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Dense suspensions display complex flow properties, intermediate between solid and liquid. When
sheared, a suspension self-organizes and forms particle clusters that are likely to percolate, possibly
leading to significant changes in the overall behavior. Some theoretical conjectures on percolation
in suspensions were proposed by De Gennes some 35 years ago. Although still used, they have
not received any validations so far. In this paper, we use three-dimensional detailed numerical
simulations to understand the formation of percolation clusters and assess De Gennes conjectures.
We found that sheared non-colloidal suspensions do show percolation clusters occurring at a critical
volume fraction in the range 0.3∼0.4 depending on the system size. Percolation clusters are roughly
linear, extremely transient, and involve a limited number of particles. We have computed critical
exponents and found that clusters can be described reasonably well by standard isotropic percolation
theory. The only disagreement with De Gennes concerns the role of percolation clusters on rheology
which is found to be weak. Our results eventually validate De Gennes conjectures and demonstrate
the relevance of percolation concepts in suspension physics.

Dense suspensions are ubiquitous in nature and
industry. They exhibit an intricate physics which is
far from being understood completely [1, 2]. Early
simulations of sheared non-Brownian suspensions have
shown that their microstructure does not remain
isotropic and that particles form large clusters globally
oriented along the compression axis [3, 4]. Those
structures usually spread over a long distance and may
transmit significant stresses across the suspension [5].
They are also believed to contribute to thixotropy and
shear-thickening in concentrated suspensions [6, 7].
Clusters are likely to percolate, which means they can
form a connected network of particles spanning across
the whole domain. This percolation may result in
dramatic changes in the overall suspension behavior,
such as a discontinuous isolating/conducting transition if
particles are conducting and carrying fluid is insulating.
In a seminal paper, De Gennes [8] proposed a set of
theoretical conjectures about percolation clusters in
sheared suspensions. This study is extensively cited in
the literature [9] ; nonetheless it is still conjectural and
it has surprisingly not received any validations so far. In
this paper, we intend to assess some of the 35-year-old
De Gennes conjectures using three-dimensional numeri-
cal simulations of suspensions.

The suspensions considered in this work are non-
Brownian, non-colloidal and composed of monodisperse
spheres of radius a. Fluid and particle inertia are
neglected. Numerical simulations are based on a fic-
titious domain method which solves the flow at the
particle scale and explicitly accounts for the long-
range many-body hydrodynamic interactions between
particles [10]. A correction procedure is considered
for lubrication interactions similarly to Stokesian Dy-
namics [4]. More details on our lubrication technique
may be found in [10, 11]. We consider rough particles

having a roughness size hr = 5.10−3a, which is a typical
experimental value [12, 13]. Particle roughness involves
actual contacts – despite lubrication – that are modeled
by a normal repulsion force F c given by a Hertz law
F c = kn|δ|3/2 ·n where n is the normal vector n=r/‖r‖
with r the branch vector joining the sphere centers and
δ = ‖r‖ − 2a − hr. The stiffness kn is chosen large so
as to mimic rigid particles (i.e., |δ| � a). Simulations
are performed in a wall-bounded linear shear flow with
a domain size L in velocity (x) and velocity-gradient
(y) directions (Lx=Ly=L) while a constant Lz=20a
is fixed in the vorticity (z) direction. The system size
L will be varied between 20a and 40a giving a total
number of particles in the range 1000∼3000. Upper
and lower walls are prescribed with opposite velocities
to produce a linear flow of shear rate γ̇. The flow is
periodic in velocity (x) and vorticity (z) directions.
Computations are conducted during at least 100γ̇−1 and
instantaneous particle configurations are stored every
0.01γ̇−1. The resulting set of about 10,000 realizations
is then processed to detect and study particle clusters.
A percolation cluster (more rigorously, a spanning
cluster) is here defined as a cluster of particles in contact
that entirely spans the computational domain in the
y-direction, i.e. it simultaneously connects both walls. A
remark is that the cluster definition completely hinges on
roughness. Yet, the physical relevance of our roughness
model seems confirmed by experiments [14]. Moreover,
roughness size hr is available experimentally and lies in
the range 10−2a ∼ 10−3a [12, 13]. This choice of physical
values precludes any arbitrary cut-off distance to define
contacts. Note that perfectly smooth spheres can not be
handled but such spheres do not exist in practice and
make anyway simulations extremely problematic [15].

In the following, we address and check different
conjectures proposed by De Gennes. Conjectures are
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here numbered for practical reasons (this is not the
case in the original article where they are peppered all
along the paper). Quotes denote exact citations taken
from De Gennes [8].

Conjecture 1: ”When volume fraction φ exceeds a
critical value φcr (of order 1/5), an infinite cluster
appears in analogy with percolation problem”.

Our simulations suggest that above a threshold vol-
ume fraction φ∗, an incipient cluster spans the domain.
This onset of percolation can be investigated using
the probability 〈Π〉 that a cluster spans the domain,
i.e Π=1 when there is at least one spanning cluster
in the suspension and Π=0 otherwise. Brackets 〈.〉
will indicate an ensemble average all along this paper.
Likewise, the strength P is defined as the probability
for a given particle to belong to spanning clusters.
Therefore, 〈P 〉 is the average fraction of particles in
spanning clusters. Simulations show that there can exist
several spanning clusters simultaneously, in accordance
with theoretical results [16]. The probabilities 〈Π〉 and
〈P 〉 are shown in Fig. 1 for different system sizes L.
The threshold fraction φL∗ for system size L is defined as
φL∗ = sup{φ : 〈Π(L, φ)〉 = 0} and ranges from φL∗ ≈ 0.29
for L=20a to φL∗ ≈ 0.37 for L=40a. Obviously, 〈P 〉 and
〈Π〉 both become non-zero at the same threshold φL∗ . In
any case, for φ & 0.42, a permanent percolation regime
exists (i.e., 〈Π〉=1) which means that there is always
at least one spanning cluster in the suspension. The
fraction 〈P 〉 of particles involved in spanning clusters is
only about 50 % at φ ≈ 0.42 although spanning clusters
are always present in the suspension since 〈Π〉=1. There
is however an abrupt increase of 〈P 〉 for φ ≈ 0.4.
Figure 1 also shows that the probabilities 〈Π〉 and 〈P 〉
strongly depend on the system size which is expected
due to finite-size effects, which occur when the size of
the largest clusters is similar to the system size L. This
tends to smooth the evolution of probabilities as well
as to enlarge the percolation/non-percolation transition
zone. In the limit of an infinite domain (L → ∞), the
probability 〈Π〉 is expected to be a Heaviside sharp
function having discontinuity at the critical volume
fraction φcr. For finite systems, as apparent from
Fig. 1, spanning clusters may occur prior to the critical
fraction, i.e. φL∗ ≤ φcr (the equality φL∗ =φcr holds for
L → ∞). Globally, the obtained thresholds φL∗ are
consistent with the scarce available simulations, between
0.3 and 0.4 [17–19]. Experimentally, Blanc et al. [20]
noted the first spanning clusters occurring in a Couette
rheometer by φ∗ ≈ 0.3 [21]. Overall, this first conjecture
is confirmed by our simulations although percolation
thresholds are larger than expected by De Gennes (about
0.2). Note that his value was taken from experiments on
colloidal suspensions [22], so that colloidal interactions
could possibly explain this discrepancy.

Conjecture 2: ”Clusters have a branched structure.
[...] We find that one sphere may be in contact [...]

FIG. 1. Spanning probability 〈Π〉 (a) and spanning strength
〈P 〉 (b) as a function of volume fraction φ for different system
sizes L.

simultaneously with up to eight neighbours”.
Spanning clusters are indeed found to be relatively linear
with some branched structures as seen in Fig. 2. This
figure represents an instantaneous particle configuration
(φ=0.32 ; L=30a) showing a spanning cluster connecting
upper and lower walls (a spanning cluster for φ=0.39
is also provided in Supplementary Materials). For the
sake of clarity, particles not belonging to this cluster
are not represented. The roughly linear structure can
be confirmed by computing the average coordination
number (number of contacts per particle) which is
found to be close to 2, independently of volume fraction
(Fig. 3). The instantaneous maximum coordination
number can reach up to 8 as postulated by De Gennes.
This occurs for the highest volume fractions (φ & 0.45) ;
for moderate φ, it lies between 4 and 7. This maximal
coordination of 8 was still found at φ=0.5 but higher
fractions led to system crystallization. The average ori-
entation angle θ (with respect to the velocity direction)
for particle pairs in spanning clusters was computed in
the (x,y) plane and found to be 〈θ〉 ≈ 120o regardless
of volume fraction. This means that spanning clusters
are always globally oriented along the compression axis
(θ = 135o).

FIG. 2. A spanning cluster in a sheared bounded suspen-
sion (φ=0.32 ; L=30a). Only particles belonging to spanning
cluster are represented.
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FIG. 3. Average (•) and maximum (◦) coordination number
in spanning clusters as a function of volume fraction (L=20a).

Conjecture 3: ”The clusters are not permanent. While
rotating in ambient fluid, some links are removed, and
some others are established”.
From the time evolution of Π(t), we have investigated
the temporal dynamics of spanning clusters by comput-
ing a time scale 〈τs〉 defined as the average duration
of spanning events. As seen in Fig. 4 for L=20a, the
time scale 〈τs〉 is found to be rather small, typically
of the order of 0.1γ̇−1, from φ=φ∗ (≈ 0.29) until φ ≈
0.38. This means that spanning clusters are extremely
transient and their life time is short. This unsteady
behavior remains even at higher volume fractions : at
φ=0.4 (and L=20a), this time scale 〈τs〉 is still as low as
0.6γ̇−1 although clusters span during 90 % of the time
(〈Π〉 ≈ 0.9). Then, for φ & 0.42 (L=20a), 〈τs〉 diverges
since there is a permanent percolation. Note that even
in this case, clusters have a constantly evolving structure
although they always span the domain. In contrast,
the average waiting time 〈τw〉 between two spanning
events shows a different evolution with a continuously
decreasing power-law 〈τw〉 ∝ (φ − φL∗ )δ with δ ≈ −3.1.
Those results show that on a large volume fraction
range, spanning clusters have a rather constant life
time but occur with increasing frequency as volume
fraction grows. This confirms the very transient nature
of clusters conjectured by De Gennes.

FIG. 4. Characteristic spanning times 〈τs〉 (•) and waiting
times 〈τw〉 (◦) as a function of volume fraction (L=20a ;
φ∗=0.29). Times are rescaled by the inverse shear rate γ̇−1.

Conjecture 4: ”Scaling near threshold is given by stan-
dard isotropic percolation”.
Following standard percolation theory, most quantities
obey scaling laws close to critical fraction that are largely
insensitive to the network structure. For instance, the
strength 〈P 〉, correlation length 〈ξ〉 and mean cluster size
〈S〉 should obey [23, 24]

〈P 〉 ∝ (φ− φcr)β , φ→ φ+cr (1)

〈ξ〉 ∝ |φcr − φ|−ν , φ→ φcr (2)

〈S〉 ∝ |φcr − φ|−γ , φ→ φcr (3)

Note that Eq. (1) holds only for φ > φcr whereas Eq. (2)
and Eq. (3) are valid for any φ 6= φcr as long as infinite
clusters are excluded. Standard isotropic percolation the-
ory proposes that critical exponents β, ν and γ are uni-
versal with β=0.41, ν=0.88, and γ=1.82 in 3D [23, 24].
To assess whether percolation theory is adequate for sus-
pensions, we provide a first estimation of critical expo-
nents β, ν and γ as well as φcr. As it will be seen,
the correlation length ξ does not need to be explicitly
computed to estimate exponent ν. For a given particle
configuration, the mean cluster size S is defined as

S =

∑′

s s
2ns∑′

s sns
(4)

where ns is the cluster number distribution, i.e. the prob-
ability that a cluster contains s particles (sns is there-
fore the probability that a given particle is part of an
s-cluster. An example of such a distribution is provided
in Supplementary Materials). In Eq. (4), the primed sum
means that spanning clusters are excluded from the sum.
For small finite systems however, the above power laws
Eq. (1) to Eq. (3) are not observed directly and, for in-
stance, 〈ξ〉 and 〈S〉 remain finite at the critical fraction.
In that case, it is generally preferred to consider finite-size
scaling theory [25]. According to this theory, mean clus-
ter size and cluster strength should read 〈S〉 ∝ Lγ/νF(q)
and 〈P 〉 ∝ L−β/νG(q) with q = (φ − φcr)L

1/ν . This
means that the rescaled mean cluster size 〈S〉L−γ/ν and
strength 〈P 〉Lβ/ν can be described by some unique func-
tions F and G (not known in general) as a function of
(φ − φcr)L1/ν . We have therefore considered all our re-
sults for various φ and L values and run a minimiza-
tion simultaneously on (φcr, γ, ν, β) so as to obtain the
best data collapse on rescaled cluster size and strength.
This best collapse is reached for φcr ≈ 0.415 ± 0.005,
γ ≈ 1.91 ± 0.15, ν ≈ 1.02 ± 0.10 and β ≈ 0.18 ± 0.05.
The resulting scaling functions F and G are shown in
Fig. 5. This seems to be the first attempt in estimat-
ing critical exponents for percolation in suspensions. Ex-
cept for β, which is low compared to theory (0.18 vs.
0.41), the obtained exponents are relatively consistent
with standard percolation theory. The discrepancy on
β can not presently be explained and could possibly
come from relatively small system size, or the presence
of walls. Additional simulations in larger domains (not
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done due to huge computational demand) could confirm
whether this arises from small systems or actual devia-
tion from isotropic percolation theory. Finally, note that
the computed φcr ≈ 0.415 is close to Blanc’s experiments
φcr ≈ 0.45 [20].

FIG. 5. Rescaled mean cluster size 〈S〉L−γ/ν (a) and rescaled

strength 〈P 〉Lβ/ν (b) as a function of (φ−φcr)L1/ν . The best
data collapse is obtained for φcr=0.415, γ=1.91, ν=1.02 and
β=0.18. Scales are arbitrary since they depend on L (here, L
is dimensional with a=0.1).

Conjecture 5: ”At critical concentration we would ex-
pect an anomaly in the plot of apparent viscosity versus
concentration”.
De Gennes was aware that this was not supported by ex-
periments since he mentioned that ”nothing of this sort
has been observed”. Indeed, Blanc’s experiments [20]
confirm that when percolation clusters are noticed, this
results in no change in the viscosity. Figure 6 presents
the computed suspension relative viscosity ηr = ηs/ηf

(where ηs and ηf are the suspension and fluid viscosity,
respectively) as a function of strain. A gray circle indi-
cates the presence of at least one spanning cluster in the
suspension. There seems to be no clear links between
viscosity and occurrence of spanning clusters. Maximal
values or rapid variations in the viscosity are not related
to spanning events. It is sometimes argued that large
viscosity fluctuations might be connected to percolation
clusters but this is clearly not supported by our results.
To investigate the role of clusters on rheology, we intro-
duce a stress enhancement factor 〈W 〉 as

〈W 〉 = 〈 1

P

Σp,scxy

Σpxy
〉 (5)

where Σpxy is the particle tangential stress (directly re-
lated to relative viscosity ηr) and superscript sc refers
to spanning clusters. This factor can be viewed as the
average tangential stress supported by a particle belong-
ing to spanning clusters scaled by the average tangential
stress of a particle in the suspension. This stress factor
is computed for L=20a and different volume fractions
in Tab. I together with the average strength 〈P 〉. The
computed values of 〈W 〉 are greater than 1 indicating
that particles in spanning clusters do support tangential

FIG. 6. Suspension relative viscosity ηr as a function of strain
(φ=0.34, L=20a). A gray circle marks the presence of at least
one spanning cluster.

stresses that are larger (by 19 to 39 %) than in the rest
of the suspension. Although this stress concentration ex-
ists, the overall effect on the suspension remains weak.
For low φ, this is due to the small fraction of particles
〈P 〉 involved whereas for highest φ, the stress factor 〈W 〉
gets closer to 1. In the latter case, there are many large –
but non-spanning – clusters in the suspension that trans-
mit significant stresses as well. The viscosity ηr is pre-
dicted to evolve progressively with φ unlike 〈P 〉 which
grows abruptly at the critical fraction. Computations
do not show viscosity changes at the critical threshold.
Formally, De Gennes assumption is valid since spanning
clusters result in higher tangential stresses (hence, viscos-
ity) but the overall effect is quite weak – and can hardly
be measured – which might explain the lack of experi-
mental evidence so far.

As a general remark, we have also investigated the ef-
fect of roughness size : all our conclusions remain qual-
itatively valid although percolation thresholds can be
slightly shifted depending on roughness (see Supplemen-
tary Materials).

TABLE I. Stress factor 〈W 〉 (Eq. (5)) and strength 〈P 〉 for
L=20a (φ∗ ≈ 0.29).

Volume fraction φ Stress factor 〈W 〉 Strength 〈P 〉
0.34 1.39 0.008
0.36 1.27 0.025
0.38 1.22 0.127
0.40 1.19 0.314

In conclusion, we have considered direct numerical sim-
ulations of sheared suspensions to check the relevance of
some conjectures on percolation proposed by De Gennes
35 years ago. By and large, most ideas proposed are
in very good accordance with present simulations. In
particular, a sheared suspension can percolate as soon
as φ lies in the range 0.3∼0.4 and its behavior globally
matches percolation theory (although more simulations
are required for a definite conclusion). Yet, percolation
has a very weak effect on rheology. Rheology may there-
fore track the size or orientation of clusters rather than
their percolation nature. Future work should also con-
sider the effect of friction which is found to be important
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in suspension rheology [7, 11].
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