14] to address
the stress singularity at a crack tip. In these models, all nonlinearities take
place in a cohesive zone ahead of the main crack tip, which is associated with
the physical fracture process zone of the material. The cohesive laws have
been embedded into finite element analysis in Needleman [25] and Tvergaard
and Hutchinson [38] or have been modeled by cohesive finite elements like in
Camacho and Ortiz [8], Xu and Needleman [42], and Ortiz and Pandolfi [28],
or in a dynamic context by Zhou and Molinari in [44]. An overview of cohesive
elements techniques can be found in Chandra et al [10].

Simulating interfacial damage and its interaction with matrix cracking in
voxel-based models of complex microstructures of real materials is highly chal-
lenging. Indeed, in voxel models consisting of regular meshes, the interfaces
are not explicitly described and normal vectors are not defined. Furthermore,
due to the highly heterogeneous nature of real microstructures like concrete,
a very complex network of cracks can nucleate, propagate and interact, ei-
ther from the interfaces and then through the solid phases, or the opposite.
Simulating such complex networks of cracks is a well-known issue for meshing
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algorithms and remeshing techniques are not suited to regular meshes based
on voxels, where maintaining the same mesh during the simulation is favorable
for robustness and parallel computing purpose.

Apart from cohesive elements, the eXtended Finite Element Method (XFEM)
[22,35] can alleviate the issue of describing arbitrary cracks in regular meshes
by using an enriched FEM discretization scheme with additional nodal vari-
ables for describing displacement jump over arbitrary surfaces not matching
the mesh. However, this technique has shown difficulties to describe crack
nucleation and requires level-set function construction to describe the crack,
which can be cumbersome when multiple cracks interact. We also mention a
related method, called Thick Level-Set method (TLS) [5,9] in which a level-set
function is employed to separate the undamaged zone from the damaged one,
and where the crack is a consequence of the damage front motion, allowing
crack initiation.

More recently, the Phase Field Method has been introduced, based on the
pioneer works of Marigo and Francfort [15]. This technique makes use of a
regularized description of discontinuities through an additional phase field
variable and strongly alleviates meshing problems for describing brittle crack-
ing. Furthermore, the phase field problem being solved at each increment in an
algorithmic framework [20], nucleation, interaction and arbitrary crack mor-
phologies can be handled in regular meshes. The technique has proved to be
very well suited to the simulation of microcracking in complex voxel-based
models of concrete microstructures in [27]. The technique has been recently
adapted to cohesive cracks in [39].

In the present work, we propose a new phase field formulation taking into ac-
count both bulk brittle fracture and interfacial damage. The present method
is different from the work of Verhoosel and de Borst [39] by the following
points. First, we introduce a new energetic formulation mixing bulk damage-
able energy and cohesive surface energy such that the interfaces do not initially
involve discontinuities and thus no damage in the phase field sense. In this for-
mulation, the phase field describes the bulk crack surface density, as well as
the interface crack density, allowing interaction between both crack types in
a simple manner. Second, we have investigated two models, one involving in-
ternal variables to describe interfacial damage within cohesive traction law,
and the other without internal variable. We show that in our formulation, the
phase field is sufficient to model crack opening and re-closure without internal
variables for interfaces. Third, to describe the diffuse displacement jump at the
interface, we use a level-set method without additional variables, unlike in [39].
A special algorithm dedicated to the construction of the level-set functions in
voxel-based models of complex microstructures is introduced. The features of
the proposed method are summarized as follows:
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• The technique allows simulating interfacial cracking in voxel-based regu-
lar FEM models of real microstructures, and their interaction with matrix
cracks.
• No additional variables are needed to describe the jump at the interface.
• The solution is convergent with respect to the mesh and the crack path is
mesh-independent.
• The phase field describes both the crack density in the matrix and the
interface crack density; it can be used as an internal variable to model
irreversible damage of the interface.

The overview of the paper is as follows. In section 2 the diffuse approxima-
tion of discontinuities related to cracks and interfaces using phase field is
introduced. In section 3, we propose a modified phase field framework able
to describe both bulk microcracking and interface damage. In section 4, a
simple method is presented to construct the level-set function from voxel-
based models in regular meshes. In section 5, the numerical details and FEM
discretization details are presented. Finally, the method is validated and il-
lustrated by interfacial damage benchmarks and practical examples involving
microcracking in voxel-based models of microstructures in section 6.

2 Diffuse approximation of discontinuous fields

2.1 Smeared approximation of cracks and interfaces

Let Ω ∈ Rd be an open domain describing a solid with external boundary
∂Ω. The solid is heterogeneous, and contains internal interfaces between the
phases, collectively denoted by ΓI . During the loading, cracks may propagate
in the solid phases and can pass through the interfaces as depicted in Fig.
1 (a). The crack surfaces are collectively denoted by Γ. In the present work,
we adopt the regularized framework proposed in [20,23,2] for replacing cracks
and interfaces surfaces by regularized approximation functions. Cracks are
associated with an evoluting phase field d(x, t) (see Fig 1 (c)), while interfaces
between phases are associated with a fixed scalar field β(x) (see Fig 1 (b)). The
phase field d(x, t) satisfies the following equations (see [20] for more details):

d(x, t)− l2d△d(x, t) = 0 in Ω,

d(x, t) = 1 on Γ,

∇d(x, t) · n = 0 on ∂Ω,

(1)

where ∆(.) is the Laplacian, ld is a regularization parameter describing the
actual width of the smeared crack, and n the outward normal to ∂Ω. Note
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Fig. 1. Regularized representation of a crack and smeared crack: (a) a body con-
taining an interface and a crack possibly passing through the interface; (b) smeared
representation of the interface; (c) smeared representation of the crack.

that ld is a length whatever the dimension of the space of analysis is. In
addition, even though the vocabulary is sometimes specific to 2D problems,
the framework is fully valid for three-dimensional cases. In the following, we
omit the dependence to time for the sake of conciseness, assuming that the
problem is solved at each load increment tn, n = 1, ..., N , with N being the
number of load increments. It can be shown (see e.g. [20]) that (1) is the
Euler-Lagrange equation associated with the variational problem:

d(x, t) = Arg
{
inf
d∈Sd

Γd(d)
}
, (2)

where Sd = {d|d(x) = 1 ∀x ∈ Γ} and

Γd(d) =
∫
Ω
γd(d)dΩ, (3)

where Γd(d) represents the total crack length, i.e. the total length (or area in
3D) of crack per unit area in the 2D case, and total surface of crack, per unit
volume in the 3D case. In (3) γd(d) has the unit of the inverse of a length and
is defined by:

γd (d(x)) =
1

2ld
d(x)2 +

ld
2
∇d(x) · ∇d(x). (4)
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For ld → 0 the above variational principle leads to the exact description of
the sharp crack topology Γ. The origin of the definition (4) can be found e.g.
in [7] or [21]. First, a model of regularization is chosen to replace the sharp
damage gradient near the crack. The corresponding differential equations are
then integrated by means of a Galerkin-type weak form. These equations are
the Euler-Lagrange equations of a variational principle, in which the total
crack length to be minimized and the crack density function can be identified
(see more details in [21]). Note that other choices of regularization are possible.
For example, in [6], smoother regularization schemes have been investigated,
leading to a different expression for γ(d).

The interfaces are here described in the same manner. The field β(x) satisfies:


β(x)− l2β(x)△β(x) = 0 in Ω,

β(x) = 1 on ΓI ,

∇β(x) · n = 0 on ∂Ω,

(5)

where lβ is the regularization parameter describing the width of the regularized
interfaces. Similarly, (5) is the Euler-Lagrange equation associated with the
variational problem:

β(x) = Arg

{
inf
β∈Sβ

Γβ(β)

}
, (6)

where Sβ =
{
β|β(x) = 1 ∀x ∈ ΓI

}
and Γβ(β) =

∫
Ω γβ(β)dΩ, where Γβ repre-

sents the total interface length and γβ is defined by

γβ(β) =
1

2lβ
β(x)2 +

lβ
2
∇β(x) · ∇β(x). (7)

For lβ → 0 the above variational principle leads to the exact description of
the sharp interface ΓI . In the following, we will choose identical regularization
lengths for cracks and interfaces, i.e. ld = lβ = l and that β(x) does not change
throughout the simulation (the interfaces do not evolve), unless specified.

2.2 Smeared displacement jump approximation

In the present work, the displacement jump [[u(x)]] created by interface deco-
hesion is approximated as a smooth transition, and defined as follows. Let ΓI

be the interface. We define ΓI as the zero level-set of a function ϕ(x), such
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Fig. 2. Approximation of the displacement jump across the interface.

that:
ϕ(x) > 0 for x ∈ Ωi

ϕ(x) < 0 for x ∈ Ω/Ωi

ϕ(x) = 0 for x ∈ ΓI

(8)

where Ωi denotes the set of inclusions, and Ω/Ωi the matrix 1 . Let h be a
small scalar parameter, x ∈ ΓI and nI the normal vector to ΓI at the point
x. If the function ϕ(x) is known, the normal vector to ΓI is found through:

nI(x) =
∇ϕ(x)
∥∇ϕ(x)∥

. (9)

Using a Taylor expansion at first order of the assumed smoothed regularized
displacement fields u(x), we can express (see Fig. 2):

u

(
x+

h

2
nI

)
≃ u(x) +

h

2
∇u(x)nI , (10)

u

(
x− h

2
nI

)
≃ u(x)− h

2
∇u(x)nI . (11)

Then in a regularized context, the displacement jump is not only defined on
the interface but over all the domain, and its expression at any point x ∈ Ω
is given by:

[[u(x)]] ≃ w(x) = u

(
x+

h

2
nI

)
− u

(
x− h

2
nI

)

= h∇u(x) ∇ϕ(x)
∥∇ϕ(x)∥

. (12)

1 Note that even though presented here for bi-material interfaces, P interfaces could
be considered if P couples of nodes with different materials are involved. In that
cse, the P interfaces would each have their own geometrical definition through P
fields βi(x), i = 1, ..., P and P coefficients gic, i = 1, ..., P .
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where w(x) denotes the smoothed displacement jump approximation.

A detailed description for the numerical computation of ϕ(x) for an arbitrary
morphology of microstructure described by a regular grid of voxels is provided
in section 4.

3 Phase field incorporating bulk brittle fracture and cohesive in-
terfaces

3.1 Energy functional

Let us consider a two-phase solid as described in section 2.1. The solid contains
both cracks and interfaces, implying strong displacement discontinuities. In a
standard framework of sharp discontinuity description, the total energy is
given by:

E =
∫
Ω
Wu (ε(u)) dΩ +

∫
Γ
gcdΓ +

∫
ΓI

ΨI([[u]] ,α)dΓ. (13)

In (13) gc is the toughness, ΨI is a strain density function depending on the
displacement jump across the interface ΓI and α is a history parameter. If a
regularized description for strong discontinuities related to both cracks and
interfaces is adopted (substituting [[u]] by w(x)), then propose to split the
infinitesimal strain tensor into a part related to the bulk and a part induced
by the smoothed jump at the interfaces, denoted by εe and ε̃, respectively:

ε = εe + ε̃. (14)

This decomposition is proposed here such that ε̃→ 0 away from the interfaces,
i.e. when β(x)→ 0. Then, we propose to replace the above functional by the
following one:

E =
∫
Ω
W e

u (ε
e(u, β), d) dΩ +

∫
Ω
[1− β(x)]gcγd(d)dΩ,

+
∫
Ω
ΨI(w,α)γβ(β)dΩ. (15)

where γd and γβ have been defined in section (2.1).

The factor [1 − β(x)] is introduced so as to verify that for β(x) → 0 (away
from the interface) which includes γβ → 0 and εe → ε. As a consequence
of these definitions, we recover the regularized energy functional for brittle
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fracture without interfaces [15,20]:

E =
∫
Ω
Wu (ε(u), d)dΩ +

∫
Ω
gcγd(d)dΩ. (16)

In (15), we identify

W = W e
u (ε

e(u, β), d) + [1− β(x)]gcγd(d) + ΨI(w,α)γβ(β) (17)

as the free energy. Using the variational principle for minimizing E with re-
spect to displacements, i.e.

u(x) = Arg
{
inf
u∈Su

(
E(u, d, β, α)−W ext

)}
(18)

where Su = {u|u(x) = ū on ∂Ωu, u ∈ H1(Ω)} andW ext =
∫
Ω f ·udΩ+

∫
∂ΩF

F·
udΓ with f and F being body forces and prescribed traction over the boundary
∂ΩF , we obtain the weak form for u(x) ∈ Su:

∫
Ω

∂W e
u

∂εe
: εe(δu)dΩ +

∫
Ω

∂ΨI(w,α)

∂w
· δwγβ(β)dΩ,

=
∫
Ω
f · δudΩ +

∫
∂ΩF

F · δudΓ = δW ext (19)

In the absence of body forces (f = 0), invoking the local balance of stress and
global balance of power (i.e.

∫
Ω σe : εedΩ = δW ext ) and using the divergence

theorem we can re-write (19) as:∫
Ω
σe : εe(δu)dΩ + t(w,α) · δwγβ(β)dΩ−

∫
Ω
σe : ∇sδudΩ = 0 (20)

where σe = ∂We

∂εe
is the Cauchy stress and t(w,α) = ∂ΨI(w,α)

∂w
is the traction

vector acting on the interface oriented by nI and associated with the displace-
ment jump at the interface, as a consequence of the assumptions on the elastic
behaviour of the bulk material and the partitioning of the local strain near
the interface. In (20), δw is obtained using (12) as:

δw(x) = h∇δu(x) ∇ϕ(x)
∥∇ϕ(x)∥

. (21)

Using σen = t, Eq. (20) can be further re-written as:∫
Ω
σe : {εe(δu) + n⊗ δwγβ(β)−∇sδu} dΩ = 0 (22)

which is satisfied for an admissible strain field in the form:

εe = ∇su− n⊗s wγβ, (23)

9



where (∇su)ij =
1
2
(ui,j + uj,i) and (n⊗s w)ij =

1
2
(niwj + winj). From 14 we

identify ε̃ as:

ε̃ = n⊗s wγβ. (24)

3.2 Phase field problem

The reduced Clausius-Duhem inequality relative to the evolution of the dam-
age parameter d is defined as

Aḋ ≥ 0 (25)

where A = −∂W
∂d

is the thermodynamic force associated with d. Assuming a
threshold function F (A) such that no damage occurs below that value in the
form:

F (A) = A ≤ 0, (26)

and invoking the principle of maximum dissipation, the dissipation Aḋ must
be maximum under the constraint (26). It yields that for ḋ > 0, F = 0 which
gives (see more details in [27]):

F = −∂W

∂d
= −

{
∂W e

u

∂d
+ [1− β]gcδγd(d)

}
= 0, (27)

where [20]:

δγd(d) =
d

ld
− ld∆d. (28)

We assumed an isotropic elastic behavior of the phases in both the initial and
damaged state, with initial Lamé’s coefficients λ and µ. To take into account
unilateral contact, damage is assumed to modify the sole tensile part of the
elastic energy, which is defined as

W e
u = Ψ+

e (ε
e) {g(d) + k}+Ψ−

e (ε
e) (29)

where

εe = εe+ + εe− (30)

and

Ψ±
e (ε) =

λ

2

(
⟨Tr(εe)⟩±

)2
+ µTr

{(
εe±

)2}
. (31)
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These two contributions to the strain energy are then defined as:

εe± =
D∑
i=1

⟨
εi
⟩
±
ni ⊗ ni, (32)

and εi and ni are the eigenvalues and eigenvectors of εe, i.e. satisfying εeni =
εini. In (31) - (32), ⟨x⟩± = (x± |x|) /2. The degradation function g(d) is
assumed to have the simple form g(d) = (1−d)2. The small parameter k << 1
is introduced to maintain the well-posedness of the system for partially broken
parts of the domain while perturbating the strain energy in non damaged parts
to a negligible level. It follows that when ḋ > 0 then:

−2(1− d)Ψ+
e + [1− β]gcδγd(d) = 0. (33)

It is worth noting that as 2(1−d)Ψ+
e ≥ 0, then δγ(d) ≥ 0, yielding Γ̇d ≥ 0. To

handle loading and unloading history, we follow Miehe et al. [20] and introduce
the strain history function

H(x, t) = max
τ∈[0,t]

{
Ψ+

e (x, τ)
}

(34)

which is substituted to Ψ+
e in (34). It yields the following phase field problem

to be solved to evaluate the field d(x, t) at time t, using (28):
2(1− d)H− (1− β)gc

ld
{d− l2d∆d} = 0 in Ω,

d(x) = 1 on Γ,

∇d(x) · n = 0 on ∂Ω.

(35)

The associated weak form is obtained as:∫
Ω

{(
2H + [1− β]

gc
ld

)
dδd+ [1− β]gcld∇d · ∇(δd)

}
dΩ =

∫
Ω
2HδddΩ.(36)

Remark The choice of l has been discussed in [3]. In the mentioned work,
a relationship has been established between l and material parameters. For
example, assuming uniaxial traction of a bar, the relationship:

σ+
c =

3

16

√
3

2

√
Egc
l

(37)

where σ+
c is the critical value of stress in traction. As mentioned in [3],

the shape of the damaged zone (and hence the approximate crack path)
can significantly change with the length l if l is not sufficiently small with
respect to the size L of the domain Ω. The authors then define two cases:
(a) l is considered as a pure numerical parameter of the regularized model
of brittle fracture; (b) l is seen as a real material parameter for a gradient
damage model. In the first case, it is recommended to take l as small as
possible to better approximate brittle fracture, with regards to the size of
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the mesh. In the second case, l should be identified by experimental data
through relationships like (37). Such analysis is presently under study with
experimental validations in [26].

3.3 Displacement problem

3.3.1 Governing equations

The weak form associated with the displacement problem has been defined in
(19), with the above described strain energy, the Cauchy stress now reads:

σe =
∂Ψ+

e

∂εe
{g(d) + k}+ ∂Ψ−

e

∂εe

=
(
(1− d)2 + k

) {
λ ⟨Trεe⟩+ 1+ 2µεe+

}
+ λ ⟨Trεe⟩− 1+ 2µεe−. (38)

In the applications of the following work, we have used the numerical value
k = 10−8.

3.3.2 Models for interface damage

Regarding the constitutive relation of the interface, two models are investi-
gated in the present paper. The general form in 2D is given by

t(w,α) = [tn, tt]T (39)

where tn and tt denote normal and tangential parts of the traction vector
t across the interface ΓI oriented by its normal nI . In a first model (called
M1), a nonlinear elastic cohesive model without dependence on history is used
[13,39]:

tn = gIc
wn

δn
exp(−wn

δn
)exp(−(wt)

2

(δt)2
), (40)

where wn = w · nI and wt = w ·mI, mI being a tangent vector to ΓI , gIc is
the toughness associated with the interface, and

tt = 2gIc
wt

δt
(1 +

wn

δn
)exp(−wn

δn
)exp(−(wt)

2

(δt)2
). (41)

The relation between δn, the toughness gIc (which corresponds to the total
area under the traction-opening curve) and the fracture strength tu is given
by δn = gIc/(tue), e = exp(1) (see Fig. 3).
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Fig. 3. Cohesive model for the interfaces.

Another possible model, denoted by (M2), introduces a history parameter to
describe the irreversible damage in the interface (see Fig. 3). In that case, the
expression of the traction at the interface is given e.g. for the normal traction
by

tn(w,α) =

Eqs. (38) if wn(x, t) ≥ αn(t)

Knwn if wn(x, t) < αn(t)
(42)

with:

αn(x, t) = max
τ∈[0,t]

{wn(x, τ)} , (43)

and

Kn =
tn(α(x, t))

αn(x, t)
. (44)

Similarly,

tt(w,α) =

Eqs. (39) if wt(x, t) ≥ αt(t)

Ktwt if wt(x, t) < αt(t)
(45)

with:

αt(x, t) = max
τ∈[0,t]

{
wt(x, τ)

}
, (46)

and

Kt =
tt(αt(x, t))

αt(x, t)
. (47)
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Note that in the model M1, no internal variable is involved. In the model M2,
we introduce only one internal variable αn for the normal traction component
in the cohesive model for the sake of simplicity, the tangential part of the
traction was assumed to be zero.

3.4 Linearization of displacement problem

We note that for a fixed value of d, the mechanical problem (19) is nonlinear,
because of the decomposition (30) which requires computing the eigenvalues
of εe and the nonlinear interfacial law (40)-(41). In what follows, we introduce
a linearization procedure to solve the problem by the Newton method.

From (19) and (38) can we rewrite the balance equation as

R =
∫
Ω
σe : εe(δu)dΩ +

∫
Ω
γβ(x)t(w, α) · δwdΩ

−
∫
Ω
f · δudΩ−

∫
∂ΩF

F · δudΓ = 0. (48)

where εe(δu) = ∇s(δu) − n ⊗s δwγβ. In a standard Newton method, the
displacements are updated for each loading increment by solving the tangent
problem:

D∆uR(uk, d) = −R(uk, d) = 0, (49)

where uk is the displacement solution known from the previous iteration. The
displacement corrections are obtained as

uk+1 = uk +∆u. (50)

In (49),

D∆uR(uk) =
∫
Ω

∂σe

∂εe
: εe(∆ε) : εe(δε) +

∫
Ω

∂t(w)

∂w
: ∆w : δwdΩ

with

∆w(x) = h∇∆u(x)
∇ϕ(x)
∥∇ϕ(x)∥

(51)

and

∂σe

∂εe
= C(u, d)
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= ((1− d)2 + k)
{
λR+[1]T [1] + 2µP+

}
+
{
λR−[1]T [1] + 2µP−

}
(52)

where the operators R± and P± have been defined in [27], and λ , µ are the
material parameters.

For the model M1, we obtain:

∂t(w)

∂w
= KI =

Dnn Dnt

Dtn Dtt

 (53)

with

Dnn =
∂tn

∂wn
, Dnt =

∂tn

∂wt
, Dtn =

∂tt

∂wn
, Dtt =

∂tt

∂wt
. (54)

The expressions of Dnn, Dnt, Dtn and Dtt are provided in Appendix 10. For
the model M2, we obtain:

∂t(w,α)

∂w
=

 (51) if w(x, t) ≥ α(t)

K1 if w(x, t) < α(t),
(55)

where K has been defined in (44).

4 A simple method for constructing the level-set function for ar-
bitrary shaped inclusions in regular meshes

A major difficulty when dealing with complex morphologies provided by voxel-
based models (i.e. where each voxel is associated with a square element in 2D
and to a cubic element in 3D) is to construct the level-set function ϕ(x).
For example, Hamilton-Jacobi methods and upwind schemes [29] are very
complex to implement and can fail for non-convex inclusions. To overcome
these limitations, we propose a simple technique for constructing the level-
set function for arbitrary shaped inclusions in regular meshes as provided in
voxel-based models 2 . Let Ωi a domain associated with inclusions such that
Ωi ⊂ Ω. We first solve the following problem:

2 Note that we use abusively the term voxel, even though in 2D the term pixel
would be more appropriate.
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Fig. 4. (a) Schematic of the geometrical interfaces separating an inclusion Ωi and
the matrix; (b) interface nodes.


∆ϕ0(x) + f(x) = 0 in Ω

ϕ0(x) = 0 in Γ̃,

∇ϕ0(x) · n = 0 on ∂Ω,

(56)

where Γ̃ is the interface composed by the set of nodes defined as follows (blue
curve in Fig. 4 (b)). We detect the nodes which are at the corners of voxels
on the interface by a simple algorithm (see Fig. 4): first, indices are assigned
to each element, to indicate its belonging to the different phases. Second, for
each node, we loop over the elements connected to the node. If at least two
indices are different, then the node is defined as an interface node. In Fig. 5 we
depict an inclusion defined in a voxel grid. In Fig. 5 (a), the nodes belonging
to the interface are depicted in black. The source function f(x) is defined as

f(x) = χ(x)f1 + (1− χ(x))f2, (57)

χ(x) is a characteristic function such that χ(x) = 1 in Ωi and zero elsewhere,
and f1 and f2 are scalar parameters. The problem (56) is solved by finite
elements. In the present test, we have used the following parameters f1 = 5
and f2 = −5. In Fig. 5 (b), we show the obtained zero level of ϕ0(x). We note
that the obtained interface is not smooth, which can induce high local values
of the gradient of ϕ(x) and numerical errors when evaluating the normal nI

and the displacement jump [[u(x)]] ≃ w(x). We then propose the following
correction step: for the nodes of the interface, we solve a second problem
defined by:
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Fig. 5. Construction of the level-set function for an arbitrary geometry of inclusion:
(a) nodes of the interface; (b) zero-level set obtained from the first step of the
proposed algorithm; (c) zero-level set obtained from the second step of the proposed
algorithm; (d) corresponding level-set function.∆ϕ(x) + f(x) = 0 in Ω

ϕ(x) = ϕ0(x) in Ω/Γ̃,
(58)

In practice, all nodes but the interface nodes are set with the values obtained
in the problem (56). The only unknowns are the nodal values of the interface
nodes. Then this step only requires to solve a small linear problem. In Fig.
5 (c), we show the zero level of the obtained level-set function ϕ(x), which
presents a nice smooth boundary. Note that the choice of the ratio f1/f2 relies
on the microstructural morphology, and more specifically on the number of
voxels between two inclusions.

5 Discretization and numerical implementation

5.1 FEM discretization of displacement problem

A 2D plane strain FEM discretization is described in the following, even
though extension to 3D is straightforward. The vector form of second-order

tensors are introduced as [ε] =
{
ε11; ε22;

√
2ε12

}T
, [σ] =

{
σ11; σ22;

√
2σ12

}T
,

as well as the FEM approximations u = Nue, δu = Nδue, and ∆u = N∆ue

where ue, δue and ∆ue are nodal displacement components in one element,
nodal trial function components and nodal incremental displacement compo-
nents, respectively. Furthermore, we have:

[ε] (∆u) = Bu∆ue, [ε] (δu) = Buδu
e (59)

where Bu is a matrix of shape function derivatives. From (12) the diffuse jump
approximation vector w and its incremental counterparts can be discretized
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as:

w = hNB̃uu
e, ∆w = hNB̃u∆ue, δw = hNB̃uδu

e, (60)

where

N =

n1 n2 0 0

0 0 n1 n2

 , (61)

and n1 and n2 are the x− and y− components of the normal vector nI com-
puted from (9), and based on the level-set function ϕ constructed as described
in the previous section, and B̃u is a matrix of shape functions derivatives such
that 

∂u1

∂x1

∂u1

∂x2

∂u2

∂x1

∂u2

∂x2


= B̃uu

e. (62)

We define the vector associated with ε̃ by:

[ε̃] =


ε̃11

ε̃22
√
2ε̃12

 = γβ(x)


w1n1

w2n2

1√
2
(w1n2 + w2n1)

 . (63)

Then we have:

[ε̃(∆u)] = hγβ(x)MB̃u∆ue (64)

where

M =


n2
1 n1n2 0 0

0 0 n1n2 n2
2

1√
2
n1n2

1√
2
n2
2

1√
2
n2
1

1√
2
n1n2

 . (65)

After discretization, the linear system (49) reduces to the set of linear algebraic
equations:

Ktan∆ũ = −R(ũk) (66)
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where ũ is a column vector containing the nodal values of u and

Ktan =
∫
Ω

[
BT

u − hγβ(x)B̃
T
uM

T
]
C(x)

[
Bu − hγβ(x)MB̃u

]
dΩ

+
∫
Ω
h2γβ(x)B̃

T
uN

TKINB̃udΩ, (67)

and

R =
∫
Ω

[
BT

u − hγβ(x)B̃
T
uM

T
]
C(x)

[
Bu − hγβ(x)MB̃u

]
(ue)k dΩ

+
∫
Ω
hγβ(x)B̃

T
uN

T t(wk)dΩ +
∫
Ω
fNTdΩ +

∫
ΩF

FNTdΓ. (68)

In Eq. (67), C is the matrix form corresponding to the fourth-order tensor C
in Eq. (52).

5.2 FEM discretization of the phase field problem

As we employ a staggered procedure, we solve alternatively the phase field
problem and then the mechanical problem. Given displacements from the me-
chanical problem, the phase field problem is linear. The phase field and phase
field gradient are approximated in one element by

d(x) = Nd(x)d
e and ∇d(x) = Bd(x)d

e, (69)

where Nd(x) and Bd(x) are vectors and matrices of shape functions and of
shape functions derivatives, respectively, and de are the nodal values of dn+1.

The same discretization is employed for the test function:

δd(x) = Nd(x)δd
e and ∇δd(x) = Bd(x)δd

e. (70)

Introducing the above FEM discretization in (36) results into a linear system
of equations:

Kdd̃ = Fd (71)

where d̃ is a column vector containing the nodal values of d and

Kd =
∫
Ω

{(
gc
l
(1− β) + 2H

)
NT

dNd + (1− β)gclB
T
dBd

}
dΩ (72)

and

Fd =
∫
Ω
2NT

dH(un)dΩ. (73)
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5.3 Overall algorithm

The overall algorithm is described in the following.

• Initialization
1.1 Initialize the displacement field u0(x), the phase field d0(x), and the
strain-history functional H0 = 0.

1.2 Compute the level-set function ϕ(x) by means of the algorithm de-
scribed in section 4.

1.3 Compute the phase field β(x) by solving (5).
• FOR all loading increment (pseudo time tn+1):
Given un, dn and Hn(x):
2.1 Compute the strain history functional Hn+1(x) by (34).
2.2 Compute dn+1(x) by solving the linear phase field problem (71).
2.3 Compute un+1(x):
Initialize uk = un (displacement of time tn)
WHILE ∥ ∆uk+1 ∥> ϵ, ϵ << 1:
2.3.1 Compute ∆ue

k+1 from (66).
2.3.2 Update uk+1 = uk +∆ue

k+1.
2.3.3 (.)n ← (.)n+1 and go to 2.3.1.
END

END

6 Numerical examples

For all of the following numerical examples, a regular mesh of bilinear 4-node
elements and plane strain assumption has been used. We assume a simplified
cohesive model for the interface by taking into account the normal traction
only, t(w) · nI = tn. Then, the cohesive law can be rewritten as:

tn = gIc (
wn

δn
)exp(−wn

δn
). (74)

6.1 Discontinuous benchmark

In this first example, we analyze the accuracy of the diffuse displacement
jump approximation introduced in section 2.2. For this purpose, a benchmark
with analytical solution is studied. A bi-material square domain including a
cohesive zone is depicted in Fig. 6. The length of the square domain is L = 1
mm.
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I

Fig. 6. Discontinuous benchmark, geometry and boundary conditions.

We consider small strains, and zero Poisson’s coefficient ν = 0 in both parts
of the domain. For both (left and right) parts, isotropic elastic behavior is
assumed, with Young’s coefficients E1 = 100 Mpa and E2 = 200 Mpa for
the respective domains. With the boundary conditions described in Fig. 6 the
problem is unidimensional with a solution independent on the y-component
(the displacements are prescribed along the x−direction only, the displacement
along y are free). We use here a linear cohesive law to consider the first step
of interface opening:

tn =
gIc

(δn)2
× [[u1]] . (75)

The analytical solution for this problem can be simply obtained by considering
the displacement boundary conditions and the continuity condition at the
interface, and is provided in Appendix 9.

First, we evaluate the error of the displacement jump approximation intro-
duced in Eq. (12). A 500×500 mesh was chosen, and the jump approximation
parameter h in Eq. (12) varies between 0.25 ≤ he/h ≤ 10. We define the
relative jump error with respect to the analytical solution as:

ERR1 =

√√√√∫Γ ([[uh(x)]]− [[uex(x)]]) · ([[uh(x)]]− [[uex(x)]]) dΓ∫
Γ ([[u

ex(x)]]) dΓ
. (76)

with
[[
uh(x)

]]
= w(x) is given by Eq. (12). We consider here undamaged bulk

materials (d(x) = 0) everywhere. Numerical parameters of the constitutive
relation of the interface are: tu = 1 MPa and gIc = 0.1 N/mm. Results are
depicted in Fig. 7. We note minimal error for the ratio he/h.
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Fig. 7. Displacement jump error: influence of the parameter h in Eq. (12) with
respect to the mesh size he.

Fig. 8. Discontinuous benchmark problem: comparison between the analytical so-
lution and the approximated one for two values of the regularization parameter
l.

Next, we analyze more specifically the influence of the regularization param-
eter l. A 1000× 1000 mesh with an element size he was chosen to ensure that
l/he ≥ 1, and the approximation jump in (12) parameter is chosen h = he

for all tested values of lβ. The regularization parameter l takes values be-
tween 0.002 and 0.02. We remind that in this test, the phase-field is set to
zero d(x) = 0 and the discontinuity only occurs from the cohesive laws at the
interface. Comparisons of the displacement solution for several values of l is
provided in Fig. 8.

We define the relative regularization error by:

ERR2 =

∥∥∥uh(x)− uex(x)
∥∥∥
L2

∥uex(x)∥L2

=

√√√√∫Ω (uh(x)− uex(x)) · (uh(x)− uex(x)) dΩ∫
Ω (uex(x)) · (uex(x)) dΩ

.(77)

The global L2 error norm of the regularized solutio for the benchmark problem
is plotted in Fig. 9.
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Fig. 9. L2 error norm for the discontinuous benchmark problem.
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Fig. 10. Geometry of the sample for the fatigue crack test: geometry and boundary
conditions.

6.2 Fatigue cracking

In this next example, we investigate the capability of the present method for
handling fatigue cracking under cyclic loading. A square domain of length L =
1 mm is considered. The domain contains a cohesive interface, whose geometry
is depicted in Fig. 10.

The material is described by the model described in section 3.1 with parame-
ters E = 100 MPa and ν = 0, fracture strength and toughness tu = 10 MPa
and gc = gIc = 0.1N/mm, respectively. Note that from now on, we will assume
that tn = 0. In addition, small strain an local isotropic behavior of the phases
is assumed. The regularization parameter l is chosen as l = 0.02 mm. Plane-
strain condition is assumed. The two models M1 and M2 have been used for
comparison. A cyclic displacement U whose evolution is described in Fig. 11
(a) is prescribed on a portion of the upper end, as depicted in Fig. 10. The
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Fig. 11. Fatigue crack test: (a) evolution of the load; (b) Computed displacement
jump along y.
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Fig. 12. Fatigue crack test: (a) cohesive traction with respect to the displacement
jump within the interface; (b) cohesive traction within the interface with respect to
the prescribed displacement.

displacements are prescribed along the y−direction while the displacement
along x are free. The evolution of the computed displacement jump along y
in the element A near the crack tip is depicted in Fig. 11 (b) for both models
M1 and M2.

The normal traction force in the element located near the crack tip is depicted
in Fig. 12 (a) versus displacement jump and (b) versus the prescribed vertical
displacement. We can note that simplest model M1 is able to capture the
interfacial damage, even without using internal variables. The response is very
similar to the response obtained by model M2.

6.3 Crack propagation in symmetric three-point bending test

The purpose of this example is to validate the solution provided by our new
formulation. We consider the three-point bending problem studied e.g. in [41]
and described Fig. 13. The dimensions of the beam are L = 10 mm, and
H = 3 mm. The load consists into a prescribed displacement at the center of
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Fig. 13. Symmetric three-point bending test problem: Geometry and boundary con-
ditions.

(a) (b)

(c) (d)

Fig. 14. Symmetric three-point bending test problem: Damage evolution for: U = 0
mm; U = 0.2 mm; U = 0.25 mm and U = 0.35 mm

the beam on the top edge. The node at (x = 0), (y = 0) is fixed, while the
node at (x = L) , (y = 0) the y-displacement is fixed and the x-displacement is
free. For this case, an initial cohesive interface has been inserted as described
in Fig. 13, to validate the cohesive model only. Materials on either sides of the
interface are identical.

A regular mesh of 60× 200 quadrilateral elements is employed. The material
parameters are chosen as follows: E = 100 MPa, ν = 0.0, the fracture strength
is tu = 1.0 Mpa, and the toughness is gc = gIc = 0.1 N/mm. The computation is
performed with monotonic displacement increments of U = 5.10−3 mm for 120
load increments. The displacements are prescribed along the y−direction while
the displacement along x are free. The regularization parameter l is chosen
as l = 0.15 mm. Plane strain condition is assumed. The damage evolution
(phase field d(x)) for the different values of the load is depicted in figure 14.
In contrast to the approach developed in [12] where interfaces are initially
damaged in the phase field sense, here the phase field can be used to follow
the interfacial damage directly.

25



Fig. 15. Force-displacement curve for the crack propagation problem with symmetric
three-point bending test problem: comparison between the present approach and the
results obtained in [3]

Fig. 16. Delamination peel test problem: geometry and boundary conditions

To validate the results, we compare in Fig. 15 the curve obtained with the
present method to the solution provided in [41]. We can note a good agreement
between both simulations which validates the present method for the damage
of interfaces.

6.4 Delamination peel test

In this next test, another validation is performed through the so-called peeling
test, described in Fig. 16: two cantilever elastic beams are connected over 90%
of their length by means of an adhesive layer. The structure is 10 mm in length
and 0.5 mm in height (see Fig. 16).

The points located at the top and bottom right ends of the structure are sub-
jected to a prescribed vertical displacement U . The bulk material is modeled
as linear elastic and isotropic with Young’s modulus E = 1000 MPa and Pois-
son’s ratio ν = 0.3. The fracture strength and fracture energy are taken as
tu = 1 MPa and gc = gIc = 0.1 N/mm, respectively. The length scale parame-
ter l is chosen l = 0.05 mm. Plane strain conditions are assumed. In Fig. 17,
the evolution of the interfacial damage is depicted. In the present framework,
this damage coincides with the phase field distribution, which is initially zero
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Fig. 17. Delamination peel test problem: phase field evolution d(x) for: u = 0 mm,
u = 0.4 mm and u = 1mm
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Fig. 18. Force-displacement curve for the peel-test problem: comparison between
the present approach and the results obtained in [39].

in the interface, in contrast to the approach proposed in [39].

To validate the results, we compare in Fig. 18 the obtained response with the
solution in [39] for both models M1 and M2. We can note that both models
provide a very good agreement with the reference solution.
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Fig. 19. Traction test of a microstructure containing a single inclusion with dam-
ageable interface: (a) geometry of the phases; (b) unstructured mesh of triangles.

6.5 Traction test of a microstructure with circular inclusion

In this example, we test the influence of the mesh on the predicted crack path,
when an interfacial crack interact with a bulk crack. The problem geometry is
depicted in Fig. 19. A square domain of length L = 1 mm contains a centered
circular inclusion of diameter D = 0.3L.

The boundary conditions are as follows: on the lower end (y = 0), the y−
displacements are fixed, while the x−displacements are free and the node
(x = 0, y = 0) is fixed. On the upper end, the x−displacements are free, while
the y−displacements are prescribed to an increasing uniform value of U during
the simulation. Plane strain is assumed.

The material parameters of each phase are taken as: Ei = 52 GPa, νi = 0.3,
Em = 10.4 GPa, νm = 0.3, where the indices i and m correspond to the
matrix and inclusion, respectively. These parameters are those of a mortar
composed of a cement paste (matrix) and sand (inclusions) [17]. The toughness
is gc = gIc = 1×10−4 kN/mm and tu = 10−2 GPa. Computations are performed
with monotonic displacement increments of U = 5.10−5 mm during 260 load
increments for interfacial model, and 320 load increments for the classical
phase field method.

To investigate the effects of the mesh on the crack path and load response, 4
different meshes have been used for comparison: 3 regular meshes wit 4-node
elements on regular grids of 200× 200, 300× 300 and 400× 400 element, and
a mesh of 30488 elements with hmax

e = 0.03 mm and hmin
e = 0.003 mm. The
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(a) (b)

Fig. 20. (a) Crack path obtained for a regular mesh. (b) Crack path obtained for
an unstructured mesh. The load is U = 0.0107 mm.
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Fig. 21. Comparison of solutions obtained with different meshes for the single in-
clusion problem with damageable interface.

obtained crack paths are depicted in Fig. 20 for the regular mesh of 200× 200
elements and the unstructured mesh, which have roughly the same number
of elements. The comparison has been made for the same load: U = 0.01175
mm. We can note a similar crack path for both meshes. Finally, the response
for the 4 meshes are compared in Fig. 21, which shows the convergence of
the solution with mesh refinement. Note that the unstructured mesh solution
corresponds to the element size of the 200× 200 regular mesh. Here, we have
chosen h = he. We can see from Fig. 21 that as the mesh is being refined, the
solution converges also with respect to the value of h.

Next, we investigate the influence of modifying the parameter lβ in (5). We
chose the following values: ld/lβ = 1/3, ld/lβ = 1 and ld/lβ = 2 for l = 0.013
mm. Results are presented in Figs. 22 and 23 for the same load U = 0.0107
mm, showing that a modification of lβ has a strong influence on the crack path
and on the overall response. This suggests that like ld, this parameter should
be identified through experimental data. However, as the purpose of this work
is to demonstrate the capabilities of the numerical scheme, we will assume in
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(a) (b) (c)

Fig. 22. Crack paths obtained with different length parameter lβ for the same load
U = 0.0107 mm: (a) ld/lβ = 1/3; (b) ld/lβ = 1; ld/lβ = 2, l = 0.013 mm.
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Fig. 23. Comparison of solutions obtained with different length parameters lβ.

the following that ld = lβ = l.

6.6 Traction test of a microstructure with non convex inclusion

In this next test, we evaluate the capability of the method to describe in-
terfacial damage in a microstructure containing an inclusion with complex,
non-convex geometry. In addition, the initial data of local properties are pro-
vided on a regular grid of voxels. We then test the procedure described in
section 4 to construct the level-set function used to evaluate the normal vec-
tor to the interface and construct the smeared discontinuous field [[u(x)]]. The
geometry of the microstructure is described in Fig. 24 (a). A non-convex in-
clusion composed of the union of two discs is embedded into a square domain
of length L = 1 mm. This non convex geometry has been chosen to test the
capability of the level-set construction method described in section 4 for this
difficult case. The obtained level-set is plotted in Fig. 24 (b) and its zero iso-
contour, corresponding to the interface geometry, is depicted in Fig. 24 (c).
The geometrical parameters are: A = 0.43L, D = 0.2L. A small dissymmetry
is introduced through the parameter ϵ = 0.01L.
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(a) (b) (c)

Fig. 24. Traction test of a complex microstructure in 2D: (a) geometry of the phases;
(b) and (c) level-set function

(a) (b) (c)

(d) (e) (f)

Fig. 25. Tensile test of a heterogeneous sample with complex inclusion: crack prop-
agation. The phase field d(x) is plotted. Figures (a), (b) and (c) depict the cracks
initiation and propagation by using the classical phase field method and correspond
to U = 0.014 mm, U = 0.015 mm, and U = 0.016 mm, respectively. Figs. (d),
(e) and (f) depict crack propagation and initiation for the model including both
phases and interfacial damage and correspond to U = 0.008 mm, U = 0.01 mm,
and U = 0.012 mm, respectively.

The same boundary conditions, material parameters and loading increments
as in the previous example are considered. Plane strain is assumed. A regular
mesh of 400×400 elements is used. The regularization parameter l is chosen as
l = 0.005 mm. We perform two simulations: one with the whole formulation,
able to take into account both interfacial damage and matrix damage, and
another which only takes into account damage of the bulk (basic phase field
method). Damage evolution for each model is depicted in figure 25.

In this example and in all following ones, the domain does not contain pre-
existing cracks, and the cracks first nucleate and then propagate as the load
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Fig. 26. Traction test of a complex microstructure: load-displacement curve.

is increased. We can note that in the case of the classical phase field method
(damage only occurring in the phases), two cracks initiate on the top and
at the bottom of the inclusion, where stress concentration occurs, and then
propagate. In the case where interfacial damage is included, the damage clearly
initiates in the interface and then propagates into the matrix. We note that in
this case, only one crack propagates. The general dissymmetry is induced by
the perturbation parameter ϵ (see Fig. 24 (a)) and due to the way the mesh
cuts the exact disc and the assignment of material properties to the elements.
The load-displacement curves are plotted for each case in Fig. 26.

We can note that both models M1 and M2 provide similar behaviors. The
slight local minimum observed for the model with interfacial damage might
be due to local relaxation associated to the damage near the interface. We
can conclude that in the present framework, the use of additional internal
variables (as in the M2 model) is unnecessary.

6.7 Microcracking in a microstructure containing randomly distributed inclu-
sions

A microstructure containing 9 randomly distributed circular inclusions is con-
sidered, as depicted in Fig. 27 (a)-(b).

The microstructure is modeled as a square domain whose length is L = 1
mm. The radius of the inclusions is computed such that the volume fraction
f is equal to 0.07. The elasticity parameters of each phase are the same as
in the previous example: Ei = 52 GPa, νi = 0.3, Em = 10.4 GPa, νm =
0.3. The interfaces can be damaged through the model proposed in section
3.3.2, with again tu = 10−2 GPa. The toughness of both phases is taken
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Fig. 27. Traction test of a microstructure containing randomly distributed inclu-
sions: (a) geometry of the phases; (b) geometry of the domain and boundary con-
ditions; (c) level-set function; (d) zero isocontour of the associated level-set

as gc = 2.7 × 10−4 kN/mm and gIc = gc. The boundary conditions are as
follows: on the lower end (y = 0, the y-displacements are fixed, while the x-
displacements are free. The node at (x = 0), (y = 0) is fixed. On the upper end,
the x-displacements are free, while the y-displacements are prescribed, with a
uniform increasing value of U during the simulation. Lateral boundaries are
free. Plane strain is assumed. The computation is performed with monotonic
displacement increments of U = 5×10−5 mm during 200 increments. A regular
mesh of 300×300 quadrilateral elements is used. The regularization parameter
is chosen as l = 0.0075 mm.

The microcracking distribution (damage variable d(x)) is depicted in Fig. 28
for several realizations of microstructures at a stage close to the peak stress.

In the different figures of Fig. 28, we can note that in each case, the cracks initi-
ate at the interface between the matrix and the inclusions, and then propagate
into the matrix. For most cases, a crack path is created between the inclusions
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Fig. 28. Microcrocracking evolution for 15 realizations of microstructures in traction.

passing through the interfaces and then leading to the rupture of the specimen.
This example illustrates well the capability and robustness of the technique to
handle: (a) interaction between many cracks and (b) crack propagation from
interfaces to the bulk. We note that the same regular mesh was used for each
simulation, by only changing the level-set construction through the procedure
described in section 4.

The corresponding force-displacement curves are depicted in figure 29 for the
set of 15 realizations. We note a relatively large dispersion of the individual
results, with possibly non monotonous evolutions of the force/displacement
curves. This shows on the one hand the strong sensitivity of the overall quasi-
brittle response to the local morphology of microstructure as well as the ca-
pability of the proposed method to capture these effect. This variability is
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Fig. 29. Traction test of a microstructure containing randomly distributed inclusions
with interfacial damage: load-deflection curve for 15 realizations. The red curve
denotes the average response.

as expected much larger in the damaged part of the force displacement curve
than in its initial linear part. On the other hand, the average of this individual
responses, shown in red, exhibits a much more regular shape, which might be
considered as a first evaluation of the overall softening response of a damag-
ing composite containing much more inclusions. The convergence of individual
simulations with increasing window sizes, or of their statistical averages, to-
wards the effective behavior of such a composites remains a stringent open
question. These preliminary results suggest that the proposed numerical tools
might provide an efficient tool to make a big step for its investigation. More
precisely, the concept of ”representative volume element” for a quasi-brittle
material might be clarified this way, following earlier ideas used for simpler
linear elastic behaviours (e.g. [18]).

6.8 Compression test of a realistic microstructure extracted from microto-
mography image of an EPS lightweight concrete

This last example illustrates the capability of the technique to solve problems
of microcrack propagation in voxel-based models obtained from microtomog-
raphy of real materials with both interfacial and bulk damage.

The considered 2D microstructure is a cross-section of a microtomography im-
age of a real cementitious material obtained with the XRCT laboratory scan-
ner available at Navier laboratory. The real material consists into quartz sand
and almost spherical expanded polystyrene (EPS) beads with controlled di-
ameter embedded into a cement matrix. The image was recorded for 1h20 min
with a voxel size of 15 µm. The grey level image was filtered and thresholded
to separate the three phases of the microstructure. The results are presented
in Fig. 30 (a), where the white, grey and black phases correspond to matrix
(cement paste), inclusions (sand grains) and pores (EPS beads), respectively.
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Fig. 30. Compression test of a microtomography image-based model of EPS
lightweight concrete: (a) microstructure obtained from segmented image: the white,
grey and black phases correspond to matrix, inclusions and pores, respectively; (b)
geometry of the domain and boundary conditions; (c) level-set function and (d) zero
isovalue of the constructed level-set.

The obtained level-set for this complex geometry described in section 4 is
shown in Fig. 30 (c), and its zero isovalue, corresponding to the interface be-
tween the matrix and the rigid inclusions, is depicted in 30 (d). Note that the
construction of a level-set function for such complex geometry is not trivial
and proves the robustness of the original algorithm proposed in this work.
Note that no level-set is used here to describe the matrix-pores interface, as
it would make no sense to propagate cracks along such interfaces.

The boundary conditions and geometry of the sample are described in Fig. 30
(b) and are similar to the previous examples. From the 1000× 1000 pixels, a
mesh of 1000 × 1000 quadrilateral elements is generated, where the material
property of matrix, inclusion or holes, are transferred into a regular grid of
square domains associated with elements. The material parameters of inclu-
sions and matrix are, respectively: Ei = 60 Gpa, νi = 0.3, Em = 18 Gpa,
and νm = 0.2. The pores are covered with elements of the regular mesh. We
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(c) (d)

Fig. 31. Compression test on a microtomography image-based model of EPS
lightweight concrete: microcracking evolution for:ua = 0.12 mm, ub = 0.15 mm,
uc = 0.162 mm and ud = 0.18 mm (see Fig. 32 for corresponding force-displacement
curve).

have chosen very compliant properties for these elements, Ep = 10−6 Gpa,
νp = 0. The toughness gc = 59.3 N/m is assumed to be identical for the
different phases and gIc = gc. Note that in this example we have considered
both normal and tangential components for the cohesive law, with tu = 3.4
MPa for both components [32]. The simulation is performed with monotonic
displacement increments U = −6.10−4 mm during 250 load increments. The
regularization parameter is chosen as l = 30 µm. The microcracking evolution
in the domain is presented in Fig. 31.

We can observe several microcracks nucleation modes. In the vicinity of pores,
cracks nucleate vertically, which is consistent with some recent experimental
observations of plaster materials containing holes subjected to compression
[31]. Other cracks nucleate from interfaces between inclusions and the matrix,
and then propagate into the matrix. A few cracks propagate through inclu-
sions. In all cases, the crack paths are very complex and show the potential of
the method to describe microcracking with interfacial damage in very complex,
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Fig. 32. Compression test of a microtomography image-based model of EPS
lightweight concrete: load-deflection curve.

heterogeneous microstructures such as obtained by experimental imaging. The
load-displacement curve is provided in Fig. 32. When microcracks start nu-
cleating, the material strength quickly drops. We can note that both M1 and
M2 models provide comparable solutions, which shows that the present frame-
work can be employed with the simplest cohesive model and without internal
interface variables, at least for monotonous loading conditions.

7 Conclusion

In this work, a phase field method capable of describing interactions between
bulk brittle fracture and interfacial damage has been introduced. One main
attractive feature of the phase field method is the diffuse approximation of
discontinuities, which avoids the burden of remeshing during crack propaga-
tion and is well adapted to simulations of cracking within voxel-based models
obtained for instance from X-ray CT images of real materials.

As compared to a previous contribution to phase field modeling of interfacial
damage in [39], our new formulation allows describing opening and re-closure
of cracks by using directly the phase field as an internal variable, which removes
the need for internal variables related to cohesive interfaces. Then, the sole
and unique phase field is employed to describe both bulk brittle fracture and
interface cracking, and thus allows interaction between the two type of cracks.
More specifically, we have simulated crack nucleation from interfaces and their
propagation into the bulk.

To describe diffuse displacement jump at interfaces, a level-set method has
been proposed, with a simple algorithm to construct the level-set function
for arbitrary complex geometries arising from microtomography image-based
models.
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The accuracy of the method has been proved through several well-known
benchmarks (peeling test, crack propagation in 3-point bending of a beam).
In addition, we have demonstrated the capability of the method to simulate
interactions between interfacial damage and bulk brittle fractures for complex
geometries arising from voxel-based model of microtomography images, which
has been done for the first time in this work to our knowledge. The method
then constitutes a very promising modeling and simulation tool for studying
microcracking in a wide class of composite materials where both interfacial
damage and matrix crack propagation occur, and could constitute a basis for
many extensions of interfacial damage models involving other physical phe-
nomena.
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9 Appendix 1: analytical solution for the discontinuous benchmark
problem

In the following, we provide the exact solution of the discontinuous benchmark
presented in example 6.1. The u1 component of the displacement is linear in
each domain, i.e.

u1(x) = A1x+B1 ∀x ∈ Ω1,

u1(x) = A2x+B2 ∀x ∈ Ω1.
(78)
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The constants are found by verifying the displacement boundary conditions
and the continuity conditions at the interface x = L/2:

u1(x = 0) = 0

u1(x = L) = U

[[σ11(x = L/2)]] = 0

σ11(x = L/2) = t([[u1(x = L/2)]])

(79)

which leads to the solution:

u1(x) =
E2U

L

2
(E1 + E2) +

E1E2v
2
n

gc

x for (x >
L

2
) (80)

u1(x) = U − U

L

2
(1 +

E2

E1

) +
E2v

2
n

gc

(L− x) for (x <
L

2
). (81)

10 Appendix 2: expressions of tangent components of the cohesive
law

The expressions of the terms in (54) are given by:

Dnn =
gIc
δn

(
1− wn

δn

)
exp

(
−wn

δn

)
exp

(
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2
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)
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