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Some remarks on the definition of classical energy

and its conservation laws

Mayeul Arminjon
Laboratory “Soils, Solids, Structures, Risks”, 3SR
(Grenoble-Alpes University & CNRS), Grenoble, France.

Abstract. In classical non-relativistic theories, there is an exact local conservation equation

for the energy, having the form of the continuity equation for mass conservation, and this

equation occurs from the power equation. We illustrate this by the example of Newtonian

gravity for self-gravitating elastic bodies. In classical special-relativistic theories, there is also

an exact local conservation equation for the energy, though it comes from the definition of

the energy-momentum tensor. We then study that definition in a general spacetime: Hilbert’s

variational definition is briefly reviewed, with emphasis on the boundary conditions. We recall

the difference between the local equation verified by Hilbert’s tensor T in a curved spacetime

and the true local conservation equations discussed before. We ask if the addition of a total

divergence may change T and find that the usual formula giving T is not generally valid when

the matter Lagrangian depends on the derivatives of the metric. We end with a result proving

uniqueness of the energy density and flux, when both depend polynomially on the fields.

1. Introduction

In non-relativistic physics, the concept of energy emerges when one considers the power done
(the scalar product of the force by the velocity) on a mass point or a volume element. The energy
of a mass point appears in the power equation as a natural scalar quantity (the sum 1

2
mv2+V ),

which is conserved in the case of a time-independent potential V , and is still relevant if the
potential depends on time. This is well known. The energy of a continuous medium subjected
to internal forces and to an external force field is a volume density and it also emerges from
the power done. However, in general, the local conservation of energy then appears in the form
of a balance equation, though it is one in which there is no source term. That is, the energy
leaving (or entering) a given domain is exactly identified as a flux going through the boundary
surface of the domain. We illustrate this point in Section 2, first on the example of the energy
conservation equation for a self-gravitating elastic medium in Newtonian gravity. In relativistic
theories, the volume energy density is essentially the (0 0) component of the energy-momentum-
stress tensor, in what follows “the T-tensor” for brevity. In Subsect. 2.3, we show that, in the
Minkowski spacetime, the conservation equation verified by the T-tensor is indeed a true local
conservation equation of the same kind as in non-relativistic physics.

It is standard to say that the expression of the T-tensor is deduced from a Lagrangian, the
latter being assumed to govern the relevant system of matter fields via the principle of stationary
action. There are two distinct definitions of a T-tensor from a Lagrangian: (i) The so-called
“canonical” or “Noether” tensor, say τ , is a by-product of the Euler-Lagrange equations. (ii)



The “Hilbert tensor”, say T , is the symmetric tensor obtained as the derivative of the matter
Lagrangian density with respect to variations of the (spacetime) metric. In Section 3, we
briefly review the definitions of the canonical and Hilbert tensors from a Lagrangian through
the principle of stationary action in a general spacetime. We recall well known facts about the
meaning of the standard conservation equation verified by the Hilbert tensor. We argue that
one would need local definitions of the energy and momentum densities and their fluxes, in
short a local definition of the T-tensor, and one would need also a local conservation equation
for the energy. Next, we investigate the consequences of the fact that adding a total diver-
gence to the Lagrangian L does not change the equations of motion, i.e. the Euler-Lagrange
equations. We ask whether one may change L for another Lagrangian, L′, so that the associ-
ated Hilbert tensor fields T and T ′ be different, by investigating an explicit but general example.

Finally, in Section 4 we investigate if the energy equation is unique for a given system
of fields, i.e., if the energy density and fluxes can be considered to be uniquely defined. We
show that, if the energy density and its flux depend on the fields (both the matter fields and
the “long-distance” fields) in a polynomial way, then they are determined uniquely. We show
this by considering separately the contributions of matter (including its potential energy in the
long-distance fields) and the long-distance fields.

2. Local energy conservation in non-relativistic physics and in special relativity

2.1. Local energy balance for an elastic medium or a barotropic fluid in Newtonian gravity
We consider an elastically deformable medium with mass density ρ, velocity field v (with
respect to some inertial frame), and Cauchy stress tensor field σ. The motion takes place
in a gravitational field, with Newtonian gravity potential U . Newton’s second law writes then:

ρ
dv

d t
= ρ∇U + divσ, (1)

where d
d t

means the “material” derivative. The power (per unit volume) is got by taking the
scalar product of (1) with the velocity v. The isentropy of the deformation of an elastic medium
writes

σ: gradv = ρ
dΠ

d t
, (2)

where Π is the mass density of elastic energy. Using also the mass conservation:

∂ρ

∂t
+ div (ρv) = 0, (3)

one may rewrite the expression of the power as

∂wm

∂t
+ divΦm = −ρ

∂U

∂t
, (4)

where

wm := ρ

(

v2

2
+ Π− U

)

(5)

is the volume energy density of matter, including its potential energy in the gravitational field,
and

Φm := wmv − σ.v (6)

is (the surface density of) the matter energy flux. Thus, we have a balance equation with a
source term on the r.h.s. Equation (4) can be found in the literature, see Eq. (66.11) in Fock
[1]. Note that a barotropic perfect fluid, as is commonly assumed in astrophysics, verifies all
equations written above [1] — although it is not truly an elastic medium in the sense that it
does not have a reference configuration.



2.2. Local energy conservation for a system of elastic media / barotropic fluids in Newtonian
gravity
Now we assume that all of the matter that produces the gravitational field is indeed in the form
of elastic media or barotropic fluids. (Of course, the characteristics of the media may vary in
space.) Thus the point-dependent mass density ρ is just the source of the gravitational field. It
therefore obeys the gravitational field equation, i.e. the Poisson equation:

∆U = −4πGρ. (7)

It follows from (7) that
∂wg

∂t
+ div Φg = ρ

∂U

∂t
, (8)

where

wg :=
(∇U)2

8πG
(9)

is the volume energy density of the gravitational field, and

Φg := −∂U

∂t

∇U

4πG
(10)

is the gravitational energy flux. Equation (8) may be termed the energy balance equation of the
gravitational field. Like (4), this also is a balance equation with a source term. The source term
in Eq. (8) is just the opposite of the source term in (4). Therefore, combining (4) with (8), we
get the local energy conservation equation in Newtonian gravity [2]:

∂ (wm + wg)

∂t
+ div (Φm +Φg) = 0. (11)

There is also a local conservation equation for momentum in Newtonian gravity, see e.g. Refs.
[2, 3]. Strangely enough, Eq. (11) does not seem to be written in Refs. [1, 3].

2.3. Local conservation equations and the energy-momentum tensor in Minkowski spacetime
Recall that the energy-momentum tensor is a second-order spacetime tensor T , preferably
symmetric. In the Minkowski spacetime, T verifies [4] the local conservation equation

T µν
,ν = 0 (in Cartesian coordinates). (12)

This is truly a local equation of conservation, because in any given bounded spatial domain Ω
(not merely in the whole space, and in fact the integrals below do not necessarily make sense
in an unbounded domain), it implies two balance equations without any source term. One is a
scalar equation:

d

dx0

(
∫

Ω

w dV

)

=

∫

∂Ω

Φ.n dS, (13)

where
w := T 00, Φ := −T 0i∂i (sum over i = 1, 2, 3). (14)

The other one is a (spatial) vector equation:

d

dx0

(
∫

Ω

P dV

)

=

∫

∂Ω

Σ.n dS, (15)

where
P := T i0∂i, Σ := −T ij∂i ⊗ ∂j . (16)



Thus in Equations (13) and (15), the change on the l.h.s. is due to the flux through the boundary
∂Ω on the r.h.s.. The same equations (13) and (15) apply also to Newtonian gravity. E.g. for
(13), it follows immediately from Eq. (11) for the total energy density w := wm + wg and the
total energy flux Φ := Φm +Φg.

Note that the definitions (14) and (16), as well as the conservation equations (13) and (15),
are covariant under general spatial coordinate changes. This means that there is one definition
of the energy and momentum (and their fluxes) per reference frame. It is not specific to special
relativity; indeed the energy depends on the reference frame in a general spacetime, be it the
classical or the quantum-mechanical energy [5].

3. Definition of the energy-momentum tensor from a Lagrangian

3.1. Lagrangian and stationary action principle
Where does the T-tensor come from? Assume the equations of motion for the matter fields
qA (A = 1, ..., n) derive from a Lagrangian L(qA, ∂µq

A, xν) through the principle of stationary
action:

For any variation field δqA = δqA(x0, ..., x3) with δqA|∂U = 0, we have δS = 0. (17)

Here, ∂U is the boundary, assumed smooth, of some bounded open set U in the spacetime (now
a general one), and S is the action:

S = SU :=

∫

U

L
√−g d4 x, (18)

where g := det (gµν). The stationarity (17) is equivalent (see e.g. [4, 6]) to the Euler-Lagrange
equations. In a general spacetime, the latter equations write [7]:

∂µ

(

∂L
∂qA,µ

)

=
∂L
∂qA

(A = 1, ..., n), L := L
√−g. (19)

In Lagrangian theories based on the principle of stationary action, two distinct “T-tensors” may
be defined.

3.2. The “canonical” (or “Noether”) T-tensor
This object is given by

τ ν
µ = qA,µ

∂L

∂qA,ν
− δνµL. (20)

When −g = 1 and L = L = L(qA, ∂µq
A) does not depend explicitly on the spacetime position,

this object occurs naturally from the derivation of the Euler-Lagrange equations (19), which
imply that it verifies the desired local conservation equation τ ν

µ ,ν = 0 [4]. However, such an
independence happens in practice only in a flat spacetime. Moreover, in fact, this object is not
necessarily a tensor — even in a flat spacetime, cf. the case of the electromagnetic field [7]. In
a general spacetime, τ is a tensor for a scalar field [7] — and also for the Dirac field [8].

3.3. Hilbert’s variational definition of the T-tensor
One imposes a small coordinate change: xµ →֒ xµ + δxµ, such that δxµ = 0 at spacetime points
X which do not belong to the bounded open set U, in which one computes the action (18). Say,
δxµ = ǫξµ with ξ any smooth vector field that vanishes if X /∈ U, and ǫ ≪ 1. (Alternatively,



one may regard the mapping defined in coordinates by xµ 7→ xµ + δxµ as a diffeomorphism of
the spacetime manifold, which coincides with the identity map for X /∈ U.) The open set U is
assumed to have a smooth boundary ∂U, and both have to be included in the open domain of the
coordinate system. Because U is a regular open set, the assumption “ξ(X) = 0 if X /∈ U” means
exactly, as one may show, that the support of ξ is included in the compact closure U = U∪ ∂U.
Since Supp(∂νξ

µ) ⊂ Supp(ξµ), this implies that all derivatives of ξ also vanish if X /∈ U. It
follows that the corresponding change δgµν in gµν {as that change is determined to the first
order in ǫ by Eq. (94.2) in Ref. [4]} also vanishes if X /∈ U. [Here, gµν are the components of
the inverse of the metric’s matrix (gµν).] Thus, in particular, δgµν = 0 on ∂U. (Note that this
is in general false if one assumes merely that δxµ vanishes on ∂U.) One assumes moreover that
the matter fields obey the Euler-Lagrange equations (19), and that the explicit dependence of
the matter Lagrangian L upon the spacetime position is merely through the metric and its first
order derivatives, i.e., L = L(qA, qA,µ, g

µν , gµν,ρ). Using the divergence theorem, one then may
derive the following expression for the first-order change in the action (18):

δSU =

∫

U

[

∂L
∂gµν

− ∂

∂xρ

(

∂L
∂ (gµν,ρ)

)]

δgµν d4 x, L := L
√−g. (21)

This expression [4] leads one to define an energy-momentum tensor T (usually called “Hilbert
tensor”, though not in Ref. [4]) by [4, 7]:

1

2

√−g Tµν :=
∂L
∂gµν

− ∂

∂xρ

(

∂L
∂ (gµν,ρ)

)

. (22)

In view of Eq. (21), the r.h.s. of Eq. (22) is often called the variational derivative of L and
noted δL

δgµν
(e.g. [7], see also [9]). As shown by Eq. (21): For the object T whose components

Tµν are defined by Eq. (22), we have for any regular bounded open set U and for any coordinate
change δxµ = ǫξµ such that ξµ(X) vanishes for X /∈ U:

δSU =
1

2

∫

U

Tµν δg
µν

√−g d4 x. (23)

If the matter Lagrangian L is invariant under general coordinate changes, then the action
S in Eq. (18) is invariant too, hence the change δS given by Eq. (21) or (23) is zero for any
possible coordinate change. Assume, moreover, that the object T given by (22) turns out to be
indeed a tensor. (Note that this tensorial character is not proved by Landau & Lifshitz [4], and
see Subsect. 3.5 below.) Then, using the expression of δgµν in terms of the vector field ξ, and
since by assumption the latter vanishes on ∂U, one gets from (23) [4]:

T ν
µ ;ν = 0. (24)

3.4. The impact of covariant derivatives in the conservation equation for T

In contrast with (12) [T ν
µ ,ν = 0, with partial derivatives], Eq. (24) [with covariant derivatives]

“does not generally express any conservation law whatever”, as was emphasized by Landau &
Lifshitz [4]. Fock [1] used similar words: he noted that the four scalar equations contained in
(24) “do not by themselves lead to conservation laws”. To explain it quickly, the presence of
covariant derivatives gives to Eq. (24) the form of (12) plus source terms, which are the terms
linear in the T-tensor itself (that involve the connection coefficients). Nevertheless, Eq. (24) can
be rewritten in the form of (12) after introducing some “pseudo-tensor of the gravitational field”
t. But the definition of t is not unique. And t behaves as a tensor only for linear coordinate
transformations. As a result, it is generally agreed that Eq. (24) can lead only (under special



assumptions, e.g. an asymptotically flat spacetime) to global conservation laws, see e.g. [4, 10].
However, in order to be able to investigate the energy balance in any relevant domain, one would
need to know uniquely the relevant energy density and its flux. And one would need that they
obey a true and local conservation equation. (This is indeed the case in most fields of physics, e.g.
in mechanics, thermodynamics, chemistry, electrodynamics, ..., including Newtonian gravitation
and special-relativistic physics — as shown in Sect. 2 — and also in some alternative relativistic
theories of gravitation.) What is thus lacking in theories based on Eq. (24), which include
general relativity and its numerous variants or extensions, is not merely an exact local concept
of the gravitational energy. As illustrated in Sect. 2, the local concept of energy is associated
with a local conservation equation of the type (12) for it, and it is precisely the rewriting of
Eq. (24) as such an equation that is neither tensorial nor unique. Note that, if one wants to
define the material energy density as the (0 0) component of the tensor T , he or she has no way
to decide if it should be T 00, T 0

0 , or T00 — and these do differ numerically, the more so as the
gravitational field is stronger. Thus, there is not in these theories an exact local concept for any
form of material energy, either.

3.5. Is there an ambiguity in defining the Hilbert tensor from a Lagrangian?
In addition to the difficulty described in the foregoing subsection, which does not seem solvable
in the framework of the said theories, there is a point that needs clarification. In a curved
spacetime, the Hilbert tensor field T is taken as the source of the gravitational field — in gen-
eral relativity and in many other relativistic theories of gravity. Clearly, that source has to be
locally defined: it is not the global value (the space integral) of T that matters to determine
the gravitational field, but indeed the distribution of its local value. However, could not the
Hilbert tensor be subject to “relocalizations”, due to the fact that the Lagrangian determining
the equations of motion is not unique?

Let us add to the matter Lagrangian L a total divergence:

L →֒ L′ = L+D, D = div P =
1√−g

∂ρ
(

P ρ
√−g

)

, (25)

where P = P (qA, qA,ν , x
ρ) is a spacetime vector field. Then the Euler-Lagrange equations (19)

stay unchanged, see e.g. Ref. [6]. Note that, of course, the modified Lagrangian L′ is also an
invariant scalar if L is. But, a priori, shouldn’t the T-tensor generally change?

Consider the Hilbert tensor (22) and take for vector P the simple form

P ρ = Aρ
στ g

στ , i.e. P = A : g−1. (26)

Here A, with components Aρ
τσ = Aρ

στ = Aρ
στ (xν), is a (1 2) tensor field, so that of course P

is indeed a spacetime vector. Changing L for L′ = L + D, where D = div P and with such
a vector P = A : g−1, gives by (22) a “Hilbert tensor” T ′ = T + T ′′, with T ′′

µν the “Hilbert
tensor” associated by (22) with the Lagrangian D = div P . We find

D := div P = Aρ
στ

(

gστ,ρ − 1

2
gµν g

µν
,ρ gστ

)

+Aρ
στ,ρ g

στ (27)

and
T ′′
µν = 2gµν,ρ A

ρ
στ g

στ . (28)

In a given coordinate system (with, generally, gµν,ρ 6= 0), and for given arbitrary functions
T ′′
µν = T ′′

µν(x
ρ), we can generally find a tensor field Aρ

στ such that (28) be verified. So it would



seem that the Hilbert tensor field be arbitrary!

However, the object T ′′ whose components are given by (28) is certainly not a tensor field.
Indeed, at any given point of the spacetime, all derivatives gµν,ρ can be made zero by adequately
choosing the chart. So we would necessarily have T ′′

µν = 0 if it were a tensor field — but clearly
the r.h.s. of (28) does not need to be zero in a general chart. So we are led to ask: assuming
that L is an invariant scalar, when is the object T defined by (22) indeed a tensor field?

• (i) If the matter Lagrangian does not depend on the derivatives of the metric tensor:
L = L(qA, ∂µq

A, gµν) [which is the usual case], then T is a tensor field:

Tµν =
2√−g

∂ (
√−gL)

∂gµν
= 2

∂L

∂gµν
− Lgµν . (29)

• (ii) On the other hand, if the matter Lagrangian is allowed to depend on the derivatives
of the metric tensor: L = L(qA, ∂µq

A, gµν , gµν,ρ ), then the object T defined by Eq. (22) is
generally not a tensor field, as shown by the foregoing. Indeed, the Lagrangian D given by
(27) can be added to any scalar Lagrangian L. Thus, if (22) applied to L provides indeed
a tensor, then, when applied to L′ = L+D, the object (22) is not a tensor any more. The
origin of this problem is simply that the gµν,ρ ’s are not the components of a tensor field. One
might object that the Lagrangian (27) does not involve any concrete “matter field”. First,
this objection does not affect the reasoning and the conclusions above. Moreover, in (26),
nothing forbids to make the (1 2) tensor field A depend also on concrete matter fields. The
Euler-Lagrange equations will still remain the same. Although the explicit calculation of D
and T ′′ will involve new terms as compared with (27) and (28), it is clear that in general
T ′′ will remain a non-vanishing, non-tensorial object.

Therefore, it seems that one should use the definition (22) only with Lagrangians of type (i), or
at least be very careful if using one of type (ii). We will discuss this question in more detail in
a forthcoming paper, in relation with the work [9].

4. A uniqueness result for the energy balance

4.1. Is the energy balance equation unique?
We begin with a discussion of this question for a system of elastic media and barotropic fluids
in Newtonian gravity (NG). The energy balance (4) established in Section 2 for the matter field
equations of NG has the form

∂µV
µ = field source := −ρ

∂U

∂t
, (30)

with the four-components column vector (V µ) being here the “matter current” made with the
matter energy density and flux: (V µ) = (wm,Φm). As we have indicated, Eq. (30) [i.e. Eq.
(4)] is verified as soon as the following three equations are verified among the matter field
equations: Newton’s second law (1), the isentropy equation (2), and the continuity equation
(3). We note that, in view of Eqs. (5) and (6), the matter current (V µ) is polynomial in the
fields qA (A = 1, ..., n) = (ρ,v,Π,σ, U) that appear in those equations. (Thus n = 12 here. The
gravitational potential U plays the same role as does the metric tensor in a Lagrangian for the
matter fields in a curved spacetime, as was the case in the foregoing section.) Now we ask: Can
we change the matter current V µ for another one V ′µ = V µ+W µ, also polynomial with respect
to the qA ’s, in such a way that the l.h.s. of (30) would be unchanged for whatever values qA of
the fields? I.e., can we find a column four-vector W µ so that we have ∂µW

µ ≡ 0?



4.2. A uniqueness result
Thus, let W µ be an order-N polynomial in the field values at the spacetime point X that is
being considered:

W µ(X, qA) = Cµ
0 +Cµ

1Aq
A + ...+ Cµ

N A1...AN
qA1 ...qAN (A1 ≤ ... ≤ AN ), (31)

it being understood that qA = qA(X) and that the coefficients Cµ
0 , ..., C

µ
N A1...AN

also may depend
on X. Assume that its 4-divergence vanishes identically, ∂µW

µ ≡ 0:

0 ≡ Cµ
0 ,µ +Cµ

1A,µq
A + Cµ

1Aq
A
,µ + ...+ Cµ

N A1...AN ,µq
A1 ...qAN

+Cµ
N A1...AN

(

qA1

,µ qA2 ...qAN + ...+ qA1 ...qAN−1qAN
,µ

)

. (32)

Consider a fixed spacetime pointX(xρ). The polynomial got by substituting Y A = qA(X), ZA
µ =

qA,µ(X) (A = 1, ..., n; µ = 0, ..., 3) into the r.h.s. of (32) is identically zero. Hence its coefficients
are all zero. In particular:

Cµ
1A = 0, ..., Cµ

N A1...AN
= 0. (33)

Thus all coefficients in (31) are zero — except perhaps Cµ
0 , with Cµ

0, µ = 0.

We thus got that we cannot alter the analytical expression of wm and Φm on the l.h.s. of the
matter energy balance (30). [Apart from arbitrarily adding a zero-divergence vector field Cµ

0

that is independent of the matter fields — this is indeed obviously possible, but we can get rid of
this by asking that the matter current (V µ) be polynomial in the fields and have no zero-order
term, as is indeed the case in all concrete examples.] The gravitational energy balance (8) has
just the same form:

∂µV
µ = matter source := ρ

∂U

∂t
, (34)

where V µ = (wg,Φg) is polynomial in the gravitational field qA (A = 1, ..., 4) = (∂µU). It is
valid when the gravitational field equation is. Therefore, similarly as we found for the matter
field energy balance, we cannot alter the analytical expression (8) of the gravitational energy
balance.

4.3. Generalization
These results are clearly general. Consider e.g. the Maxwell electromagnetic field instead of the
Newtonian gravitational field. The energy balance of the e.m. field is:

∂wem

∂t
+ div Φem = −j.E, (35)

with wem := E
2+B

2

8π
the volume energy density of the electromagnetic field, and Φem := E∧B

4π
the

electromagnetic energy flux. The same uniqueness result says that we cannot find an alternative
expression for wem and Φem on the l.h.s., which would be valid for whatever values of the fields
E and B and their first derivatives.

5. Conclusion

In Section 2, we discussed the conservation of energy in non-relativistic classical physics, taking
the rather general example of Newtonian gravity for self-gravitating elastic bodies or barotropic
fluids. We then discussed it also in special relativity. In this huge part of physics, we do have
local conservation equations for energy: “In any given domain, the loss or gain of energy is due



to the flux through the boundary surface of the domain”. In classical special-relativistic theo-
ries, this goes through the energy-momentum tensor T and its local conservation equation. We
noted the important fact that energy, momentum, and their fluxes depend on the reference frame.

In Section 3, we briefly reviewed the definition of the T-tensor from a Lagrangian in theories
starting from the principle of stationary action. The basic facts about the canonical tensor
were recalled. The definition of the Hilbert tensor T was discussed, noting the importance of
the boundary condition to be imposed on the coordinate variation field (or infinitesimal dif-
feomorphism). We recalled the reason why the local equation (24) verified by T is not a true
conservation equation as is (12), so that an exact local concept of energy (material or gravita-
tional) does not exist in general relativity. Then we asked if the definition of the Hilbert tensor
T from a matter Lagrangian L might be non-unique as is L, since the latter can be augmented
with a four-divergence without altering the Euler-Lagrange equations. We found that the defi-
nition (22) of T (e.g. [4]) is indeed non-unique in the general case that the matter Lagrangian
depends on the derivatives of the metric, but this is associated with a non-tensorial behaviour
for T . Therefore, we think we can state that the definition of the T-tensor as a variational
derivative, Eq. (22), is not generally valid in that general case.

Finally, in Section 4 we began a study on the uniqueness of the definition of the energy
density and its flux, and got a first result. Energy local conservation equations often have the
form: Matter energy balance + long-distance-field energy balance = 0. If each among the two
parts depends polynomially on the relevant fields, then the functional form of the energy density
and its flux is unique.
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