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Abstract

1 Introduction

2 Framework and Main Results

Given a finite spin set F, we introduce the configuration space Ω = FZ
d
. Its elements

ω ∈ Ω are written as ω = {ωj}j∈Zd . Endowed with the product topology of discrete

topologies, Ω is a compact metrizable space. Indeed, for j = (j1, . . . , jd) ∈ Zd one
may consider the L1 norm ‖j‖ = |j1|+ . . .+ |jd| and define then a metric on Ω by

d(ω, ω̄) = 2− inf{‖j‖ :ωj 6=ω̄j},

which is compatible with the product topology.

Notice that Zd acts on Ω by translation. Let {e1, . . . , ed} be the canonical basis
for the lattice Zd. For each i ∈ {1, . . . , d}, we consider the shift transformation
θi : Ω → Ω given by θi(ω) = {ωj+ei}j∈Zd . Given j = (j1, . . . , jd) ∈ Zd, we define

θj := θj11 ◦ θ
j2
2 ◦ · · · ◦ θ

jd
d .

Let F denote the collection of finite subsets of Zd. The diameter and the
boundary of A ∈ F are respectively diam(A) = max{‖j − k‖ : j, k ∈ A} and
∂A := {j ∈ Zd \A : ‖j− k‖ = 1 for some k ∈ A}. For A ∈ F and ω ∈ Ω, we denote
the restriction ω|A simply by ωA.

Definition 2.1. By an invariant interaction family we mean any collection of con-
tinuous maps ΦA : Ω→ R, indexed by A ∈ F, such that

1. Φj+A(ω) = ΦA(θj(ω)), for all j ∈ Zd and ω ∈ Ω;
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2. ωA = ω̄A implies ΦA(ω) = ΦA(ω̄).

We say that {ΦA}A∈F is an invariant short range interaction family if in addi-
tion there exists an integer r > 0 such that ΦA ≡ 0 whenever diam(A) > r. In this
case, we say also that the invariant interaction family has range r > 0. For r = 1,
one in particular says to have an interaction of nearest neighbors.

Given an invariant interaction family {ΦA}A∈F, we introduce the associated
hamiltonian H : F × Ω→ R defined by

H(Λ,ω) = HΛ(ω) :=
∑

A :A∩Λ 6=∅

ΦA(ω), ∀Λ ∈ F, ω ∈ Ω. (2.1)

Notice also that the hamiltonian inherits the invariance of the interaction family,
namely, HΛ ◦ θj = Hj+Λ for any j ∈ Zd.

Remark 2.2. We say that {ΦA}A∈F is an invariant long range interaction family
if ΦA 6≡ 0 for sets A with arbitrarily large diameter. In this case, one shall assume
a summability condition: ∑

0∈A
‖ΦA‖∞ <∞,

which is obviously trivial for the short range situation. Notice that the associated
hamiltonian is then well defined, since

‖HΛ‖∞ ≤
∑
j∈Λ

∑
j∈A
‖ΦA‖∞ =

∑
j∈Λ

∑
0∈A
‖ΦA ◦ θj‖∞ = #Λ

∑
0∈A
‖ΦA‖∞ <∞, ∀Λ ∈ F.

For ω, ω̄ ∈ Ω and Λ ∈ F, we denote by ω̄ΛωZd\Λ the configuration of Ω that

coincides with ω̄ on Λ and with ω on Zd \ Λ. We also introduce the following
notation

Λn+1 := {−n,−n+ 1, . . . , 0, . . . , n− 1, n}d, ∀n ∈ N.

Definition 2.3. We say that ω ∈ Ω is a minimizing configuration with respect to
the hamiltonian H if

HΛ(ω) ≤ HΛ(ω̄ΛωZd\Λ), ∀ ω̄ ∈ Ω, Λ ∈ F.

We define the minimizing ergodic value of the hamiltonian H as the constant

H̄ := inf
ω∈Ω

lim inf
n→∞

1

#Λn
HΛn(ω). (2.2)

Our main result concerning these minimizing objects is the following one.

Theorem 2.4. Let H be a hamiltonian defined by an invariant short range inter-
action family. The set of minimizing configurations with respect to the hamiltonian
H is a non-empty invariant closed set. For a minimizing configuration ω ∈ Ω, the
limit limn→∞

1
#Λn

HΛn(ω) always exists. Moreover, there are minimizing configu-
rations ω ∈ Ω for which

lim
n→∞

1

#Λn
HΛn(ω) = H̄.
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3 Proof of Theorem 2.4

The proof of Theorem 2.4 follows from a series of results regrouped in this section.

Proposition 3.1. Let H be a hamiltonian defined by an invariant short range
interaction family. There exist minimizing configurations for the hamiltonian H.
The set of minimizing configurations with respect to H is invariant and closed.

Proof. For each Λ ∈ F, denote

ΩΛ :=
{
ω ∈ Ω : HΛ(ω) ≤ HΛ(ω̄), ∀ ω̄ ∈ Ω with ω̄Zd\Λ = ωZd\Λ

}
.

Notice that ΩΛ is non-empty: for any fixed configuration ω ∈ Ω, it clearly contains
the minimum points of the map ω̄Λ ∈ FΛ 7→ HΛ(ω̄ΛωZd\Λ) ∈ R. Besides, each ΩΛ

is a closed set, since the map ω ∈ Ω 7→ HΛ(ω̄ΛωZd\Λ) −HΛ(ω) ∈ R is continuous

(actually, locally constant) for all ω̄Λ ∈ FΛ.
The family {ΩΛ}Λ∈F is monotone: Λ ⊂ Λ′ ⇒ ΩΛ′ ⊂ ΩΛ. Indeed, suppose

that ω′ ∈ ΩΛ′ . Let ω̄ ∈ Ω be such that ω̄Zd\Λ = ω′Zd\Λ. As Λ ⊂ Λ′, we get

ω̄Zd\Λ′ = ω′Zd\Λ′ . Hence, HΛ′(ω
′) ≤ HΛ′(ω̄). Since

HΛ′ = HΛ +
∑

A∩Λ′ 6=∅
A∩Λ=∅

ΦA

and ΦA(ω′) = ΦA(ω̄) whenever ∅ 6= A ∩ Λ′ ⊂ Λ′ \ Λ, we clearly obtain that
HΛ(ω′) ≤ HΛ(ω̄), which means that ω′ ∈ ΩΛ.

Therefore, the family of closed sets {ΩΛ}Λ∈F has the finite intersection property:⋂N
i=1 ΩΛi ⊃ Ω⋃N

i=1 Λi
6= ∅. By compactness, there exists ω ∈ ΩΛ for all Λ ∈ F.

The set of minimizing configurations with respect to H is exactly
⋂

Λ∈F ΩΛ,
which is clearly closed. Besides, since θ−j(ΩΛ) = Ωj+Λ for all j ∈ Zd, this set is
also invariant.

Denote the Birkhoff sum by SΛΨ :=
∑

j∈Λ Ψ ◦ θj .

Definition 3.2. Given an invariant short range interaction family {ΦA}A∈F, we
introduce

Ψ0 :=
∑

A : 0∈A

1

#A
ΦA.

Notice that Ψ0 is a real valued function since the above sum is actually finite.
Moreover, we have the following property.

Lemma 3.3. The map Ψ0 satisfies

sup
Λ∈F

sup
ωΛ=ω̄Λ

1

#∂Λ
(SΛΨ0(ω)− SΛΨ0(ω̄)) <∞.

In order to prove this lemma, given Λ ∈ F and r > 0, we define

IntrΛ := {j ∈ Λ : d(j, ∂Λ) ≥ r} .
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Proof. Notice that

SΛΨ0 =
∑
j∈Λ

∑
A : 0∈A

1

#A
ΦA ◦ θj =

∑
j∈Λ

∑
A : j∈A

1

#A
ΦA

=
∑

A :A∩Λ 6=∅

∑
j∈A∩Λ

1

#A
ΦA =

∑
A :A∩Λ 6=∅

#(A ∩ Λ)

#A
ΦA. (3.1)

Assume the invariant interaction family {ΦA}A∈F has range r > 0. Whenever
ωΛ = ω̄Λ, it is easy to see that

SΛΨ0(ω)− SΛΨ0(ω̄) =
∑

A∩(Λ\IntrΛ) 6=∅

#(A ∩ Λ)

#A
(ΦA(ω)− ΦA(ω̄))

≤ 2
∑

A∩(Λ\IntrΛ) 6=∅

‖ΦA‖∞ ≤ 2 #(Λ \ IntrΛ)
∑
0∈A
‖ΦA‖∞,

from which the statement follows immediately.

The relation of Ψ0 with the associated hamiltonian is given below.

Proposition 3.4. Suppose {ΦA}A∈F is an invariant interaction family with range
r > 0. If H is the associated hamiltonian, then

‖HΛ − SΛΨ0‖∞ ≤ #(Λ \ IntrΛ)
∑
0∈A
‖ΦA‖∞.

Proof. Using (3.1), we obtain

HΛ − SΛΨ0 =
∑

A∩IntrΛ6=∅

[
1− #(A ∩ Λ)

#A

]
ΦA +

∑
A∩(Λ\IntrΛ) 6=∅

[
1− #(A ∩ Λ)

#A

]
ΦA.

Notice that if A ∈ F has diameter less than r and intersects IntrΛ, then A ⊂ Λ.
Thus, the first term in the right side of the above equation is equal to zero. Hence,
we get

‖HΛ − SΛΨ0‖∞ ≤
∑

A∩(Λ\IntrΛ) 6=∅

‖ΦA‖∞ ≤ #(Λ \ IntrΛ)
∑
0∈A
‖ΦA‖∞.

We remark that, for Λn = (−n, n)d ∩ Zd, one has #(Λn \ IntrΛn) ≤ Cdr
dnd−1,

for some constant Cd > 0 which depends just on the dimension d. In particular, we
immediately obtain the following corollary.

Corollary 3.5. Let H be a hamiltonian defined by an invariant short range inter-
action family. Then

H̄ = inf
ω∈Ω

lim inf
n→∞

1

#Λn
SΛnΨ0(ω).

We may now prove the second statement of Theorem 2.4.
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Proposition 3.6. Let H be a hamiltonian defined by an invariant short range
interaction family. Then, for any minimizing configuration ω with respect to H,
the limit

lim
n→∞

1

#Λn
HΛn(ω)

does exist.

Proof. Let ω be a minimizing configuration for H. By Proposition 3.4, it is equiv-
alent to show that the limit limn→∞

1
#Λn

SΛnΨ0(ω) exists. Notice also that we may
assume without loss of generality that Ψ0 ≥ 0. So denote

L = lim inf
n→∞

1

#Λn
SΛnΨ0(ω)

and, given ε > 0, consider a positive integer N such that 1
#ΛN

SΛNΨ0(ω) < L+ ε.
Consider integers m and ` with m ≥ 1 and ` = 0, 1, . . . , N − 1. Notice that, for

suitable integers j1, . . . , jmd ∈ ΛmN , we may write

SΛmN+`
Ψ0 =

md∑
k=1

SΛNΨ0 ◦ θjk +
∑

j∈ΛmN+`\ΛmN

Ψ0 ◦ θj .

Define then ωN,k :=
(
θjk(ω)

)
jk+ΛN

ωZd\(jk+ΛN ) and ω̄N,k := θ−jk(ωN,k). As ω is
a minimizing configuration, one thus gets

Hjk+ΛN (ω) ≤ Hjk+ΛN (ωN,k) = HΛN (ω̄N,k).

Recall that ‖SΛNΨ0 ◦ θj − Hj+ΛN ‖∞ ≤ ΓNd−1 for every j ∈ Zd, where Γ =
Γ(d, r, {ΦA}) = Cdr

d
∑

0∈A ‖ΦA‖∞. Therefore, we have that

SΛmN+`
Ψ0(ω) ≤

md∑
k=1

HΛN (ω̄N,k) +mdΓNd−1 +
∑

j∈ΛmN+`\ΛmN

Ψ0 ◦ θj(ω)

≤
md∑
k=1

SΛNΨ0(ω̄N,k) + 2mdΓNd−1 + 2d
[
(m+ 1)d −md

]
Nd‖Ψ0‖∞.

Notice that (ω̄N,k)ΛN = ωΛN . We use now Lemma 3.3 to guarantee that there
exists a constant κ > 0 such that SΛNΨ0(ω̄N,k)− SΛNΨ0(ω) ≤ κ#∂ΛN .

We obtain that

SΛmN+`
Ψ0(ω) ≤

≤ md

[
SΛNΨ0(ω) + κ#∂ΛN + 2ΓNd−1 + 2d

((
1 +

1

m

)d
− 1

)
Nd‖Ψ0‖∞

]
,

which yields

1

#ΛmN+`
SΛmN+`

Ψ0(ω) ≤

≤ 1

#ΛN
SΛNΨ0(ω) + κ

#∂ΛN
#ΛN

+ 2
Γ

N
+

((
1 +

1

m

)d
− 1

)
‖Ψ0‖∞.
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Hence, it follows that

lim sup
n→∞

1

#Λn
SΛnΨ0(ω) ≤ L+ ε+ κ

#∂ΛN
#ΛN

+ 2
Γ

N
.

Since the integer N can be taken arbitrarily large and ε > 0 can be chosen as close
as one wants to zero, the proof is complete.

We will adopt an ergodic point of view. To that end, denote by M the set of
Borel probability measures, equipped with the weak* topology. We consider the
compact convex subset of invariant probabilities

Mθ :=
{
µ ∈M : µ ◦ θj = µ, ∀ j ∈ Zd

}
. (3.2)

We have then the following characterization of the minimizing ergodic value H̄.

Proposition 3.7. Let H be a hamiltonian defined by an invariant short range
interaction family. Then

H̄ = min
µ∈Mθ

∫
Ω

Ψ0(ω) dµ(ω).

Proof. By the ergodic decomposition theorem (see, for example, Theorem 2.3.3 in
[3]), one may suppose that µ ∈ Mθ is ergodic. Therefore, by Birkhoff’s ergodic
theorem (see, for instance, Theorem 2.1.5 in [3]), any configuration ω belonging to
the support of µ satisfies

lim
n→∞

1

#Λn
SΛnΨ0(ω) =

∫
Ω

Ψ0(ω) dµ(ω).

So thanks to Corollary 3.5, we have that H̄ ≤ infµ∈Mθ

∫
Ψ0 dµ.

For ε > 0, consider a configuration ωε ∈ Ω and an arbitrarily large integer
nε > 0 such that 1

#Λnε
SΛnεΨ0(ωε) < H̄ + ε and define a Borel probability measure

µε :=
1

#Λnε

∑
j∈Λnε

δθj(ωε) ∈M.

Let µ be any weak* accumulation probability for the family {µε}ε>0 when ε goes
to zero. Clearly by construction,

∫
Ω Ψ0(ω) dµ(ω) ≤ H̄. So in order to obtain the

opposite inequality, it is enough to argue that µ is invariant. However, notice that,
for every i = 1, 2, . . . , n and for all f ∈ C0(Ω), one has∣∣∣∣∫ (f ◦ θi − f) dµε

∣∣∣∣ ≤ 1

#Λnε
2 #∂Λnε ‖f‖∞ → 0 as nε →∞,

which indeed shows the invariance of µ.

By a minimizing probability we mean an invariant probability µ that minimizes
the average value

∫
Ψ0 dµ, namely, such that H̄ =

∫
Ψ0 dµ. Their existence is

guaranteed by the previous proposition. Moreoveor, by the ergodic decomposition
theorem, there always exist ergodic minimizing probabilities.

Recall now that a point at the support of an invariant probability is said to be
generic if it belongs to a subset of full measure. We may complete the proof of
Theorem 2.4 with the following result.
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Theorem 3.8. Suppose {ΦA}A∈F is an invariant interaction family with range
r > 0. Then there are generic points ω at the support of any ergodic minimizing
probability which are minimizing configurations for the associated hamiltonian H
and satisfy

lim
n→∞

1

#Λn
HΛn(ω) = H̄.

Proof. For W ∈ FΛM , M ∈ N, consider the characteristic function χW : Ω→ {0, 1}
which has value 1 at a point ω̄ ∈ Ω if, and only if, ω̄ΛM = W .

Let µ ∈ Mθ be an ergodic minimizing probability. Let us denote by b(φ) the
subset of Ω of full measure for which Birkhoff’s ergodic theorem holds with respect
to the integrable map φ : Ω→ R. Obviously, any point

ω ∈ supp(µ) ∩ b(Ψ0) ∩
⋂

W∈FΛM ,M∈N

b(χW )

is generic and verify

lim
n→∞

1

#Λn
HΛn(ω) = lim

n→∞

1

#Λn
SΛnΨ0(ω) =

∫
Ψ0 dµ = H̄.

Suppose on the contrary that ω is not a minimizing configuration. Hence, there
shall exist ω̃ ∈ Ω, Ñ ∈ N and η̃ > 0 such that

ω̃Zd\ΛÑ
= ωZd\ΛÑ

and HΛÑ
(ω̃) < HΛÑ

(ω)− η̃.

Since in particular ω ∈
⋂
M∈N b(χωΛM

), we have that

lim
n→∞

1

#Λn
SΛnχωΛ

Ñ+r
(ω) = µ

(⋃
ω̄∈Ω

ωΛÑ+r
ω̄Zd\ΛÑ+r

)
=: λÑ+r > 0.

Therefore, for n large enough, one guarantees that SΛnχωΛ
Ñ+r

(ω) > #Λn
λÑ+r

2 .

Denote An := {j ∈ Λn : ωΛÑ+r+j
= ωΛÑ+r

}. Let then Bn ⊂ An be a maximal
subcollection of indices such that (ΛÑ+r + j)∩ (ΛÑ+r + k) = ∅ whenever j, k ∈ Bn.
Since for all j ∈ An there must exist k ∈ Bn such that (ΛÑ+r + j) ∩ (ΛÑ+r) 6= ∅,
it follows that SΛnχωΛ

Ñ+r
(ω) = #An ≤ #Bn · #ΛÑ+r, which yields for n large

enough

1

#Λn
#Bn >

1

#ΛÑ+r

λÑ+r

2
.

Thus, for n sufficiently large, let us introduce the configuration ωn ∈ Ω as
ωnΛÑ+j = ω̃ΛÑ

for all j ∈ Bn, and ωnZd\tj∈Bn (ΛÑ+j)
= ωZd\tj∈Bn (ΛÑ+j). From the

construction, one gets that HΛÑ+j(ω
n) = HΛÑ

(ω̃) for each j ∈ Bn. Notice then
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that

HΛn(ωn) =
∑
j∈Bn

HΛÑ+j(ω
n) +

∑
A∩Λn 6=∅,

A∩tj∈Bn(ΛÑ+j)=∅

ΦA(ωn)

< #Bn
(
HΛÑ

(ω)− η̃
)

+
∑

A∩Λn 6=∅,
A∩tj∈Bn(ΛÑ+j)=∅

ΦA(ω)

= HΛn(ω)− η̃#Bn +
∑
j∈Bn

(
HΛÑ

(ω)−HΛÑ
(θj(ω))

)
.

By the very definition of An, one obtains that HΛÑ
(ω) = HΛÑ

(θj(ω)) for any
j ∈ Bn. In this way, let us also assume that n is large enough in order that

1

#Λn
HΛn(ωn) < H̄ +

1

#ΛÑ+r

λÑ+r

4
η̃.

Hence, for n sufficiently large, it is not difficult to see that

1

#Λn
HΛn(ωn) < H̄ − 1

#ΛÑ+r

λÑ+r

4
η̃,

which contradicts the definition (2.2) of the constant H̄.
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