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Ptychography is described in the context of polarized
light probing anisotropic specimen, i.e., showing prop-
erties of birefringence and/or diattenuation. We estab-
lish an optimization strategy using a vectorial formal-
ism. A measurement scheme using a set of linearly po-
larized probes and linear polarization analyzers is pro-
posed, allowing to retrieve the full anisotropy map of
the specimen. © 2015 Optical Society of America

OCIS codes:  110.5405 Polarimetric imaging; 110.3010 Image re-
construction techniques; 100.5070 Phase retrieval; 120.5410 Polarime-
try; 260.5430 Polarization; 340.0340 X-ray optics
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Ptychography is an imaging technique aiming at reconstruct-
ing numerically the transmission properties of an object (ampli-
tude, phase). It exploits a set of intensity diffraction patterns
recorded for different positions of a spatially-structured illumina-
tion probe on the object [1]. In the context of optical microscopy,
it is becoming a new competitive method mostly thanks to its
capability to image quantitatively the phase shift introduced by
the sample. Beyond the possibility which is now offered to see
transparent specimen, measuring the phase brings a valuable
information, like e. ., in biology for the quantification of the
mass of cells [2—4] or chromosomes [5]. In spite of this progress,
ptychography has been only developed in a scalar formalism, an
approximation that restricts its application to isotropic materials.
Though, many systems, because of their structural molecular
anisotropy, present strong optical birefringence properties, as
it is the case for biological cell components (actine [6], micro-
tubules [7]), biological tissues (collagen [8]), or biomineral sys-
tems [9]. There is therefore a strong need for the development of
a vectorial formalism, that would allow a complete optical char-
acterization of these anisotropic materials. Moreover, addressing
anisotropy is not limited to the optical waves. In electron [10]
and x-ray [11-13] microscopy, where much progress in high reso-
lution imaging has been accomplished with ptychography using
a scalar formalism, exploiting the specific interaction between
a polarized beam and materials showing anisotropic electronic
properties such as dichroism [14] requires a generic vectorial
formalism, too.

In this letter, we revisit the ptychography problem using a
vectorial formalism and establish a criterium to be minimized,
in order to reconstruct the anisotropy properties of the object. A

measurement scheme using a set of linearly polarized probes
and polarization analyzers is proposed, allowing the retrieval of
the full anisotropic properties of the specimen without indeter-
mination.

Ptychography relies on the assumption that a probe interacts
with a specimen in a multiplicative way [15]. For a full vectorial
description, it is convenient to use the formalism introduced
by Jones [16], so that the k-th probe py, e.g., the k-th polariza-
tion state, centered at the j-th position r;, must be written as a
complex vector

1)

pjk(r) = p(r—1j) = [ Pikx(r) ] ,

Pjky (1)

where the two complex components pij.,(r) and pj,, (r) refer
to the x and y transverse directions, respectively. The specimen
transmission properties have to be described at any position r
by a so-called Jones complex matrix

Pxx(1)

Pxy (1)

O(r) =
{ Pyy (1)

pyx(1) ] ) @

where, in general pyx(r) # pxy(r) [16]. With these notations, the
vectorial exit field ;. (r) of the ptychography problem is simply
given by the matrix multiplication

Pir(r) = O(x) pjx(1). (&)

Thus, solving the ptychography problem in an anisotropic
medium aims at retrieving the 4-element Jones matrix O(r) at
any point r or, equivalently, at retrieving the four maps pxx(r),
Pyx (T), Pxy(r), and pyy, (r). In the following, we will refer to this
four-map set as the Jones map of the object.

Now that the interaction between the probe and the specimen
is formally established, the equations of the direct ptychography
problem can be derived and the fitting strategies for reconstruct-
ing the object can be formulated. For the convenience of these
derivations, we will, temporarily and without loss of generality,
adopt a different formalism, so that Eq. 3 becomes

Pix(r) = Py (1) p(1), @
where we have built up, out of O(r) and pjk(r), the two quanti-
ties
| Pk (D) 0 Pjky (1) 0

ij(r) = (5)
0 Piky (r) 0 Pjk;x (1)


http://dx.doi.org/xxx

Letter ‘

Optics Letters 2

and
Pxx (T

>

)

vy (r)
Pyx (1)
(r)

Pxy (X

p(r) = (6)

The far field generated in the Fraunhoffer approximation by
this exit—fielfi reads ‘.I’jk(q) = Fpj(r), where q is the reciprocal-
space coordinate, with

F 0
0o F

F= (7)

where F is the 2D Fourier transform. After a polarization analy-
sis, the vectorial field ¥ is reduced to a scalar complex ampli-
tude to

Zu(q) =h/ ¥i(q), ®)

where h; is the corresponding operator for the I-th analysis
filter, and T is the transpose operator. For instance, one can
show easily that the operator corresponding to a linear polarizer
oriented at « with respect to the x direction is

CoS &
h, = .
sinu

Finally, the intensity yjx(q) collected in the detection plane reads
(in average)

i (@) = Wik (Q)) = &ju(a)* + en(a), )

with €y; the expected contribution of the background component
to the intensity.

Because Eq. 9 gives the formal relationship between the mea-
surement yj; and the unknown object p, it gives us the opportu-
nity to define a least-square estimate of the unknown object via
the minimization of the following criterion [17]

2
£lo) = DL~ ol
] K

=Y Li(p). (10)
i

Following the same “spirit” as the well-known ptychographical

iterative engine (PIE) algorithm established in a scalar formal-

ism [18], the vectorial PIE (VPIE) needs to compute the four-
component gradient of Ej, that reads

oL; OLjg
= _ ] /2 _ 1/2], -1/2
op % dp [y]kl ikt } Uikt (n
leading to
oL;
] *
T —2 ;P;'rkFJr Zl:hz (St — Cjua), (12)

where g]/‘kl is the updated scalar far field, meaning that the mod-

ulus is replaced by the square root of the measured intensity,
!

¢ jkl =
conjugate” and “transposed complex conjugate” operators, re-
spectively.

Finally, similarly to the scalar PIE, the optimization algorithm
is now applied to the four-component guess of the object, i.e. to

\/Yjki/ Wjki Cjki, and where * and 1 denote the “complex

the Jones map, that is updated for each step of the probe position
according to

. , oL,
(+1) — p() — gD, -, (13)
P P —p i 5

where B > 0 is the step size of the update, and Djisa4 x4
diagonal matrix, with diagonal values givenby D;; = D;4 =

1/max <Zk \ij;x|2> and Djs = Dj3 = 1/max (Zk Piky 2)-

(

S
&
d

)

X

() '

Fig. 1. (a) Simulated object. Colorscale indicates the retardance
in radians. Superimposed white sticks show the orientation
of the fast axis for birefringent area. (b) Complex amplitude
of the probe. The inset shows the complex value color coding,
with phase encoded as hue and modulus as brightness. (c)
Jones map of the simulated object. All scale bars are 20 ym.

Retrieving the full anisotropy properties of any object O re-
quires that the measurement involves the appropriate set of
probes and analysis filters. A naive approach would consist in
addressing independently each term of the Jones map, i.e., probe
and analysis polarized along the x direction in order to address
pxx, probe along x and analysis along y to address py, etc. How-
ever, since each map of pxx, pxy, Pyx, Pyy Will be retrieved, each
one with a constant phase indetermination, this method would
fail in reconstructing the phase relationship between the four
elements of the Jones map. Therefore we propose the following
strategy for choosing the probes and analyzers. Concerning
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k=10

k= 45

N

Fig. 2. Nine intensity patterns (log of intensity) as recorded for
all kI combinations, when the probe is centered at the point in-
dicated by the cross in Fig. 1a. Color scale refer to all patterns.

Scale baris 1 ym~1.

the probes and more specifically for linear polarization states,
the sensitivity to the anisotropy properties requires that their
polarization angle is chosen as far as possible from the directions
defined by the neutral axes of the material. Without a priori
knowledge of these axes in the investigated object, a common
strategy to avoid pathological cases in polarimetry consists in
using three different polarization angles [19]. Therefore, we pro-
pose to use a set of three linearly-polarized probes P, where
k € {0,45,90} denotes the orientation in degrees of the linear
polarization of the field in the xy plane. Concerning the po-
larization analysis, without a priori knowledge of the kind of
polarization state (linear, circular, etc.) to be analyzed, we also
propose to use three linear analysis filters, for instance along the
same directions, h;, with I € {0,45,90}. Thus the vPIE exploits
a set of nine intensity patterns u;;(q), corresponding to all the
combinations of probes and analyzers, such high number of mea-
surements aiming at solving unambiguously the whole set of
unknowns, namely the four complex components of O(r). With
these sets of probes and analyzers, the update of O as proposed
by Eq. 13 writes explicitly, for instance for the pyy component,

W = ol A
max <|Pj,o,x + |pja5,x >

1
X [Pﬁo,x(Ale,o,O + EA%‘,OAS)
1
+ Plasc (Bpjasp + ﬁA%‘ASAS)} , (14

with Apjg = F (S — Cia)-

In order to test the validity of our approach, the vPIE has
been run on a set of simulated data. We have considered a
set of six distant birefringent objects of retardance 71/2 regu-
larly arranged on a ring, having their fast axis oriented radially
(Fig. 1a), surrounded by an isotropic medium, chosen so that
the objects do not generate any phase step for an electric field
polarized along the direction of the fast axis. Although differ-
ent in terms of polarization orientations, the three probes have
the same two-dimensional gaussian profile (radius 3.5 ym) illus-
trated in Fig. 1b, and a wavelength of 0.5 ym. The corresponding

Fig. 3. Reconstructed Jones map of the object. The inset shows
the complex value color coding, with phase encoded as hue
and modulus as brightness. Scale bar is 20 ym.

Jones map of this object is presented in Fig. 1c, showing clearly
different values for the different areas, due to their different
orientations. In addition, one can notice that py,(r) = pyx(r),
which is the signature that the object is made of single-layer bire-
fringent regions (in opposition to stacks) [16]. The probes were
scanned over the object in steps of 2.5 ym, generating at 2,500
positions the nine intensity patterns as recorded by a 100 x 100
pixels (pixel size 8 mm) camera placed in the Fourier plane of
a lens of focal length 20 mm. A Poisson random number gen-
erator was used in order to mimic the shot noise of the signal.
Total number of counts over a frame were typically 200,000. An
example of set of intensity patterns is shown on Fig. 2.

The vPIE was run using a random distribution of modulus
and phase for all components of O(r) as starting guess. The
Jones map of the object, as reconstructed after 100 full-scan itera-

Fig. 4. Retrieved retardance ¢ (colorscale in radians) and fast
axis orientation 6 (represented by superimposed sticks). Scale
bar is 20 ym.
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Fig. 5. Complex amplitude of the object as retrieved from a
scalar ptychography measurement. Scale bar is 20 ym.

\

tions with B = 0.5, is shown in Fig. 3, after subtraction of a global
phase offset to all four components of O(r), in order to ensure
an arbitrary phase of zero for pyy in the surrounding medium.
This reconstructed Jones map is in excellent agreement with the
simulated one of Fig. 1c. The smoothing of the edges was found
to be a consequence of the simulated shot noise, which operates
a truncation of the highest g values in the intensity patterns
(Fig. 2) [17]. Since the specimen was made of single layer object,
we could produce a more comprehensive picture of the object
properties, by retrieving independently the values of retardance
¢(r) and fast axis orientation 6(r). Mathematically, this was
done by solving at every point r the basic matrix equation

O =R(-0)W(¢)R(0),

cosf)  sinf 1 0
and W(g) =

—sin@ cosf 0 exp(ip)

The result is shown in Fig. 4. The retrieved retardance value of
7t/2 for all objects and the radial orientations reproduce very
well the initial model of Fig. 1a.

For comparison purpose, the simulated dataset was also
processed by the scalar PIE, where we considered as intensity
patterns the sum 1,990 + 90,90, which mimics a conventional
scalar measurements carried out using a linearly-polarized light
source (here along the y direction) and no polarization analysis.
The scalar object, as reconstructed using the same number of
iterations and B value, is shown in Fig. 5. Predictively, the two
blocks located at the top and the bottom of the object are no
longer visible, since they have been designed not to produce any
phase step in the transmitted field for this polarization orienta-
tion. Although the retrieved object looks similar to py,y (Fig. 1c),
the obtained complex values are significantly different. For in-
stance, within the upper-right block, the modulus is 0.8 vs. 1 for
pyy at the same point in Fig. 5, and the phase is 1.27 vs. 1.15. In
addition, the reconstructed surrounding medium exhibits some
ghost artefacts. These observations confirm the relevance of
the vPIE, as soon as the sample possesses some birefringence
properties.

We have run vPIE successfully on a large variety of
anisotropic objects. Although only shown here in the case of
birefringent objects, we have obtained excellent results for object
showing properties of diattenuation, i.e., anisotropic absorbance.

For all investigated cases, object reconstructions converge typi-
cally in 10-100 iterations towards a solution, except for the very
well known pathological case of an homogeneous medium, for
which the distinction between p(r) vs. p*(—r) cannot exploit on
the spatial diversity of ptychography.

In conclusion, we have revisited the ptychography problem
using a vectorial formalism. A criterion has been derived and
a measurement scheme using a set of linearly polarized probes
and polarization analyzers has been proposed. Simulations
show that the full anisotropic properties of the specimen can be
effectively retrieved without indetermination. This work opens
new perspectives for the exhaustive investigation of anisotropic
materials by means of ptychography.
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