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Abstract. This article is devoted to the variational study of two functions defined over
some Teichmüller spaces of hyperbolic surfaces. One is the systole of geodesic loops based
at some fixed point, and the other one is the systole of arcs.

For each of them we determine all the critical points. It appears that the systole of
arcs is a topological Morse function, whereas the systole of geodesic loops have some
degenerate critical points. However, these degenerate critical points are in some sense
the obvious one, and they do not interfere in the variational study of the function.

At a nondegenerate critical point, the systolic curves (arcs or loops depending on the
function involved) decompose the surface into regular polygons. This enables a complete
classification of these points, and some explicit computations. In particular we determine
the global maxima of these functions. This generalizes optimal inequalities due to Bavard
([Bav96, Bav05a]) and Deblois ([DeB15]). We also observe that there is only one local
maximum, this was already proved in some cases by Deblois ([Deb]).

Our approach is based on the geometric Voronöı theory developed by Bavard ([Bav97]).
To use this variational framework, one has to show that the length functions (of arcs or
loops) have positive definite Hessians with respect to some system of coordinates for the
Teichmüller space. Following our previous work [Gena], we choose Bonahon’s shearing
coordinates, and we compute explicitly the Hessian of the length functions of geodesic
loops. Then we use a characterization of the nondegenerate critical points due to Akrout
([Akr03]).

1. Introduction

Let (S,m) be a hyperbolic surface of finite area without boundary. The systole ofm is the
length of its shortest closed geodesic, we denote it by sys(m). It defines a continuous function
over the Teichmüller space Teich(S), namely the space of isotopy classes of hyperbolic metrics
on S. It is in general very difficult to study a metric invariant as a function over Teich(S).
However, a variational approach of the systole has been initiated by Schmutz ([Sch93]).
It has been showed that the systole is a topological Morse function (Akrout [Akr03]), its
critical points have been characterized, and among them the local maxima (Schmutz [Sch93],
Bavard [Bav97]). This certainly makes the systole a very interesting function.

Another interesting metric invariant is the maximal injectivity radius, that is the radius of
the largest hyperbolic disk isometrically embedded in (S,m), we denote it by R(m). As for
the systole, the maximal injectivity radius defines a continuous function over Teich(S), and
we know quite a lot about its extremal values: Yamada ([Yam82]) determined its infimum
when S is orientable, Bavard ([Bav96]) determined the points realizing its global maximum
when S is closed, Bacher and Vdovina (see [Vdo08]) computed the number of points realizing
the global maximum when S is closed orientable, Girondo and Gonzáles-Diez and Nakamura
([GGD99, GN07]) studied the number of extremal disks in a surface realizing the global
maximum. More recently, Deblois ([DeB15]) determined the global maximum of R in the
case of orientable surfaces with cusps, and showed ([Deb]) that local maxima are global ones.
Despite these results we do not have any variational framework for the study of R.

The systole and the maximal injectivity radius are the extrema of a third metric invariant
which is the pointwise version of the systole. Let us fix a point p in S. The systole at p of m
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is the length of the shortest m-geodesic loop based at p, we denote it by sysp(m). It defines
a function over the Teichmüller space Teich(S, p) of hyperbolic metrics on S up to isotopy
relative to p. The systole sys(m) and the maximal injectivity radius R(m) are related to the
extremal values of sysp on the fiber π−1

p (m) of the projection πp : Teich(S, p) → Teich(S):

sys(m) = inf
π
−1

p (m)
sysp = inf{sysp(m

′) ; m′ is isotopic to m},

2R(m) = sup
π
−1

p (m)

sysp = sup{sysp(m
′) ; m′ is isotopic to m}.

The second equality is only true when S is closed. The first equality uses the assumption
that S has empty boundary, otherwise one should take care of the distance dm(p, ∂S) to the
boundary when looking at R. We stress the obvious equality supTeich(S,p) sysp = supTeich(S) R.

The aim of this article is to provide a variational point of view on sysp as a function
over Teich(S, p). This function is more complicated than the systole. For instance sysp
admits some degenerate critical points. Let us denote by Sing(S, p) the set of points [m]p
in Teich(S, p) such that among the m-systolic loops at p (i.e. geodesic loops based at p of
length sysp(m)) there is at least one closed geodesic.

Theorem 1.1. The set of degenerate critical points of sysp is Sing(S, p). In particular the
restriction of sysp to the dense open subset Teich(S, p) − Sing(S, p) is a topological Morse
function. Moreover, a point [m]p ∈ Teich(S, p)− Sing(S, p) is critical of index k if and only
if it has exactly k systolic loops based at p that decompose (S,m) into regular polygons.

Actually we prove this theorem for any surface S of finite type with negative Euler
characteristic. When S has nonempty boundary, the definition of the Teichmüller space is
the same with the additional condition that the length of each boundary component is fixed.

We say that a point is extreme for sysp if it realizes a local maximum of sysp. The extreme
points are exactly the critical points of maximal index, the theorem above implies directly:

Theorem 1.2. Let S be a compact surface with k ≥ 0 boundary components b1, . . . , bk. A
point [m] ∈ Teich(S, p) is extreme for sysp if and only if its systolic loops at p divide S into
equilateral triangles and one holed monogons. In that case sysp(m) is the unique positive
solution of the equation

6(−2χ(S) + 2− k)arcsin

(

1

2 cosh(x/2)

)

+ 2
k
∑

i=1

arcsin

(

cosh(ℓ(bi)/2)

cosh(x/2)

)

= 2π.

We allow the length of a boundary component to be zero (the boundary component has to be
replaced by a cusp).

This theorem generalizes the results of Bavard and Deblois we mentioned above. Indeed
we allow the surface S to have nonempty boundary and to be nonorientable. The works of
Bavard and Deblois are based on some decompositions of a hyperbolic surfaces with respect
to a point (Voronöı decomposition for Bavard, centered dual decomposition for Deblois).

Our approach is radically different. We look at sysp as the infimum of the length functions
of geodesic loops based at p:

sysp = inf
γ∈π1(S,p)

ℓγ .

This makes sysp a generalized systole, that is a function which is locally the minimum of a
finite number of differentiable functions. Although sysp is only continuous, we can use the
differentiability of the ℓγ ’s to characterize its critical points.

The notion of generalized systole was introduced by Bavard ([Bav97]) who developed a
rich variational theory (called geometric Voronöı theory) for their study (([Bav97, Bav05b]).
The most important theorems of this theory require some additional convexity assumptions
on the ℓγ ’s. For instance, if the Hessians of the ℓγ ’s are positive definite on some open subset
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U ⊂ Teich(S, p), then a theorem of Akrout ([Akr03]) asserts that sysp is a topological Morse
function on U , and a theorem of Bavard characterizes the extreme points of sysp in U .

The main difficulty in our approach is to establish such a positivity property on the
Hessians of the ℓγ ’s. As it is interesting in itself, we compute explicitly the Hessian of ℓγ
in the shearing coordinates, we show that is positive-semidefinite, and we determine its
isotropic cone. This is a generalization of our previous work [Gena], where we computed
the Hessian in the shearing coordinates of the length functions of geodesics over Teich(S).
Note that dealing with pointed hyperbolic surfaces complicate the situation, because there
are no simple system of coordinates on Teich(S, p) like Fenchel-Nielsen coordinates. That’s
why we use the shearing coordinates, let us explain this point quickly. A maximal geodesic
lamination λ divide a hyperbolic surface (S,m) into ideal triangles, and we can reach any
other metric m′ on S (up to isotopy) by shifting the triangles with respect to each other.
The amount of shifting is the shearing coordinate of [m′] ∈ Teich(S). As there is a unique
ideal triangle up to isometry, we can fix a point on (S − λ,m) and follow it when shifting
the triangles. This gives a system of coordinates on the open subset of Teich(S, p) that
corresponds to points [m]p such that p is not on λ. Another advantage of the shearing
coordinates is that any linear condition on the lengths of the boundary components define
an affine subspace of Teich(S), thus the positivity property of the Hessians of length functions
remains true on this affine subspace (the result of Wolpert [Wol87] does not apply for surfaces
with fixed boundary lengths).

Once this positivity property is established, we easily find the extreme points of sysp.
Indeed, according to a theorem of Bavard (Theorem 3.1) an extreme point [m]p has at least
dimTeich(S, p) + 1 systolic loops at p. But, a simple computation of Euler characteristic
shows that this is the maximal number of disjoint non homotopic loops based at p. We
conclude that the systolic loops at p decompose (S,m) as in the theorem above, and one
easily obtains the equation giving the global maximum of sysp. Note that in this approach we
do not need to distinguish cases (closed or not, compact or not, with or without boundary,
orientable or not).

We also determine the other critical points, which have been characterized by Akrout:
a point [m]p is critical if the family of differentials dℓγ(m) of the length functions of its
systolic loops satisfy a particular configuration (said eutactic) in the cotangent space of .
To work with the differentials of the length functions of geodesic loops, we consider a set of
homotopy classes π1(S, p) that decomposes S into polygons, then we embed Teich(S, p) into
the product of the corresponding spaces of polygons. The trigonometric relations between
the sides and angles give relations between the differentials of the length functions. Without
entering into details, let us say that the choice of a set of homotopy classes corresponds to
the choice of a minimal class (a useful notion when studying generalized systoles).

The same approach applies to another metric invariant: the systole of arcs. Let us
introduce some notations. We assume that S has k ≥ 1 boundary components, and we
fix a nonempty set B = {b1, . . . , bl} of boundary components. We denote by Teich(S,B)
the Teichmüller space of hyperbolic metrics such that the sum ℓ(B) = ℓ(b1) + . . .+ ℓ(bl) is
fixed, as are the lengths ℓ(bl+1), . . . , ℓ(bk). We denote by A(B) the set of isotopy classes of
essential arcs whose endpoints belong to some boundary components in B. We denote by
sysB the length of the shortest essential arc whose isotopy class belongs to A(B).

Theorem 1.3. The function sysB is a topological Morse function over Teich(S,B). The
critical points for sysB are in bijection with the systems of arcs in A(B) that decompose S into
polygons. More precisely, to any such arc system {α1, . . . , αn} corresponds the unique point
[m] ∈ Teich(S,B) such that the arcs realizing sysB belong to α1, . . . , αn and decompose (S,m)
into semi-regular right-angled polygons (a polygon is semi-regular if its lengths alternate
between two values).

As a direct consequence we get
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Theorem 1.4. A point [m] ∈ Teich(S,B) is extreme if and only if the systolic arcs of m
divide S into right-angled hexagons and right-angled bigons containing a boundary component
which is not in B. Moreover sysB(m) is the unique solution of the equation

6[−2χ(S)− (k − l)]arcsinh

(

1

2 sinhx

)

+ 2
∑

i=l+1,...,k

arcsinh

(

cosh(bi/2)

sinh(x/2)

)

= ℓ(B).

In particular, extreme points of sysB are in bijection with maximal system of arcs in A(B).

This generalizes an optimal inequality of Bavard ([Bav05a]) that corresponds to the case
in which B is the full set of boundary components. The inequality of Bavard is not very
accurate when some boundary components are very short, our theorem works well in that
case.

As we know all the critical points of the systole of arcs, we get some information on the
topology of the moduli space. Taking B as the full set of boundary components, it comes that
Teich(S,B) deforms into a cell complex of dimension the virtual cohomological dimension
of the modular group Mod(S). The virtual cohomological dimension of Mod(S) has been
computed by Harer ([Har86]), who already constructed a Mod(S)-invariant deformation
retract which is combinatorially equivalent to our cell complex. However, we believe that it
is interesting to have another perspective.

The proofs of the above theorems follow exactly the same line as for sysp, but they are
more simple as they do not involve Teichmüller spaces of pointed surfaces. Therefore we
have chosen to treat first the case of sysB.

The paper is organized as follow: in part 1 we set up the notations and definitions, we
recall the most important features of Bavard’s geometric Voronöı theory, and we apply it to
find the extreme points of sysB. In part 2, we determine the other critical points of sysB, this
is done through embeddings of Teich(S,B) into products of spaces of right-angled polygons.
The part 3 is devoted to the study of sysp, in particular we compute the Hessian of the
length functions of geodesic loops in the shearing coordinates.
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Part 1. Teichmüller spaces and generalized systoles

2. Teichmüller spaces

2.1. Definitions. Let S be a surface of finite type with negative Euler characteristic. A
hyperbolic metric on S is a complete metric of constant curvature −1. In this article we
always assume that the boundary ∂S is geodesic and the area area(m) finite. We denote by
b1, . . . , bk (k ≥ 0) the boundary components of S.

The Teichmüller space of S is the space of hyperbolic metrics on S up to isotopy, we
denote it by Teich(S). It is diffeomorphic to a ball of dimension −3χ(S). The modular
group Mod(S) is the group of isotopy classes of diffeomorphisms that preserve each boundary
component. When S is orientable we only consider orientation preserving diffeomorphisms.
The modular group acts properly and discontinuously on Teich(S), and the quotient is the
moduli space of hyperbolic metrics on S.

When S has nonempty boundary, we can define some other Teichmüller spaces by adding
conditions on the the lengths of the boundary components. Our results deal with the
following kind of Teichmüller spaces: let B = {b1, . . . , bl} be a set of boundary components
of S, we denote by Teich(S,B) the space of isotopy classes of hyperbolic metrics on S such
that the sum of the lengths of the boundary components in B is fixed, as is the length of
any other component. The Teichmüller space Teich(S,B) is a submanifold of codimension
(k + 1) of Teich(S). When B is the full set of boundary components of S then we use the
notation Teich(S, ∂S).

Given γ a non trivial isotopy class of closed curves on S, we denote by ℓγ : Teich(S) → R∗
+

the smooth function that associates to a point [m] ∈ Teich(S) the length ℓγ(m) of the unique
m-geodesic in γ. Similarly, an isotopy class α of essential arcs on S defines a smooth function
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ℓα : Teich(S) → R∗
+ that associates to [m] ∈ Teich(S) the length of the unique m-geodesic

arc in α orthogonal to ∂S.
We recall that an arc is a smooth embedding (I, ∂I) → (S, ∂S) transverse to ∂S, and an

arc is essential if it can not be deformed into ∂S. In the sequel we only consider isotopy
classes of essential arcs.

2.2. Shearing coordinates and Hessian of length functions. Let λ be a maximal
geodesic lamination on S, it necessarily contains the boundary components of S. For any
hyperbolic metric m on S the complement S̃ − λ̃ is a disjoint union of ideal triangles. The
way the triangles are glued together is encoded by a transverse Hölder distribution for λ,
and this defines a smooth embedding of Teich(S) into the linear space H(λ;R) of transverse
Hölder distribution for λ. The image of this embedding is an open convex cone. We call
shearing coordinates for Teich(S) any linear system of coordinates for H(λ;R).

In this article we will not manipulate directly transverse Hölder distributions. So we refer
to the original works [Bon97, Bon96] of Bonahon for a complete treatment of the subject.
For our purpose, the short exposition we made in [Gena, §2] would be largely sufficient.

We need the shearing coordinates in order to establish convexity properties of the length
functions of geodesics or arcs. As explained in the introduction these properties are crucial
in our study. In [Gena] we proved the following theorem:

Theorem 2.1. Let γ be an isotopy class of closed curves that intersect every leaf of λ. The
Hessian of ℓγ in the shearing coordinates is positive-definite over Teich(S).

To simplify the presentation we proved this theorem only in the case of closed orientable
surfaces, but the proofs work for all the cases we considered. Alternatively one can consider
the double of a surface which has nonempty boundary of is orientable.

The length functions of the boundary components are linear functions in the shearing
coordinates (see [Bon96]). Thus, in the shearing coordinates, the Teichmüller Teich(S,B) is
the intersection of Teich(S) with a linear subspace. We deduce that the theorem above is
still true for this kind of Teichmüller spaces.

3. Geometric Voronöı theory

In this section we recall the main features of the geometric Voronöı theory developed by
Bavard in [Bav97, Bav05b]. The aim of this theory is to study the variational properties of
the generalized systoles defined below.

Without entering into details, let us say that the classical example of a generalized systole
is the Hermite invariant that defines a SL(n,Z)-invariant function over the symmetric space
SL(n,R)/SO(n,R). We refer to the work of Bavard [Bav97] for a detailed description of
the analogy between the Hermite invariant as a function over SL(n,R)/SO(n,R) and the
systole as a function over Teich(S).

3.1. Generalized systoles. Let V be a manifold, C be a set, and {fs : V → R ; s ∈ C}
be a family of functions of class C1 indexed by C. We say that (fs)s∈C is a system of length
functions if it satisfies the following condition of local finiteness: for any p ∈ V and any
L > 0 there exists a neighborhood U of p such that the set {s ∈ C ; fs(p) ≤ L} is finite.
Given a system of length functions (fs)s∈C we are interesting in its infimum

µ = inf
s∈C

fs.

Such a function is called a generalized systole. The local finiteness condition implies that µ
is continuous, however it is not differentiable in general.

Let us give some examples of generalized systoles over Teichmüller spaces. The first one is
of course the systole itself which defines a function sys : Teich(S) → R∗

+ that can be written
as the minimum of the length functions of geodesics:

sys = min
γ
ℓγ ,
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where γ runs over the set of non trivial isotopy classes of closed curves on S. This function is
clearly Mod(S)-invariant. When S has empty boundary, the induced function on the moduli
space is proper (Mumford compactness theorem), in particular admits a global maximum.

Now let us assume that S has nonempty boundary. The systole of arcs is the minimum
of the length functions of the isotopy classes of essential arcs:

sys∂ = min
α
ℓα,

where α runs over the set of essential isotopy classes of arcs on S. The restriction of sys∂
to the Teichmüller space Teich(S, ∂S) of hyperbolic metrics on S with fixed total boundary
length is bounded, and actually admits a global maximum (this is not difficult to see). The
systole of arcs is Mod(S)-invariant but not proper (except in the case of the one-holed torus).

We end this paragraph with a function which is not a generalized systole. Let us assume
that S is closed. A pants decomposition of S is a maximal family γ = {γ1, . . . , γk} of disjoint
isotopy classes of essential simple closed curves. We define the length function of γ as the
length of its longest component:

ℓγ = max
i=1,...,k

ℓγi
.

The family of length functions of pants decomposition of S satisfies the local finiteness
condition, but its infimum is not a generalized systole. Indeed, the length function of a
pants decomposition is not everywhere differentiable. Still, the infimum of length functions of
pants decomposition shares many properties with generalized systoles (see [Sch93, Gen11]),
its global maximum is called the Bers’ constant of S.

3.2. Caracterisation of extreme points. We consider a generalized systole µ associated
to a system of length functions {fs : V → R ; s ∈ C}. For any point p ∈ V we set

S(p) = {s ∈ C ; µ(p) = fs(p)}.

By local finiteness, any point p ∈ V has a neighborhood U on which

µ = min
s∈S(p)

fs.

The length functions (fs)s∈S(p) are differentiable, so we expect the behaviour of µ in a small
neighborhood of p to depend on the configuration of the differentials (dfs(p))s∈S(p) in the
cotangent space T ∗

p V . This is exactly the case.
We first introduce the following vectorial properties:

Definition 3.1. Let E be a finite dimensional real vector space, and F be a finite family
of vectors of E. We denote by K the convex hull of F . We say that

• F is perfect if it affinely spans E,
• F is eutactic if the affine interior of K contains the origin of E.

Note that these properties are invariant under linear isomorphism. To these properties
correspond two kinds of points that are interesting with respect to µ:

Definition 3.2. We say that a point p ∈ V is perfect (resp. eutactic) if the family of
differentials (dfs(p))s∈S(p) is perfect (resp. eutactic) in the cotangent space T ∗

p V

We will shortly see that perfection and eutaxy characterize the following points:

Definition 3.3. We say that a point p ∈ V is extreme (resp. strictly extreme) if it realizes
a local maximum of µ (resp. a strict local maximum).

We do not have enough assumptions on the (fs)s∈C to obtain interesting results. So we
introduce the following condition (H): any point p ∈ V has a neighborhood U equipped with
a Riemannian metric such that the Hessians of (fs)s∈S(p) are positive-definite on U . We
now state the following general theorem due to Bavard ([Bav97, Proposition 2.3]):
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Theorem 3.1 (Bavard). If the condition (H) is satisfied, then a point is extreme if and
only if it is perfect and eutactic. Moreover every extreme point is strictly extreme.

Remark 3.1. (1) Many particular cases of this theorem were already known. Let us
mention that Schmutz ([Sch93]) established a similar theorem for the systole.

(2) The theorem is true under the weaker assumption that the (fs)s∈Sp
are stricly convex

along the geodesics of U (see [Bav97, Bav05b]).

From the definition of perfection we get the following corollary which is very useful to
find extreme points:

Corollary 3.2. If p ∈ V is extreme then the cardinal of S(p) is at least dimV + 1.

The Theorem 2.1 shows that the condition (H) is satisfied in the cases of the systole and
of the systole of arcs.

4. Extreme points of the systole of arcs

Let us assume that S has nonempty boundary, and let B = {b1, . . . , bl} be a nonempty set
of boundary components of S. We recall that Teich(S,B) is the space of isotopy classes of
hyperbolic metrics on S such that the sum ℓ(B) of the lengths of the boundary components
in B is fixed, and such that the lengths ℓ(bl+1), . . . , ℓ(bk) of the other boundary components
are fixed. We allow the length of a boundary component to be zero, which means that the
corresponding boundary component should be replaced by a cusp.

We denote by A(B) the set of isotopy classes of essential arcs in S whose endpoints belong
to some boundary components in B. We now introduce the following generalized systole:

sysB = inf
α∈A(B)

ℓα.

It is not difficult to show that sysB admits a global maximum over Teich(S,B). Note that
sysB = sys∂S when B is the full set of boundary components of S.

To illustrate the theorem of the previous section, we determine all the extreme points of
sysB over the Teichmüller space Teich(S,B):

Theorem 4.1. A point [m] ∈ Teich(S,B) is extreme if and only if the systolic arcs of
m divide S into right-angled hexagons and right-angled bigons with a boundary component
which is not in B. Moreover sysB(m) is the unique solution of the equation

6[−2χ(S)− (k − l)]arcsinh

(

1

2 sinhx

)

+ 2
∑

i=l+1,...,k

arcsinh

(

cosh(bi/2)

sinh(x/2)

)

= ℓ(B).

In particular, extreme points of sysB are in bijection with maximal arcs system.

Remark 4.1. (1) We observe that there is only one local maximum.
(2) We actually prove that the extreme points are the only perfect points.

As a corollary we obtain the following optimal inequality due to Bavard ([Bav05a]):

Corollary 4.2 (Bavard). Let m be a hyperbolic metric on S, then we have

2 sinh(sysa(m)/2) sinh(−ℓ(∂S)/12χ(S)) ≤ 1,

with equality if and only the arcs realizing sys∂ divide the surface into right-angled hexagons.

We start with an obvious remark:

Lemma 4.3. Let m be any hyperbolic metric on S. Let α and β be two geodesic arcs that are
of minimal length in their homotopy class (or equivalently orthogonal to ∂S). Let us assume
that they intersect, and let γ any piecewise geodesic arc made with exactly one segment of α
and one segment of β. Then γ is essential, that is it can not be deformed into ∂S.



9

From this lemma it comes that the arcs realizing sysB are pairwise disjoint. Then it is
easy to compute their maximal number:

Lemma 4.4. Let m be a hyperbolic metric on S. The maximal number of disjoint geodesic
arcs orthogonal to ∂S whose isotopy class belong to A(B) is equal to −3χ(S)− (k− l), which
is the dimension of Teich(S,B) plus 1. Such a family of arcs divide S into right-angled
hexagons and bigons, each bigon containing a boundary component that is not in B. The
number of hexagons is −2χ(S)− (k − l) .

Proof. The only non trivial statement is on the cardinal of the maximal family of arcs. To
simplify we fix the lengths of all the boundary components equal to zero. Any isotopy class
of essential arc is realized by a unique geodesic arc going from one cusp to another, and
these arcs realize the intersection number of their isotopy classes.

A maximal family of disjoint geodesic arcs going from one cusp to another divide the
surface into ideal triangles and ideal monogons containing one cusp. An ideal mongon is
obtained from an ideal triangle by identifying two sides. Note that there are k− l monogons.
Ideal triangle and monogons are of area π. As the area of the surface is −2πχ(S) we find

−2χ(S) = t+ (k − l),

2e = 3t+ (k − l)

where t is the number of ideal triangles, and e the number of arcs. It is then very easy to
conclude. �

The proof of the theorem is an application of the previous lemmas and of Theorem 3.1.

Proof of the Theorem 4.1. Let [m] ∈ Teich(S,B) be an extreme point of sysB. According
to Corollary 3.2 the hyperbolic surface (S,m) has at least dimTeich(S,B) + 1 arcs realizing
sysB(m). From the previous lemmas, we deduce that these arcs divide S into right-angled
hexagons and right-angled bigons, each bigon containing one boundary component that does
not belong to B.

Each hexagon has three sides of length sysB(m), and three other sides of length β given
by 2 sinh(β/2) sinh(sysB(m)) = 1. We recall that there are −2χ(S)− (k− l) hexagons. The
bigon containing the boundary component bi has a side of length sysB(m) and the other of
length βi given by sinh(βi/2) sinh(sysB(m)/2) = cosh(ℓ(bi)/2). One easily concludes. �

Let us note that sysB and Teich(S,B) have been chosen so that the maximal cardinality
of a set of arcs realizing sysB is exactly Teich(S,B) + 1. This is a key point in our proof.

5. Topological singularities of generalized systoles

5.1. Topological Morse functions. We recall the notion of topological Morse function
introduced by Morse himself under the name topologically nondegenerate functions. We
refer to the work of Morse ([Mor75, Mor59]) for proofs.

Let F :M → R be a continuous function over a topological manifold M . A point p ∈M
is regular if there is a topological chart ϕ : (U, p) ⊂ M → (Rn, 0) such that F ◦ ϕ − F (p)
is the restriction of a nonzero linear form. A critical point is a point which is not regular.
A critical point p is nondegenerate if there is a topological chart ϕ : (U, p) ⊂ M → (Rn, 0)
such that F ◦ϕ−F (p) is the restriction of a nondegenerate quadratic form. The number of
negative eigenvalues of the quadratic form is called the index of F at p. A topological Morse
function F : V → R is a continuous function whose critical points are all nondegenerate.

Note that there are topological Morse functions on R that are not differentiable, so this
notion is more general than the usual one. The classical theorems of Morse theory remains
true for topological Morse function. Let us now assume that F : M → R+ is proper,
namely its supremum is +∞ and is reached when going at infinity in M (i.e. leaving
all compact subsets). Then Morse showed that M can be deformed into a compact cell
complex K ⊂M , in particular the inclusion K →֒M induced an isomorphism on homology
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H∗(K;Z) ≃ H∗(M ;Z). The topology of K is completely determined by the critical points of
F , and the homology of K is isomorphic to the homology of the complex of critical points.
Note that the dimension of K is equal to the maximal index of a critical point.

5.2. Akrout’s theorem. Let us now come back to generalized systoles. Following our
previous notations, we consider the generalized systole µ associated to a system of length
functions {fs : V → R ; s ∈ C}. Under the condition (H), the topological singularities of
the generalized systole are completely described by Akrout’s theorem ([Akr03]):

Theorem 5.1 (Akrout). If (H) is satisfied, then µ is a topological Morse function over V .
Moreover its critical points of index r are exactly the eutactic points of rank r (the rank of
an eutactic point p being the vectorial rank of the differentials (dfs(p))s∈S(p)).

Remark 5.1. The theorem implies that the eutactic points are isolated. In many cases it is
not difficult to deduce the finiteness, eventually up to the action of some group like Mod(S).

From his remarkable theorem, and from the result of Wolpert ([Wol87]), Akrout deduced
that the systole sys : Teich(S) → R is a topological Morse function. This implies that the
existence of a Mod(S)-invariant deformation of Teich(S) into a cell complex K ⊂ Teich(S).
The codimension of K is equal to the minimal rank of an eutactic point. When S is a
closed oriented surface of genus g ≥ 2, the virtual codimension of Mod(S) is 4g− 5. So, the
following classical question is very natural:

Question 5.1. What is the minimal rank of a critical point of sys?

As we already pointed out, the theorem of Wolpert does not work when we impose some
conditions on the lengths of the boundary components. But our Theorem 2.1 applies in
that case, and shows that the systole is still a topological Morse function. Our theorem also
implies that

Theorem 5.2. The function sysB is a topological Morse function over Teich(S,B).

5.3. The search for critical points. In order to obtain any homological information, one
has still to determine the critical points.

According to a general principle, points with many symmetries should interesting. In our
context this is illustrated by the following lemma ([Bav05b, Corollaire 1.3]):

Lemma 5.3 (Bavard). Let G be a finite group of diffeomorphisms of V that is acting by
precomposition on (fs)s∈C . If p ∈ V is an isolated fixed point of G then p is eutactic.

Proof following Bavard. The groupG is finite and fixes p, therefore it acts by isometries with
respect to some Riemannian metric on some neighborhood of p. The family of gradients
(∇fs)s∈Sp

is stabilized by G, because G fixes p. So G fixes the barycenter of (∇fs)s∈Sp
which

is necessarily the origin of TpV . Otherwise the geodesic tangent to this vector would be fixed
pointwise by G, contradicting the assumption of the lemma. We conclude that the origin of
TpV belongs to the affine interior of the convex hull of (∇fs)s∈Sp

, so p is eutactic. �

When studying µ globally over V it is interesting to decompose it into minimal classes:

Definition 5.1. Let A be a subset of C. The minimal class of A is the set of points p ∈ V
such that S(p) = A.

The minimal classes define a partition of V . It is natural to look for critical inside a
fixed minimal class. It appears that a critical point should verify the following necessary
condition:

Lemma 5.4 (Bavard). If the condition (H) is satisfied, then any eutactic point realizes a
strict minimum of µ in its minimal class.

Lemma 5.5. If any two points in the minimal class of A can be joined by a smooth curve
c : I → V along which the (fs)s∈A are strictly convex, then the minimal class of A contains
at most one eutactic point.
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Part 2. Critical points of the systole of arcs

In this part we determine all the critical points of sysB :

Theorem 5.6. The critical points for sysB are in bijection with the systems of arcs of
A(B) that decompose S into polygons. More precisely, to any such arc system {α1, . . . , αn}
corresponds the unique point [m] ∈ Teich(S,B) such that the arcs realizing sysB belong to
α1, . . . , αn and decompose (S,m) into semi-regular right-angled polygons (a polygon is semi-
regular if its lengths alternate between two values).

Remark 5.2. The unicity part of the statement is a direct application of Lemma 5.5 and
Theorem 2.1.

We recall another time our assumptions and notations. The surface S is compact with
negative Euler characteristic. We assume that S has nonempty boundary, and we consider
a nonempty set B = {b1, . . . , bl} of boundary components of S. We recall that Teich(S,B)
is the Teichmüller space of hyperbolic metric on S that satisfy two conditions: the sum
ℓ(B) of the lengths of the boundary components in B is fixed, as is the length of any other
boundary component. We allow a boundary component to have length zero. An arc system
is a family of disjoint isotopy classes of essential arcs.

According to Akrout theorem (Theorem 5.1) the critical points of the sysB are exactly
its eutactic points.

Lemma 5.7. Let [m] ∈ Teich(S,B) be an eutactic point of sysB, then the arcs realizing sysB
decompose S into polygons.

Proof. It the arcs realizing sysB(m) do not decompose S into polygons, then they do not
intersect a simple closed geodesic γ. A small twist along γ does no change the value of
sysB(m) and its minimal class. We conclude with Lemma 5.4. �

So, inorder to prove the theorem, we have just to show that the points of Teich(S,B)
described in the theorem are indeed eutactic. To simplify the exposition we only consider
the case where B is the full set of boundary components. But all our proofs extend readily
to other cases.

6. Spaces of right angled polygons

In the sequel polygon means a convex polygon of the hyperbolic plane H.

6.1. Spaces of right angled polygons. Given a number n ≥ 5, we denote by P(n) the set
of isometry classes of marked right angled polygons with n sides, where a marking consists
in a cyclic numbering of the sides. The cyclic group Z/nZ is acting on P(n) by permutation
of the marking.

Let ℓi : P(n) → R be the length function of the i-th side, the map (ℓ1, . . . , ℓn) defines
an injection from P(n) to Rn. The common perpendicular between the first side and the
sides numbered from 4 to n − 2 decompose a polygon in P(n) into marked right angled
pentagons. Let hi be the length of the common perpendicular between the first side and
the i-th side (i 6= 2, n − 2). As the isometry class of right angled pentagon is determined
by the length of any two sides, it comes that the map (ℓ3, h4, h5, . . . , hn−2, ℓn−1) establishes
a bijection between P(n) and (R∗

+)
n−3. The lengths ℓi are easily expressed in terms of

the coordinates (ℓ3, h4, h5, . . . , hn−2, ℓn−1), therefore the image of P(n) by (ℓ1, . . . , ℓn) is a
smooth submanifold of codimension 3.

We endow P(n) with this smooth structure. Actually, we won’t distinguish P(n) from its
image in Rn. The action of Z/nZ on P(n) is the restriction of the action of Zn/Z on Rn

by permutation of coordinates. This action is by isometries with respect to the canonical
Euclidean structure of Rn, so Z/nZ acts by isometries on P(n) with respect to the induced
Riemannian metric.
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6.2. Tangent space. We fix an index i ∈ {1, . . . , n} and a point P in P(n). We denote
by fi : P(n) → R the length function of the common perpendicular to the sides i − 1 and
i+2. This common perpendicular divide any element of P(n) into two right angled marked
polygons, one of them being a pentagon. A variation of the pentagon while keeping the
complementary polygon identical defines a germ of curve in P(n):

c : (−ε, ε) −→ P(n)
t 7−→ (ℓ1(t), . . . , ℓn(t))

satisfying c(0) = P . Keeping the complementary polygon unchanged is equivalent to keeping
the functions fi and ℓj with j /∈ {i−1, i, i+1, i+2} constant along c. The following equalities
define a germ of curve:















(ℓ1(0), . . . , ℓn(0)) = (ℓ1(P ), . . . , ℓn(P )),
ℓj(t) = ℓj(0) for j /∈ {i− 1, i, i+ 1, i+ 2},
ℓi(t) = ℓi(0) + t,

sinh ℓi(t) sinh ℓi+1(t) = cosh fi(P ).

The lengths ℓi−1 and ℓi+2 are expressed in terms of ℓi, ℓi+1, fi using trigonometric identities:














ℓi−1(t) = α+ β(t) with α > 0 constant and
sinhβ(t) sinh fi(P ) = cosh ℓi+1(t).

ℓi+2(t) = γ + δ(t) with γ > 0 constant and
sinh δ(t) sinh fi(P ) = cosh ℓi(t).

Differentiating the above equalities we get:






























ℓ′i(t) = 1,
coth ℓi(t)ℓ

′
i(t) = − coth ℓi+1(t)ℓ

′
i+1(t),

ℓ′i−1(t) = β′(t),
coshβ(t) sinh fi(P )β

′(t) = sinh ℓi+1(t)ℓ
′
i+1(t),

ℓ′i+2(t) = δ′(t),
cosh δ(t) sinh fi(P )δ

′(t) = sinh ℓi(t)ℓ
′
i(t).

With the following simplification:

β′(t) = −
sinh ℓi+1(t)

coshβ(t) sinh fi(P )

tanh ℓi+1(t)

tanh ℓi(t)
= −

1

sinh δ(t) sinh fi(P )

tanh ℓi+1(t)

tanh ℓi(t)
= −

tanh ℓi+1(t)

sinh ℓi(t)
,

we obtain:

c′ =
1

sinh ℓi cosh ℓi+1
(0, . . . , 0,− sinh ℓi+1, sinh ℓi cosh ℓi+1,− sinh ℓi+1 cosh ℓi, sinh ℓi, 0, . . . , 0) .

The tangent vector c′(0) belongs to TPP(n). Thus we define a vector field ui on P(n) by
setting ui(P ) = sinh ℓi(P ) cosh ℓi+1(P )c

′(0) for every P ∈ P(n). Clearly, any choice of n− 3
elements in {ui ; i = 1, . . . , n} gives a trivialisation of the tangent bundle TP(n).

6.3. Semi-regular polygons. We say a right angled polygon is semi-regular if the lengths
of its sides alternate between two values. A right angled polygon P ∈ P(2n) is semi-regular
if and only if it is fixed by the diffeomorphism ϕ : P(2n) → P(2n) defined by

ϕ(ℓ1, ℓ2, . . . , , ℓ2n−2, ℓ2n−1, ℓ2n) = (ℓ3, ℓ4, . . . , ℓ2n, ℓ1, ℓ2).

This diffeomorphism corresponds to the action of the cycle i 7→ i+ 2 of Z/nZ. As the fixed
point locus of an isometry, the set of semi-regular right angled polygons is a totally geodesic
submanifold V(2n) of P(2n) with respect to the metric induced by the canonical Euclidean
metric of R2n. A semi-regular polygon is completely determined by the lengths ℓ1 and ℓ2,
that are related by the identity sinh(ℓ1/2) sinh(ℓ2/2) = cos(π/n). We deduce that V(2n) is
diffeomorphic to R, so it is a geodesic of P(2n).
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6.4. A relation between the differentials of the length functions. Let us look at
the 1-forms

∑n
i=0 dℓ2i+1 and

∑n
i=0 dℓ2i defined over P(2n). These 1-forms are invariant

under the action of ϕ. At a point of V(2n), the vectors ui have a very simple expression,
so that we can evaluate the 1-forms on these vectors. We find that the following relation of
proportionality

−
1 + cosh ℓ2
sinh ℓ2

(

n
∑

i=0

dℓ2i

)

=
1 + cosh ℓ1
sinh ℓ1

(

n
∑

i=0

dℓ2i+1

)

is valid over V(2n). Let us stress that the 1-forms on the two sides of the equality agree on
the tangent space of P(2n) at any point of V(2n), this is much stronger than an equality on
the tangent space of V(2n).

7. Construction of the critical points

In this section we show that, if the arcs realizing sys∂S(m) decompose S into semi-regular
right-angled polygons, then the point [m] ∈ Teich(S, ∂S) is eutactic.

7.1. Embedding of the Teichmüller space. Let α ∈ A0(Σ) be a system of arcs that
define a cell decomposition of S. Let us fix a smooth realization of α transverse to ∂S, and
call P1, . . . , Pk the complementary regions. We denote by 2ni the number of sides of the cell
Pi, and we fix a cyclic numbering of the sides, with the convention that sides with an odd
number come from the boundary ∂S.

We introduce the map

P : Teich(S, b) −→ P(2n1)× . . .× P(2nk)
[m] 7−→ (P1(m), . . . , Pk(m))

where Pi(m) is marked right angled polygon in (S,m) corresponding to Pi. To be more
precise, the Pi(m) is obtained by cutting the geodesic arcs orthogonal to ∂S that belong to
the isotopy classes of α. In particular, the Pi(m)’s depend only on the isotopy class of m.

Notation. To simplify, we denote by P(n1, . . . , nk) the product P(2n1)× . . .×P(2nk). We
denote by ℓi,j : P(n1, . . . , nk) → R the length function of the j-th side of the i-th polygon,
so ℓi,j(P1, . . . , Pk) = ℓj(Pi). As usual, we do not distinguish P(n1, . . . , nk) and its image in
R2n1 × . . .×R2nk via the embedding given by the side length functions.

The map P is clearly smooth and injective. Its image is caracterized by the following
condition : equality of the lengths of sides coming from the same arc. The identifications
between the sides of the Pi’s define an involution of {(i, j) ; 1 ≤ i ≤ k and 1 ≤ j ≤ 2ni},
and a linear involution Ψ of R2n1+...+2nk . This involution is an isometry with respect
to the canonical Euclidean metric. Therefore the fixed points locus is a totally geodesic
submanifold, that is P (Teich(Σ)) ⊂ P(n1, . . . , nk) is a totally geodesic submanifold.

Proposition 7.1. The map P : Teich(Σ) → P(n1, . . . , nk) is a smooth embedding whose
image is Fix(ψ).

Remark 7.1. In particular, P is proper.

Proof. Let Ŝ be the closed oriented double cover of S, the arcs system α lifts to a curve
system of Ŝ. We can extend this curve system to a pants decomposition. The proposition
comes immediately from the fact that Fenchel-Nielsen coordinates are coordinates (define a

global chart of Teich(Ŝ)). �
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7.2. The boundary length function. Let B : P(n1, . . . , nk) → R be the function defined
by:

B =
∑

1≤i≤k

∑

jodd

ℓi,j .

It satisfies the identity

B ◦ P = ℓ∂

over Teich(S), where ℓ∂ is the total length of the boundary. We observe that B is the
restriction to P(n1, . . . , nk) of a linear form over R2n1+···+2nk . We deduce that its restriction
to P (Teich(Σ)) is a proper submersion, therefore it is a fibration according to Ehresmann
theorem.

Using the equality of § 6.4 we express the differential dB as a linear combination of the
dℓi,j with j even :

dB =
∑

1≤i≤k

∑

jodd

dℓi,j ,

= −
∑

1≤i≤k

(

1 + cosh ℓi,2
1 + cosh ℓi,1

·
sinh ℓi,1
sinh ℓi,2

)





∑

jeven

dℓi,j





over ∪V(n1,...,nk)TPP(n1, . . . , nk) where V(n1, . . . , nk) = V(2n1)× . . .× V(2nk).

7.3. Proof of the theorem.

Lemma 7.2. For every b > 0 there exists a unique point [m] of Teich(S, b) such that P (m)
belongs to V(n1, . . . , nk).

Proof. First, we observe that the points in P (Teich(Σ))∩V(n1 , . . . , nk) are exactly points in
V(n1, . . . , nk) that have all their even sides (the one corresponding to arcs) of the same length
(independently of Pi). We deduce that P (Teich(Σ)) ∩ V(n1, . . . , nk) is a one dimensional
submanifold of Teich(S). It is parametrized by the length ℓ1,2 of even sides. On P (Teich(Σ))∩
V(n1, . . . , nk) we have :

B = 2

k
∑

i=1

nkarcsinh

(

cos(π/nk)

sinh(ℓ1,2/2)

)

.

So B is a strictly decreasing function of ℓ1,2 which tends to +∞ (resp. 0) when ℓ1,2 tends
to 0 (resp. +∞). This proves the existence and unicity of [m].

�

Lemma 7.3. The components of α are exactly the arcs of minimal length of [m].

Proof. We work with the polygon Pi(m). The distance between two non adjacent sides of
Pi(m) is equal to the length of their common perpendicular. In order to compute this length,
we first determine the length between these sides and the center C of the polygon Pi(m).

Let us consider two consecutive sides of Pi(m), the segments orthogonal to these sides and
emanating from C bound a trirectangle T in Pi(m). In this trirectangle, the sides opposite
to C have length ℓi,1/2 and ℓi,2/2, and the angle at C is π/n. Let hi,1 (resp. hi,2) be the
distance between C and any side with odd number (resp. even number). Using classical
trigonometric formulas we find:

cosh(hi,1) =
cosh(ℓi,2/2)

sin(π/n)
.

Now we consider the common perpendicular δ between two non adjacent sides a and b of
Pi(m). The segment δ together with the two segments emanating from C orthogonal to a
and b bound a pentagon in Pi(m) with right angles except at C. Our aim is to compute
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the length ℓ(δ) of the side opposite to C. We distinguish two cases: either the sides a and b
have both length ℓi,1, either one has length ℓi,1 and the other ℓi,2.

If they both have length ℓi,1, the the pentagon has a symmetry whose axis is the segment
orthogonal to δ emanating from C. In this trirectangle we find:

cosh(ℓ(δ)/2) = coshhi,1 sin(kπ/n),

≥ coshhi,1 sin(π/n) = cosh(ℓi,2/2).

So ℓ(δ) ≥ ℓi,2 with equality if and only if δ is a side (with even index) of Pi(X).
If one side is of length ℓi,1 and the other of length ℓi,2, then the formula iii) in the

example 2.2.7 of [Bus10] gives

cosh(ℓ(δ)/2) = − coshhi,1 coshhi,2 cos(kπ/ni) + sinhhi,1 sinhhi,2.

In the trirectangle T , we find the relation

sinh(hi,j) = sinh(ℓi,j+1/2) coshhi,j+1,

and we finally obtain

cosh(ℓ(δ)/2) = coshhi,1 coshhi,2 (− cos(kπ/ni) + sinh(ℓi,1/2) sinh(ℓi,2/2)) ,

= coshhi,1 coshhi,2 (− cos(kπ/ni) + cos(π/ni)) ,

≥ coshhi,1 coshhi,2 (− cos(3π/ni) + cos(π/ni)) ,

≥ cosh(ℓi,1/2) cosh(ℓi,2/2)
4 cos(π/ni)(1− cos2(π/ni))

sin2(π/ni)
,

≥ cosh(ℓi,1/2) cosh(ℓi,2/2)4 cos(π/3),

≥ 2 cosh(ℓi,1/2) cosh(ℓi,2/2).

So ℓ(δ) > ℓi,2/2. Let c be a geodesic arc that do not retract on ∂S. Either this arc is isotopic
to an element of α, either there is a segment of c that joined two non adjacent sides of one
of the Pi(m). The conclusion comes directly from the estimates above. �

Lemma 7.4. The point [m] is eutactic, and its rank is equal to the number of components
of α.

Proof. By definition, the function B is constant on P (Teich(S, b)), thus (dB)[m] ≡ 0 over
the tangent space T[m](Teich(S, b)). On the other hand, we have expressed in the previous
paragraph (dB)[m] as a linear combination with strictly negative coefficients of the dℓi,j with
j even. These functions are exactly the length functions of the sides corresponding to the
components of α. This shows that [m] is eutactic. �
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Part 3. Systole of geodesic loops

8. Teichmüller spaces of pointed surfaces

Let S be a closed oriented surface with negative Euler characteristic. Given a finite set of
points p = {p1, . . . , pn} ⊂ S, the Teichmüller space of the pointed surface (S, p) is the space
of hyperbolic metrics on S up to isotopy fixing p, we denote it by Teich(S, p). The modular
group Mod(S, p) is the group of orientation preserving diffeomorphisms of the pair (S, p) up
to isotopy fixing p. By isotopy fixing p, we mean an isotopy fixing each element of p at all
times.

8.1. Spaces of representations. We consider the universal cover S̃ of S as the space of
isotopy classes of paths with origin p1. We denote by p̃1 ∈ S̃ the point corresponding to
the class of the constant path. Note that π1(S, p1) acts on the left of S̃ by precomposition.
Given another pointed surface (S′, p′1), any continuous map f : (S, p1) → (S′, p′1) admits a

unique lift f̃ : (S̃, p̃1) → (S̃′, p̃′1), and defines a unique morphism f∗ : π1(S, p1) → π1(S
′, p′1).

Clearly the lift f̃ is equivariant with respect to f∗.
We denote by ∆n the subset of Hn that consists in n-tuples of points that are not all

pairwise distinct. We fix a lift p̃i of each pi with i ≥ 2, and a point x ∈ Hn − ∆n. We
denote by Rep(S) the space of discrete and faithful representations of π1(S, p1) into Isom(H).
Given a representation ρ ∈ Rep(S), we denote by xρ = {xρ1, . . . , x

ρ
n} the image of x in

Sρ = H/ρ. The identity of Sρ admits a unique lift (S̃ρ, x̃
ρ
1) → (H, x1), which is equivariant

with respect to a unique isomorphism π1(Sρ, x
ρ
1) → ρ(π1(S)). Let f : (S, p) → (Sρ, x

ρ) be
any diffeomorphism satisfying the following conditions:

• ρ : π1(S) → ρ(π1(S)) is the composition of f∗ : π1(S, p1) → (Sρ, x
ρ
1) with the

isomorphism π1(Sρ, x
ρ
1) → ρ(π1(S)) above.,

• f̃(p̃i) = xi for each i = 1, . . . , n,

we denote by mρ the pullback by f of the hyperbolic metric on Sρ. The isotopy class of f

is determined by f∗ and f̃(p̃), so the isotopy class of [mρ]p depends only on ρ and x. So we
have a well-defined map ϕx : Rep(S) → Teich(S, p).

If we allow the x to vary, we obtain a map

ϕ : Rep(S)× (Hn −∆n) −→ Teich(S, p)
(ρ, x) 7−→ ϕx(ρ)

which invariant under the right action of Isom(H) on Rep(S)× (Hn −∆n) defined by

(ρ, x) · γ = (γ−1ργ, γ−1(x)) (∀γ ∈ Isom(H)).

We denote by Φ : (Rep(S)× (Hn −∆n))/Isom(H) → Teich(S, p) the induced map.

Proposition 8.1. Φ is a homeomorphism.

Proof. This map is clearly continuous and surjective. Let us show that it is injective, this
is enough to conclude by invariance of the domain.

Let (ρ, x), (ρ′, x′) be two elements of (Rep(S) × (H − ∆n))/Isom(H) with same images
in Teich(S, p). We consider two diffeomorphisms f : (S, p) → (Sρ, x

ρ) and f ′ : (S, p) →

(Sρ′ , x′ρ
′

) satisfying the conditions above.

We have that f̃ ◦ (f̃ ′)−1 conjugates the representation ρ′ and ρ and sends p′ on p. By
definition of Teich(S, p), there exists an isotopy t 7→ Ft fixing p such that f ′ ◦ F1 ◦ f−1 :

(Sρ, xρ) → (Sρ′

, x′ρ
′

) is an isometry. The lift of this isometry conjugate ρ and ρ′. Moreover,

as F fixes p, we have that its lift t 7→ F̃t fixes each lift p̃i. So finally we find that f̃ ′ ◦ F̃1 ◦
f̃−1(x) = f̃ ′ ◦ F̃0 ◦ f̃

−1(x) = x′. �

We endow Teich(S, p) with the smooth structure coming from the Isom(H)-principal bun-
dle. Note that any smooth section s : Teich(S) → Rep(S) gives a homeomorphism between
s(Teich(S))× (Hn −∆n) and Teich(S, p). We can interpret this homeomorphism as follows
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8.2. Decomposition of Teich(S, p) as a product. The space Conf(S) of conformal struc-
tures on S is the total space of a Diff0(S)-bundle over the base Teich(S), where Diff0(S) is
the group of diffeomorphisms of S isotopic to the identity. As Teich(S) is contractible, this
bundle is trivial, and there exists a section s : Teich(S) → Conf(S).

We assume that s is fixed. To any hyperbolic metric m on S corresponds a unique
diffeomorphism fm ∈ Diff0(S) such that m = (fm)∗s([m]). The existence is obvious as m
and s([m]) project on the same isotopy class [m] ∈ Teich(S). The unicity comes from the
fact that two homotopic isometries of a compact hyperbolic surface are equal, because their
lifts coincide on the visual boundary of the universal cover. Let t 7→ Ft be any isotopy from
idS to fm, we denote by push(m) the collection of homotopy classes of the paths t 7→ Ft(pi)

on S. We fix a lift p̃i ∈ S̃ of each pi, and we look at push(m) as a n-tuple of distinct points

in S̃. The situation is summarized in the following diagram, where we denote by [m]p the
class of m in Teich(S, p), and by [m] its class in Teich(S).

s([m]) ∈ Conf(S) fm ∈ Diff0(S) push(m) ∈ (S̃n −∆)

m ∈ Conf(S) [m]p ∈ Teich(S, p)

[m] ∈ Teich(S)

The following lemma shows that the application push : Conf(S) → (S̃n − ∆) is well-
defined.

Lemma 8.2. The homotopy class push(m) does not depend on the choice of the isotopy F .

Proof. Let t 7→ Gt be another isotopy from idS to fm, that gives a of path (t 7→ Gt(pi) for
each 1 ≤ i ≤ n. The concatenation of t 7→ Ft and t 7→ G1−t gives a loop in Diff0(S), which
is homotopically trivial for Diff0(S) is contractible. This implies that the concatenation of
t 7→ Ft(pi) and t 7→ G1−t(pi) is a loop which is trivial in π1(S, pi). It follows that the paths
t 7→ Ft(pi) and t 7→ Gt(pi) are homotopic. �

The following lemma shows that push : Conf(S) → (S̃n−∆n) factorizes through Teich(S, p).

Lemma 8.3. If two hyperbolic metrics m and m′ on S satisfy [m]p = [m′]p, then push(m) =
push(m′).

Proof. Let F be an isotopy from idS to fm. As [m]p = [m′]p, there is an isotopy G from
fm to fm′ that fixes p. The concatenation of G and F gives an isotopy F ′ between idS and
fm′ . As G fixes pi, the paths defined by F ′ and F are the same up to the parametrization,
so they define the same homotopy class. �

We now consider the map

Ψ : Teich(S, p) −→ Teich(S)× (S̃n −∆n)
[m]p 7−→ ([m], push(m))

.

Proposition 8.4. The map Ψ is a diffeomorphism between Teich(S, p) and Teich(S)×(S̃n−
∆n). In particular, push is injective on each isotopy class [m].

Proof. One easily proves that Ψ is a proper submersion. So it remains to show that Ψ is
injective. Let [m]p and [m′]p two points in Teich(S, p) with same image Ψ(m) = Ψ(m′).
From [m] = [m′], there exists an isotopy f 7→ F from idS to a diffeomorphism F1 that
realizes an isometry between m and m′. As push(m) = push(m′), the homotopy class of
each path t 7→ Ft(pi) is trivial. So we modify F in a contractible neighborhood of each pi
so that it fixes pi. We conclude that [m]p = [m′]p. �
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8.3. Shearing coordinates. The identification of Teich(S, p) with Teich(S) × (S̃n − ∆n)
is constructed from a section s : Teich(S) → Conf(S). We would like to make some explicit

computations on dm̃(a, b) as m varies in s(Teich(S)) and a, b varies in S̃. For instance,
given γ ∈ π1(S, p1) we would like to compute the derivatives of dm̃(a, γ · a), which is the
length of the geodesic loop in the homotopy class γ based at the projection of a. The aim
of this paragraph is to explain how we can perform such computations using the shearing
coordinates.

Let us fix a hyperbolic metricm and an isometry Θ : (S̃, m̃) → H. This isometry defines a

representation ρ : π1(S) → Isom(H). We still denote by λ̃ the image Θ(λ̃). Given a maximal
geodesic lamination λ on S, we have seen that there is an embedding Σ : Teich(S) → H(λ;R),
where H(λ;R) is the linear space of transverse Hölder distributions for λ. Let us recall few
facts about it following the exposition of Bonahon and Sözen ([BS03, §3]).

Let U be a sufficiently small neighborhood of the origin in H(λ;R). Fro any α ∈ U

Bonahon has constructed a map Eα : H− λ̃→ H which is an isometry on each component
of H− λ̃. This map conjugates the representation ρ to another discrete and faithful repre-
sentation ρα : π1(S) → Isom(H). The quotient H/ρα is a hyperbolic surface diffeomorphic
to S. Let mα be the pull-back of the hyperbolic metric on H/ρα by any diffeomorphism
f : S → H/ρα whose induced homomorphism between fundamental groups is f∗ = ρα. The
point [mα] ∈ Teich(S) depends only on α and satisfies Σ(mα) = Σ(m) + α.

For any α ∈ U we set Θα = Eα◦Θ : (S̃−λ̃, m̃) → H, and we denote by Fα : (S̃−λ̃, m̃α) →

(S̃ − λ̃, m̃) the unique isometry that extends to the identity on the visual boundary S̃∞.
The map

Γ :
⋃

α∈U{α} × (S̃ − λ̃, m̃α) ⊂ U × S̃ −→ U ×H

(α, x) 7−→ (α,Θα ◦ Fα(x))

is smooth and its restriction to each slice {α} × (S̃ − λ̃, m̃α) is an isometry. Moreover this

isometry is equivariant with respect to the actions of π1(S, p1) on S̃ and on H though ρα.

9. The hessian of the length function of a geodesic loop

Let S be a closed oriented surface with negative Euler characteristic, and λ be a maximal
geodesic lamination on S. We consider the following function:

D : Teich(S)× (S̃ − λ̃)2 −→ R∗
+

([m], p, q) 7−→ dm̃(p, q).

This function is smooth at any point ([m], p, q) with p 6= q. The aim of this section is to
compute the hessian of D with respect to the shearing coordinates on Teich(S) and the

hyperbolic metric on S̃ − λ̃. Note that the function D
We identify the tangent space T[m]Teich(S) with H(λ;R).

Let us fix some notations. Given a leaf l of λ̃ that intersects [p, q], we orient l so that it
points to the left when one goes from p to q, we denote by θl ∈ (0, π) the angle at l ∩ [p, q]
between the vector that points in the direction of q and l, we set ℓpl = dm̃(p, l ∩ [p, q]) and

ℓlq = dm̃(l ∩ [p, q], q). Given two leaves l and h of λ̃, we set ℓp{l,h} = min(ℓpl, ℓph) and
ℓ{l,h}q = min(ℓlq, ℓhq).
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Theorem 9.1. For any α ∈ H(λ;R), any u ∈ TpS̃, and any v ∈ TqS̃, we have

∂[m]D([m],p,q)(α, ) =

∫

[p,q]

cos θl dα(l),

∂(p,q)D([m],p,q)(u, v) = ‖u‖ cosψu + ‖v‖ cosψv,

∂2[m]D([m],p,q)(α
2) =

1

sinh ℓpq

∫ ∫

[p,q]2
cosh ℓp{l,h} cosh ℓ{l,h}q sin θl sin θhdα(l)dα(h)

∂[m]∂(p,q)D([m],p,q)(α, u, v) =
‖u‖ sinψu

sinh ℓpq

∫

[p,q]

cosh ℓlq sin θldα(l) +
‖v‖ sinψv

sinh ℓpq

∫

[p,q]

cosh ℓpl sin θldα(l)

∂2(p,q)D([m],p,q)(u, v)
2 = coth ℓpq

(

‖u‖2 sin2 ψu + ‖v‖2 sin2 ψv

)

− 2
‖u‖‖v‖ sinψu sinψv

sinh ℓpq
,

=
1

sinh ℓpq
(‖u‖ sinψu − ‖v‖ sinψv)

2
+ tanh(ℓpq/2)

(

‖u‖2 sin2 ψu + ‖v‖2 sin2 ψv

)

where ψu (resp. ψv) is the oriented angle at p (resp. at q) between the vector pointing in
the direction of q (resp. p) and u (resp. v).

The last formula above gives an explicit expression of the hessian of the distance function
dH : H × H → R. As we were not able to find such a formula in the literature (see for
instance [Thu97, Theorem 2.5.8]), we think that it deserves a specific statement:

Corollary 9.2. Let p and q be two distinct points in H, and let us denote by U (resp. V )
the tangent vector at p (resp. q) obtained by rotating by an angle π/2 the vector pointing in
the direction of q (resp. of p). Then the Hessian of the distance function dH(·, ·) at (p, q) is
given by Q(〈u, U〉, 〈v, V 〉) for any u ∈ TpH and v ∈ TqH, where Q : R2 → R is the positive
definite quadratic form whose matrix in the canonical basis is

1

sinh dH(p, q)

(

coshdH(p, q) −1
−1 coshdH(p, q)

)

.

In particular, the Hessian of dH is positive semidefinite and its isotropic cone is

{(u, v) ∈ TpH× TqH ; u, v are tangent to the geodesic (p, q)}.

As the Hessian of dH is positive-semidefinite, the Hessian of D can not be positive-definite.
Actually the only obstruction comes from dH:

Corollary 9.3. If the projection of [p, q] on (S,m) intersects every leaf of λ, then the
Hessian of D at ([m], p, q) is positive-semidefinite, and its isotropic cone is

0H(λ;R) × {(u, v) ∈ TpH× TqH ; u, v are tangent to the geodesic (p, q)}.

To prove this corollary we follow the ideas of [Gena, §6], and we provide an explicit lower
bound on the Hessian (HessD)([m],p,q)(α, u, v).

Proof. We fix a finite number of leaves l1, . . . lN of λ̃ that intersect [p, q] enumerated from p
to q. We denote by E the space of linear combinations of the Dirac measures δl1 , . . . , δlN .
This is a subspace of the space of transverse Hölder distributions on [p, q] with support

contained in [p, q] ∩ λ̃.
We look at D as a smooth function over E×H2. To any element

∑

i aiδli of E corresponds
the deformation of H obtained by shearing of an amount ai along li for each i = 1, . . . , n.
The formulas of the theorem 9.1 work also in this context, because they were first established
for a shear along one leaf.
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The Hessian of D (as a function over E ×H2) can be written as a quadratic form in the
variables sin θ1a1, . . . , sin θnan, 〈u, U〉, 〈v, V 〉 whose matrix H is given by

H =



















cosh ℓpl1 cosh ℓl1q . . . cosh ℓpl1 cosh ℓlnq cosh ℓpl1 cosh ℓl1q
...

. . .
...

...
...

cosh ℓpl1 cosh ℓlnq . . . cosh ℓpln cosh ℓlnq cosh ℓpln cosh ℓlnq

cosh ℓpl1 . . . cosh ℓpln cosh ℓpq −1
cosh ℓl1q . . . cosh ℓlnq −1 cosh ℓpq



















.

The diagonal is strictly dominant (aii > |aij | for any i, j), therefore H is positive-definite
(see [Gena, Lemma 6.1]). This implies immediately that the Hessian of D over E ×H2 is
positive-semidefinite, and that its isotropic cone is

0E × {(u, v) ∈ TpH× TqH ; u, v are tangent to the geodesic (p, q)}.

Actually we can be more precise. For each leaf li we denote by εi the minimal distance on
[p, q] between li and any other leaf of λ̃. We note εp (resp. εq) the minimal distance on [p, q]

between p (resp. q) and any leaf of λ̃. Finally, we denote by H ′ the matrix which has same
entries as H outside the diagonal, and diagonal entries given by

(H ′)i,i = cosh ℓpli cosh(ℓliq − εi) for i = 1, . . . , n;
(H ′)n+1,n+1 = cosh(ℓpq − εp)
(H ′)n+2,n+2 = cosh(ℓpq − εq)

By construction, H ′ has a dominant diagonal (|aii| ≥ aij for any i, j), and consequently is
positive-semidefinite. The difference D = H −H ′ is a diagonal matrix whose entries can be
bounded from below as follows:

cosh ℓpli(cosh(ℓliq)− cosh(ℓliq − εi)) ≥ cosh ℓpli sinh(ℓliq − εi)εi,

cosh ℓpq − cosh(ℓliq − εp) ≥ sinh(ℓpq − εp)εp.

Note that the lower bounds depend only on p, q and λ̃. This gives a lower bound for the
Hessian of (HessD)([m],p,q) evaluated at (

∑

aiδli , u, v).
Now, let us fix α ∈ H(λ;R)−{0}, and vectors u ∈ TpH, v ∈ TqH. The transverse Hölder

distribution α is the limit of a sequence (αn)n of linear combination of Dirac measures (see
[Gena, Lemma 3.1]), associated to an increasing sequence (Pn)n of subsets of Ppq. Let

l1, . . . , lk be a sequence of isolated leaves of λ̃ that intersects [p, q]. For any n big enough,

Pn contains the components of S̃− λ̃ adjacent to the li’s, and the hessian of (HessD)([m],p,q)

evaluated at (αn, u, v) is bounded from below by




∑

i=1,...,k

cosh ℓpli sinh(ℓliq − εi)εi sin
2 θli



+sinh(ℓpq−εp)εp〈u, U〉2+sinh(ℓpq−εq)εq〈v, V 〉2.

This bound does not depend on n, and thus implies the corollary as sin θl is positive for any
leaf l. �

We will see applications of these result to the study of topological singularities of sysp
(§), and to the study of variations of various functions (§).

10. Proofs of the formulas

To prove these formulas we follow the same line of arguments as in [Gena]: we compute
explicitly the derivatives for a shear along one geodesic
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10.1. Shearing coordinates. We have explained in how to make effective computations in
the shearing coordinates. The method is due to Bonahon, and proceed by an approximation
We identity (S̃, m̃) with H and we use the notations of , that are essentially the notations
introduced by Bonahon. In particular, we consider the point p fixed, whereas q is moved by
the isometry ϕ.

Notation: we perform a shearing along l, or h but in both cases these geodesics are
pointwise fixed. We denote by g(t) the geodesic passing through p and q(t), given a leaf l
we denote by l(t) the intersection point, we denote by f ′

l the function such that the velocity
vector of l ∩ g(t) is f ′

l l
′ where l′ is the unit tangent vector field along l.

We fix two points p, q that belong to two distinct components P,Q of S̃ − λ̃. We denote
by PP,Q the set of components of S̃ − λ̃ that separate P from Q.

10.2. First derivative. Given a leaf l that separate p from q, we denote by V (l) the vector

field on S̃ defined by:

Vz(l) =

[

d

dt
T t
l (z)

]

t=0

,

where T t
l is the isometry of (S̃, m̃) that translates by a length t along l in the positive

direction. We denote by Z the unit vector field on S̃ − p pointing in the direction of p, note
that the gradient of z 7→ dm̃(p, z) is equal to −Z. The approximation method used in gives

∂D([m],p,q)(α) = −

∫

γ

〈Zq, Vq(l)〉 dα(l).

By construction V (l) is Killing, which means that the associated one parameter subgroup
of diffeomorphisms is a groups of isometries. We recall the following elementary property of
Killing vector fields:

Lemma. Let V be a Killing field vector field, and γ be a geodesic. The scalar product 〈V, γ′〉
is constant.

As a consequence, we have 〈Zq, Vq(l)〉 = 〈Zq′ , Vq′ (h)〉 where q′ is the intersection point
of l with [p, q]. As the restriction of V (l) to l is the unit tangent vector field, we find
−〈Zq′ , Vq′(h)〉 = cos θl and we obtain

∂D([m],p,q)(α) =

∫

γ

cos θl dα(l).

We obviously have ∂D([m],p,q)(u, v) = ‖u‖ cosψu + ‖v‖ cosψv.

10.3. Second derivative in α. Let h, l be two distinct leaves of λ̃ that separate p from q.
We want to compute the derivative of cos θl when shearing along h. For symmetry reasons,
we assume that h separate l from q. This is convenient because the geodesic l is not moved
by the shear along h.

We denote by q(t) the point T t
h(q), and by g(t) the half-geodesic starting at p and passing

through q(t). The geodesic g(t) is obtained by rotating g by an angle ρ(t) at p. We will use
the following obvious lemma:

Lemma 10.1. Let C be a smooth curve that intersects g transversely in one point. We
denote by c(t) the intersection point C ∩ g(t) for t sufficiently small. We have

‖c′(0)‖ =
ρ′(0) sinh d(p, c(0))

sin θ
,

where θ is the angle at c(0) from g to c.

Lemma 10.2. We have

ρ′(0) =
cosh ℓhq sin θh

sinh ℓpq
.
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Proof. An elementary computation (with Fermi coordinates for instance) shows that

‖q′(t)‖ = cosh r,

where r is the distance from q to h. Let us denote by s the orthogonal projection of q on the
geodesic h, so that r = dm̃(s, q). In the right-angled triangle with vertices q, s and h∩ g, we
call ψ the angle at q. The segment [s, q] is orthogonal to the trajectory t 7→ q(t), thus the
angle between g and the trajectory t 7→ q(t) is equal to π/2− ψ. The above lemma gives

cosh r = ‖q′(0)‖ =
ρ′(0) sinh ℓpq

cosψ
.

In the right-angled triangle we have the relation cosψ = tanh r/ tanh ℓhq, that implies

ρ′(0) =
sinh r

tanh ℓhq sinh ℓpq
.

We conclude with the relation sinh r = sinh ℓhq sin θh. �

Let us fix an origin on l and denote by fl(t) the signed distance between this origin and
l ∩ g(t). From the two previous lemmas we obtain

f ′
l =

cosh ℓhq sinh ℓpl sin θh
sinh ℓpq sin θl

.

Then the last equality in gives
[

d

dt
cos θl

]

t=0

= −f ′
l sin

2 θl coth(ℓpl),

=
cosh ℓpl cosh ℓhq

sinh ℓpq
sin θl sin θh.

10.4. Second derivative in (u, v). We have to differentiate the function (p, q) 7→ cosψu.
The last equality in [Genb] gives immediately

∂p(cosψu)(u) = ‖u‖ sin2 ψu coth ℓpq.

Using the Lemma 10.1 above we find

∂q(ψu)(v) =
‖v‖ sinψv

sinh ℓpq
,

so that

∂q(cosψu)(v) = − sinψu ∂q(ψu)(v),

= −
‖v‖ sinψu sinψv

sinh ℓpq
.

10.5. Second derivative in α and (u, v). We have to differentiate cosψu as q moves
according to the deformation defined by α. The Lemma 10.2 gives

∂[m](ψu)(α) = −
1

sinh ℓpq

∫

[p,q]

cosh ℓlq sin θl dα(l).

So we find

∂[m](cosψu)(α) = − sinψu ∂[m](ψu)(α),

=
sinψu

sinh ℓpq

∫

[p,q]

cosh ℓlq sin θl dα(l).

Similalry we have

∂[m](cosψv)(α) =
sinψv

sinh ℓpq

∫

[p,q]

cosh ℓpl sin θl dα(l).
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11. Extreme points of sysp

Theorem 11.1. Let S be a compact surface with k ≥ 0 boundary components b1, . . . , bk. A
point [m] ∈ Teich(S, p) is extreme for sysp if and only if its systolic loops at p divide S into
equilateral triangles and one holed monogons. In that case sysp(m) is the unique positive
solution of the equation

6(−2χ(S) + 2− k)arcsin

(

1

2 cosh(x/2)

)

+ 2

k
∑

i=1

arcsin

(

cosh(ℓ(bi)/2)

cosh(x/2)

)

= 2π.

Proof. The existence of a global maximum comes from standard arguments. Let [m]p be a
metric with sys(m) very small, then no m-systolic loop at p intersect the geodesics realizing
the systole. So we can cut this geodesic, we increase the length of the corresponding bound-
ary components, and we glue them back. This gives another hyperbolic surfaces (S′,m′) for
which there is a point p′ with sysp′(m′) > sysp(m). We refer to [Genc] for more details.

Let [m] be an extreme point, then [m] has at least dimTeich(S, ∂S)+1 = −3χ(S)+3−k
systolic loops at p (Theorem 3.1). By minimality of their length, these systolic loops do not
intersect outside p. But, an easy computation of Euler characteristic shows that the minimal
cardinality of a set of non homotopic loops that intersect only at p is also −3χ(S) + 3 − k.
So we deduce that the m-systolic loop at p decompose S into triangles and monogons. The
number of triangles is −2χ(S) + 2 − k, and the number of monogons is k. This shows one
implication, the other implication is trivial. �

12. Topological singularities of sysp

Any homotopy class γ ∈ π1(S, p) defines a smooth length function

ℓγ : Teich(S, p) → R.

Let λ be a maximal lamination of S such that intersects transversely γ.

Lemma 12.1. Let m be a hyperbolic metric on S such that p does not belong to the m-
realization of λ. Then Hessian (Hess ℓγ)[m]p in the shearing coordinates with respect to λ is
positive-semidefinite, and positive-definite if and only if sysp(m) is not realized by a closed
m-geodesic passing through p.

Proof. We have ℓγ(m) = dS̃(p̃, γp̃), which gives the equality

(Hess ℓγ)[m]p(α, u) = (HessD)([m],p̃,γp̃)(α, u, γ · u)

So (Hess ℓγ)[m]p(α, u) = 0 if and only if α = 0 and u, γ · u are tangent to the geodesic
(p̃, γ(p̃)). Let f be a non elliptic isometry of H, and x be apoint in H. Given u ∈ TpH the
isometry f sends the geodesic tangent to u at x to the geodesic tangent to (df)x(u) at f(x).
So if u and f ·u are tangent to (x, γ(x)) then this geodesic is glovally preserved by f , which
implies that f is hyperbolic and u is tangent to its axis. �

Definition 12.1. We say that a point [m]p ∈ Teich(S, p) is a singularity associated to a
short geodesic if there is a closed m-geodesic passing through p that realizes sysp(m).

In particular, if a systolic loop of m is passing through p, then [m]p is a singularity
associated to a short geodesic. More generally the set of such singularity in a fiber [m] is a
1-dimensional closed subset.

• if p belongs to a geodesic realizing sys(m) then it is a short geodesic singularity,
• a point which realizes a local maximum of sysp on a fiber [m] is not a short geodesic
siingularity, in particular any extreme point of sysp is not a short geodesic singularity.

As a consequence we get:

Theorem 12.2. The restriction of sysp : Teich(S, p) → R∗
+ to Teich(S, p)− is a topological

Morse function whose critical points of rank k are the eutactic points of rank k.
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In particular, we find that the extreme points of sysp are characterized

Corollary 12.3. A point [m]p ∈ Teich(S, p) is extreme if and only if the systolic loops at p
divide (S,m) into isometric equilateral triangles whose sides have length sysp(m).

Proof. As we have seen, an extreme point [m]p has at least dimTeich(S, p) + 1 systolic
loops at p. An easy computation shows that this is the maximal cardinality of a set of
geodesic loops based at p, and that such a set divide the surface into equilateral triangles
and monogons whose sides have length sysp(m) �

13. Critical points of sysp

13.1. Three kinds of polygons. We fix a hyperbolic metric m on S. The lifts of the
systolic loops at p form a family of geodesics that divide S̃ into convex m̃-polygons. These
polygons fall into a finite number of π1(S, p)-orbits, and they are of three kinds:

• compact polygons, the interior of such a polygon projects isometrically onto a com-
ponent of (S,m)− S(m) that do not contain a boundary component nor a cusp.

• polygons that contain a boundary component of ∂S̃, they have an infinite number of
sides, but are invariant under the action of the cyclic subgroup of π1(S, p) preserving
the boundary component. Such a polygon projects onto a component of (S,m) −
S(m) that contains a boundary component.

• polygons that contain an horoball, they have an infinite number of sides, but are
invariant under the action of the cyclic subgroup of π1(S, p) preserving the horoball.
Such a polygon projects onto a component of (S,m)− S(m) that contains a cusp.

13.2. Differentials of lengths and angles. Let x = (x1, . . . , xl) ∈ Hl −∆l be a polygon.
For each i, we denote by ℓi the length of the segment [xi, xi+1], by Ui (resp. Vi) the unit
tangent vector at xi pointing in the direction opposite to xi−1 (resp. xi), and by θi the
oriented angle ̂xi−1xixi+1, which is also the oriented angle from Ui to Vi.

From the expression of the differential of dH, we find for any ui ∈ Txi
:

(dℓi−1)x(ui) = 〈ui, Ui〉,

(dℓi)x(ui) = 〈ui, Vi〉.

In particular for u = (u1, . . . , ul) ∈ TxH we have

(dℓi)x(u) = 〈ui, Vi〉+ 〈ui+1, Ui+1〉,
∑

i=1,...,l

(dℓi)x(u) =
∑

i=1,...,l

〈ui, Ui + Vi〉,

and we easily observe that:

Lemma 13.1. If each θi is different from π and 0, then the differentials (dℓ1)x, . . . , (dℓl)x
are linearly independent in T ∗

xH
l. In particular, the set of length-regular polygons with angles

different from 0 and π is a submanifold V (l) of dimension l + 1 of Hl.

From Lemma 10.1 we deduce

(dθi−1)x(ui) =
〈ui, U

⊥
i 〉

sinh ℓi−1
,

(dθi+1)x(ui) =
〈ui, V

⊥
i 〉

sinh ℓi
,

where U⊥
i (resp. V ⊥

i ) is obtained by rotating Ui (resp. Vi) by an angle π/2 (resp. −π/2).
The formula at the end of §10.3 gives

(dθi)x(ui) = coth ℓi−1〈ui, U
⊥
i 〉+ coth ℓi〈ui, V

⊥
i 〉,
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so that

(dθi)x(u) =
〈ui−1, V

⊥
i−1〉

sinh ℓi−1
+ coth ℓi−1〈ui, U

⊥
i 〉+ coth ℓi〈ui, V

⊥
i 〉+

〈ui+1, U
⊥
i+1〉

sinh ℓi
.

In particular

∑

i=1,...,l

(dθi)x(u) =
∑

i=1,...,l

1 + cosh ℓi−1

sinh ℓi−1
〈ui, U

⊥
i 〉+

1 + cosh ℓi
sinh ℓi

〈ui, V
⊥
i 〉

=
∑

i=1,...,l

coth
ℓi−1

2
〈ui, U

⊥
i 〉+ coth

ℓi
2
〈ui, V

⊥
i 〉.

If x is length-regular, then we find that

∑

i=1,...,l

(dθi)x(u) = coth
ℓ1
2

∑

i=1,...,l

〈ui, U
⊥
i + V ⊥

i 〉

= − coth
ℓ1
2

∑

i=1,...,l

tan(θi/2)(dℓi)x(u)

because U⊥
i + V ⊥

i = − tan(θi/2)(Ui + Vi).

13.3. Spaces of polygons. Given l ≥ 3, the space of marked polygons of H with l vertices
is Hl −∆l. We denote by P(l) the space of isometry classes of marked polygons of H with
l vertices, which is the quotient of Hl −∆l by the diagonal action of Isom+(H). This is a
manifold of dimension l− 3.

Similarly there is a space P(l, b) of isometry classes of marked polygons with l vertices
and one hold with boundary length b. This is the of points on {z ∈ H;x < 0}l/Z

Let {γ1, . . . , γk} ⊂ π1(S, p) be homotopy classes of simple loops intersecting only at p that
divide S in polygons P1, . . . , Pm, eventually with on hole or cusp. This defines a smooth
map from Φ : Teich(S, p) → P1 × . . . × Pm, where Pi is the space of isometry classes of
marked polygons corresponding to Pi.

The image of Φ is the submanifold of codimension 1 + k defined by the conditions: the
total sum of the angles is equal to 2π, two identified sides have same length. As the map
has an obvious smooth inverse, we conclude that

Proposition 13.2. The map Φ is a diffeomorphism onto its image

Let us denote by F the number of components of S − ∪iγi. We have χ(S) = 1 − k + F ,
so 2 − 2g − (b + s) = 1 − k + F . Note the length and angle functions are invariant under
Isom(H), so they are well Note that the differentials of the length functions of sides are
linearly independent at any point of P1 × Pm, so the length the differential of the length
functions of identified sides are linearly independent, this implies that the rank on the image
of Φ is at least k − 1, more precisely each family of k − 1 is free.

13.4. Proof of the theorem.

Lemma 13.3. If the systolic m-geodesic loops at p divide (S,m) in regular polygons, then
[m]p is a critical point of sysp whose rank is equal to the cardinal of Sp(m) minus 1.

Proof. If the systolic m-geodesic loops at p divide (S,m) in regular polygons. We denote
P1, . . . , Pm the polygons, note that the isometry class of each marked polygon is well-defined
for each point of Teich(S, p). For each polygon the differential of the total sum of the angles
is equal to a negative scalar times the differential of the sum of the length. But the total
angle at p is constant equal to 2π, this shows that [m]p is eutactic. The assertion on the
rank is obvious from the discussion of the previous paragraph.

�



26

Lemma 13.4. Let S ⊂ π1(S, p) be a family of homotopy classes of simple loops that divide
S into polygons. Then the minimal class of S contains exactly one eutactic point.

Proof. We have just proved the existence, so let us show the unicity. Let [m]p be an eutactic
point of sysp. The m-systolic loops at p divide (S,m) into length-regular polygons P1, . . . , Pk

with angles less than π. We assume that [m]p is not one of the critical points of the previous
lemma. We will show that [m]p does not realize strict local minimum of sysp in its minimal
class. This will contradict the Proposition 1.6 of [Bav05b], and establish the lemma.

As [m]p is not one of the critical points above, there is at least one of the Pi’s, let say
P1, which is not regular. Then we can deform it into a length-regular polygon P ′

1 with same
area ([Sch07, Lemma 4.2]). Note that we can choose P ′

1 as close as we want from P1.
By gluing the polygons P ′

1, P2, . . . , Pk we determine a new point [m′]p ∈ Teich(S, p). The
points [m]p and [m′]p belong to the same minimal class and satisfy sys(m′) < sysp(m). We
can construct m′ as close as we want from [m]p, this show that [m]p is not a strict minimum
of sysp in its minimal class. �

13.5. Degenerate points.

Lemma 13.5. Any point in Sing(S, p) is degenerate.

Proof. As sysp is a Morse function on Teich(S, p)−Sing(S, p), it comes that the points outside
Sing(S) are regular or nondegenerate. First we remark, from the definition of regular and
critical nondegenerate points, that the set of degenerate points is closed. As Sing(S) is
closed, we have just to show that it contains a dense subset of critical degenerate points.

So we assume that m is a metric such that sysp(m) is realized by a closed geodesic γ
passing through p. Moreover we assume that this is the unique systolic geodesic loop at p.
Let us show that this last condition defines a dense subset of Sing(S). By cutting γ, we
obtain two more boundaries with a marked point on each of them. Each systolic loop at p
gives an arc that joins the two boundary components. Let α be the shortest arc that connect
the two boundaries (we assume γ nonseparating, the separating case is easier), applying the
peeling method (described in [PT10]) to the arc α we can shorten γ more than any of the
minimal arc. Then we reglue the boundary components, and we consider the point which is
the orthogonal projection of p.

So now the geodesic γ is the unique systolic loop at p. Considering a system of Fenchel-
Nielsen coordinates containing γ, we see that the set of point such that sysp ≤ sysp(m) in a
neighborhood of [m]p is of dimension dim(Teich(S))/2. So [m] can not be a regular point,
and it is degenerate because it is not an isolated critical point (consider the other points on
γ sufficiently close to p). �
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