
HAL Id: hal-01213683
https://hal.science/hal-01213683v1

Submitted on 27 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Monitoring Networks through Multiparty Session Types
Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Nobuko Yoshida, Kohei

Honda

To cite this version:
Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Nobuko Yoshida, Kohei Honda. Monitoring
Networks through Multiparty Session Types. 15th International Conference on Formal Methods for
Open Object-Based Distributed Systems (FMOOODS) / 33th International Conference on Formal
Techniques for Networked and Distributed Systems (FORTE), Jun 2013, Florence, Italy. pp.50-65,
�10.1007/978-3-642-38592-6_5�. �hal-01213683�

https://hal.science/hal-01213683v1
https://hal.archives-ouvertes.fr

Monitoring Networks through Multiparty
Session Types ?

Laura Bocchi1, Tzu-Chun Chen2, Romain Demangeon2, Kohei Honda2, and
Nobuko Yoshida3

1 University of Leicester
2 Queen Mary, University of London

3 Imperial College London

Abstract. In large-scale distributed infrastructures, applications are re-
alised through communications among distributed components. The need
for methods for assuring safe interactions in such environments is recog-
nized, however the existing frameworks, relying on centralised verification
or restricted specification methods, have limited applicability. This paper
proposes a new theory of monitored π-calculus with dynamic usage of
multiparty session types (MPST), offering a rigorous foundation for safety
assurance of distributed components which asynchronously communicate
through multiparty sessions. Our theory establishes a framework for se-
mantically precise decentralised run-time enforcement and provides rea-
soning principles over monitored distributed applications, which com-
plement existing static analysis techniques. We introduce asynchrony
through the means of explicit routers and global queues, and propose
novel equivalences between networks, that capture the notion of interface
equivalence, i.e. equating networks offering the same services to a user.
We illustrate our static-dynamic analysis system with an ATM protocol
as a running example and justify our theory with results: satisfaction
equivalence, local/global safety and transparency, and session fidelity.

1 Introduction

One of the main engineering challenges for distributed systems is the comprehen-
sive verification of distributed software without relying on ad-hoc and expensive
testing techniques. Multiparty session types (MPST) is a typing discipline for
communication programming, originally developed in the π-calculus [15, 1, 3,
11, 12, 7] towards tackling this challenge. The idea is that applications are built
starting from units of design called sessions. Each type of session, involving mul-
tiple roles, is first modelled from a global perspective (global type) and then
projected onto local types, one for each role involved. As a verification method,
the existing MPST systems focus on static type checking of endpoint processes
against local types. The standard properties enjoyed by well-typed processes are

? This work has been partially sponsored by the project Leverhulme Trust Award
Tracing Networks, Ocean Observatories Initiative and EPSRC EP/K011715/1,
EP/G015635/1 and EP/G015481/1.

1

communication safety (all processes conform to globally agreed communication
protocols) and freedom from deadlocks.

The direct application of the theoretical MPST techniques to the current
practice, however, presents a few obstacles. Firstly, the existing type systems
are targeted at calculi with first class primitives for linear communication chan-
nels and communication-oriented control flow; the majority of mainstream en-
gineering languages would need to be extended in this sense to be suitable for
syntactic session type checking. Unfortunately, it is not always straightforward
to add these features to the specific host languages (e.g. linear resource typing
for a very liberal language like C). Furthermore, the executable processes in
a distributed system may be implemented in different languages. Secondly, for
domains where dynamically typed or untyped languages are popular (e.g., Web
programming), or in multi-organizational scenarios, the introduction of static
typing infrastructure to support MPST may not be realistic.

This paper proposes a theoretical system addressing the above issues by en-
abling both static and dynamic verification of communicating processes. The
aim is to capture the decentralised nature of distributed application develop-
ment, providing better support for heterogeneous distributed systems by allow-
ing components to be independently implemented, using different languages,
libraries and programming techniques, as well as being independently verified,
either statically or dynamically, while retaining the strong global safety proper-
ties of statically verified homogeneous systems.

This work is motivated in part by our ongoing collaboration with the Ocean
Observatories Initiative (OOI) [17], a project to establish cyberinfrastructure for
the delivery, management and analysis of scientific data from a large network
of ocean sensor systems. Their architecture relies on the combination of high-
level protocol specifications (to express how the infrastructure services should
be used) and distributed run-time monitoring to regulate the behaviour of third-
party applications in the system.

A formal theory for static/dynamic verification Our framework is based on the
idea that, if each endpoint is independently verified (statically or dynamically)
to conform to their local protocols, then the global protocol is respected as a
whole. To this goal, we propose a new formal model and bisimulation theories of
heterogeneous networks of monitored and unmonitored processes.

For the first time, we make explicit the routing mechanism implicitly present
inside the MPST framework: in a session, messages are sent to abstract roles (e.g.
to a Seller) and the router, a dynamically updated component of the network,
translates these roles into actual addresses.

By taking this feature into account when designing novel equivalences, our
formal model can relate networks built in different ways (through different distri-
butions or relocations of services) but offering the same interface to an external
observer. The router, being in charge of associating roles with principals, hides
to an external user the internal composition of a network: what distinguishes
two networks is not their structure but the services they are able to perform, or
more precisely, the local types they offer to the outside.

2

We formally define a satisfaction relation to express when the behaviour of
a network conforms to a global specification and we prove a number of prop-
erties of our model. Local safety states that a monitored process respects its
local protocol, i.e. that dynamic verification by monitoring is sound, while lo-
cal transparency states that a monitored process has equivalent behaviour to an
unmonitored but well-behaved process, e.g. statically verified against the same
local protocol. Global safety states that a system satisfies the global protocol,
provided that each participant behaves as if monitored, while global transparency
states that a fully monitored network has equivalent behaviour to an unmoni-
tored but well-behaved network, i.e. in which all local processes are well-behaved
against the same local protocols. Session fidelity states that, as all message flows
of a network satisfy global specifications, whenever the network changes because
some local processes take actions, all message flows continue to satisfy global
specifications. Together, these properties justify our framework for decentralised
verification by allowing monitored and unmonitored processes to be safely mixed
while preserving protocol conformance for the entire network. Technically, these
properties also ensure the coherence of our theory, by relating the satisfaction
relations with the semantics and static validation procedures.

Paper summary and contributions § 2 introduces the formalisms for protocol
specifications (§ 2.1) and networks (§ 2.2) used to provide a formal framework
for monitored networks based on π-calculus processes and protocol-based run-
time enforcement through monitors. § 3 introduces: a semantics for specifications
(§ 3.1), a novel behavioural theory for compositional reasoning over monitored
networks through the use of equivalences (bisimilarity and barbed congruence)
and the satisfaction relation (§ 3.2). § 3.4 establishes key properties of monitored
networks, namely local/global safety, transparency, and session fidelity. We dis-
cuss future and related work in § 4. The proofs can be found in [2].

2 Types, Processes and Networks: a Formal Presentation

This section and the next one provide a theoretical basis for protocol-centred
safety assurance. We first summarise the syntax of MPSTs (multiparty session
types) annotated with logical assertions [3]. We then introduce a novel moni-
tored session calculus as a variant of the π-calculus, modelling distributed dy-
namic components (whose behaviours are realised by processes) and monitors,
all residing in global networks.

2.1 Multiparty Session Types with Assertions

Multiparty session types with assertions [3] are abstract descriptions of the struc-
ture of interactions among the participants of a multiparty session, specifying
potential flows of messages, the conditions under which these interactions may
be done, and the constraints on the communicated values. In this framework,
global types with assertions, or just global types, describe multiparty sessions

3

from a network perspective. From global types one can derive, through endpoint
projection, local types with assertions, or just local types, describing the protocol
from the perspective of a single endpoint.

A ::= tt | ff | e1 = e2 | e1 < e2 | ¬A | A1 ∧A2 | A1 ∨A2

e ::= v | e1 + e2 | e1 − e2 | e1 ∗ e2 | e1 mod e2 S::=bool | int | string

G ::= r1→r2 : {li(xi :Si){Ai}.Gi}i∈I | G1 | G2 | G1;G2 | µt.G | t | ε | end

T ::= r!{li(xi :Si){Ai}.Ti}i∈I | r?{li(xi :Si){Ai}.Ti}i∈I | T1 | T2 | T1;T2 |
µt.T | t | ε | end

The syntax of the global types (G,G′, . . .) and local types (T, T ′, . . .) is given
above. The grammar is based on [3, 12] extended with parallel threads, which also
require sequential composition to merge parallel threads as in [19]. We let values
v, v′, . . . range over boolean constants, numerals and strings, and e, e′, . . . range
over first-order expressions. For expressing constraints, we use logical predicates,
or assertions, ranged over by A,A′, . . ., following the grammar given above,
although other decidable logics could be used.1 The sorts of exchanged values
(S, S′, . . .) consists of atomic types.

Global types with assertions r1 → r2 : {li(xi : Si){Ai}.Gi}i∈I models an
interaction where role r1 sends role r2 one of the branch labels li, as well as a
value denoted by an interaction variable xi of sort Si. Interaction variable xi
binds its occurrences in Ai and Gi. Ai is the assertion which needs to hold for r1
to select li, and which may constrain the values instantiating xi. G1 | G2 specifies
two parallel sessions, and G1;G2 denotes sequential composition (assuming that
G1 does not include end). µt.G is a recursive type, where t is guarded in G in
the standard way, ε is the inaction for absence of communication, and end ends
the session.

Example 1 (ATM: the global type). We present global type GATM that specifies
an ATM scenario. Each session of ATM involves three roles: a client (C), the
payment server (S) and a separate authenticator (A).

GATM = C→ A : { Login(xi : string){tt}.
A→ S : { LoginOK(){tt}. A→ C : {LoginOK(){tt}. GLoop},

LoginFail(){tt}. A→ C : {LoginFail(){tt}. end}}}
GLoop = µ LOOP.

S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){tt}.end}}

At the start of the session C sends its login details xi to A, then A informs S

and C whether the authentication is successful, by choosing either the branch

1 We use a logic without quantifiers, contrary to [3], to simplify the presentation and
because monitorability, defined later in this section, makes them unnecessary.

4

with label LoginOK or LoginFail. In the former case C and S enter a transaction
loop specified by GLoop. In each iteration S sends C the amount xb available in
the account, which must be non negative. Next, C has three choices: Withdraw
withdraws an amount xp (xp must be positive and not exceed the current amount
xb) and repeats the loop, Deposit deposits a positive amount xd in the account
and repeats the loop, and Quit ends the session.

We consider global types that satisfy the consistency conditions defined in [11, 3,
12] which rule out, for instance, protocols where interactions have causal relations
that cannot be enforced (e.g., we write rA → rB : l1(){tt} | rC → rD : l2(){tt}
instead of rA → rB : l1(){tt}.rC → rD : l2(){tt}). In addition we assume
monitorability requiring that in all the interactions of the form r → r′ : l(x :
S){A} occurring in a global type G both r and r′ know (i.e., have sent or received
in a previous or in this interaction) the free variables in A.

Local types with assertions Each local type T is associated with a role
taking part in a session. Local type r!{li(xi :Si){Ai}.Ti}i∈I models an interaction
where the role under consideration sends r a branch label li and a message
denoted by an interaction variable xi of sort Si. Its dual is the receive interaction
r?{li(xi :Si){Ai}.Ti}i∈I . The other local types are similar to the global types.

One can derive a set of local types Ti from a global type G by endpoint
projection, defined as in [3]. We write G � r for the projection of G onto role r. We
illustrate the main projection rule, which is for projecting a global type modelling
an interaction. Let G be (r → r′ : {li(xi : Si){Ai}.Gi}i∈I); the projection of
G on r is r′!{li(xi : Si){Ai}.(Gi � r)}i∈I , and the projection of G on r′ is
r?{li(xi : Si){Ai}.(Gi � r′)}i∈I . The other rules are homomorphic, following the
grammar of global types inductively.

Example 2 (ATM: the local type of C). We present the local type TC obtained by
projecting GATM on role C.

TC = A!{Login(xi : string){tt}.
A?{LoginOK(){tt}. TLoop

LoginFail(){tt}. end}}

TLoop = µ LOOP.
S?{Account(xb : int){xb ≥ 0}.
S!{Withdraw(xp : int){xp > 0 ∧ xb − xp ≥ 0}.

LOOP,
Deposit(xd : int){xd > 0}.LOOP,
Quit(){tt}.end}}

TC specifies the behaviour that C should follow to meet the contract of global
type GATM . TC states that C should first authenticate with A, then receive the
Account message from S, and then has the choice of sending Withdraw (and enact
the recursion), or Deposit (and enact the recursion) or Quit (and end the session).

2.2 Formal Framework of Processes and Networks

In our formal framework, each distributed application consists of one or more
sessions among principals. A principal with behaviour P and name α is repre-
sented as [P]α. A network is a set of principals together with a (unique) global

5

transport, which abstractly represents the communication functionality of a dis-
tributed system. The syntax of processes, principals and networks is given below,
building on the multiparty session π-calculus from [1].

P ::= a〈s[r] : T 〉 | a(y[r] :T).P | k[r1, r2]!l〈e〉 | k[r1, r2]?{li(xi).Pi}i∈I |
if e then P else Q | P | Q | 0 | µX.P | X | P ;Q | (νa) P | (νs)P

N ::= [P]α | N1 | N2 | 0 | (νa)N | (νs)N | 〈r ; h〉

r ::= a 7→ α | s[r] 7→ α h ::= m · h | ∅ m ::= a〈s[r] : T 〉 | s〈r1, r2, l〈v〉〉
r, r1, . . . roles s, s′, . . . session names X,Y, . . . process variables
a, b, . . . shared names x, y, . . . variables P,Q, . . . processes
α, β, . . . principal names N,N ′, . . . networks

Processes Processes are ranged over by P, P ′, . . . and communicate using two
types of channel: shared channels (or shared names) used by processes for sending
and receiving invitations to participate in sessions, and session channels (or
session names) used for communication within established sessions. One may
consider session names as e.g., URLs or service names.

The session invitation a〈s[r] : T 〉 invites, through a shared name a, another
process to play r in a session s. The session accept a(y[r] : T).P receives a
session invitation and, after instantiating y with the received session name, be-
haves in its continuation P as specified by local type T for role r. The selection
k[r1, r2]!l〈e〉 sends, through session channel k (of an established session), and
as a sender r1 and to a receiver r2, an expression e with label l. The branching
k[r1, r2]?{li(xi).Pi}i∈I is ready to receive one of the labels and a value, then be-
haves as Pi after instantiating xi with the received value. We omit labels when I
is a singleton. The conditional, parallel and inaction are standard. The recursion
µX.P defines X as P . Processes (νa)P and (νs)P hide shared names and session
names, respectively.

Principals and network A principal [P]α, with its process P and name α,
represents a unit of behaviour (hence verification) in a distributed system. A
network N is a collection of principals with a unique global transport.

A global transport 〈r ; h〉 is a pair of a routing table which delivers messages
to principals, and a global queue. Messages between two parties inside a single
session are ordered (as in a TCP connection), otherwise unordered. More pre-
cisely, in 〈r ; h〉, h is a global queue, which is a sequence of messages a〈s[r] : T 〉
or s〈r1, r2, l〈v〉〉, ranged over by m. These m represent messages-in-transit, i.e.
those messages which have been sent from some principals but have not yet been
delivered. The routing table r is a finite map from session-roles and shared names
to principals. If, for instance, s[r] 7→ α ∈ r then a message for r in session s will
be delivered to principal α.

Let n, n′, . . . range over shared and session channels. A network N which
satisfies the following conditions is well-formed: (1) N contains at most one

6

global transport; (2) two principals in N never have the same principal name;
and (3) if N ≡ (νñ)(

∏
i[Pi]αi

|〈r ; h〉), each free shared or session name in Pi
and h occurs in ñ (we use

∏
i Pi to denote P1 | P2 · · · | Pn).

Semantics The reduction relation for dynamic networks is generated from the
rules below, which model the interactions of principals with the global queue.

[a〈s[r] : T 〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · a〈s[r] : T 〉〉 breqc

[a(y[r] : T).P]α | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | 〈r ·s[r] 7→ α ; h〉 † baccc

[s[r1, r2]!lj〈v〉]α | 〈r ; h〉 −→ [0]α | 〈r ; h · s〈r1, r2, lj〈v〉〉〉 †† bselc

[s[r1, r2]?{li(xi).Pi}i]α | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj]]α | 〈r ; h〉 ††† bbrac

[if tt then P else Q]α −→ [P]α [if ff then P else Q]α −→ [Q]α bcndc
[P]α | N −→ [P ′]α | N ′

[E(P)]α | N −→ [E(P ′)]α | N ′
e −→ e′

[E(e)]α −→ [E(e′)]α
N −→ N ′

E(N) −→ E(N ′)
bctxc

† : r(a) = α †† : r(s[r2]) 6= α † †† : r(s[r2]) = α

E ::= () | E | P | (νs)E | (νa)E | E ;P | E | N | if E then P else Q | s[r1, r2]!l〈E〉

Rule breqc places an invitation in the global queue. Dually, in baccc, a pro-
cess receives an invitation on a shared name from the global queue, assuming a
message on a is to be routed to α. As a result, the routing table adds s[r] 7→ α
in the entry for s. Rule bselc puts in the queue a message sent from r1 to r2,
which selects label lj and carries v, if it is not going to be routed to α (i.e. sent
to self). Dually, bbrac gets a message with label lj from the global queue, so
that the j-th process Pj receives value v. The reduction is also defined modulo
the structural congruence ≡ defined by the standard laws over processes/net-
works, the unfolding of recursion (µX.P ≡ P [µX.P/X]) and the associativity
and commutativity and the rules of message permutation in the queue [15, 11].
The other rules are standard.

Example 3 (ATM: an implementation). We now illustrate the processes imple-
menting the client role of the ATM protocol. We let PC be the process imple-
menting TC (from Example 2) and communicating on session channel s.

PC = s[C, A]!Login(alice pwd123);
s[A, C]?{LoginOK();µX.P ′

C , LoginFail().0}
P ′
C = s[S, C]?Account(xb);P

′′
C

P ′′
C = if getmore() ∧ (xb ≥ 10)

then s[C, S]!Withdraw(10);X
else s[C, S]!Quit();0

Note that PC selects only two of the possible branches (i.e., Withdraw and
Quit) and Deposit is never selected. One can think of PC as an ATM machine
that only allows to withdraw a number of £10 banknotes, until the amount
exceeds the current balance. This ATM machine does not allow deposits. We
assume getmore() to be a local function to the principal running PC that returns
tt if more notes are required (ff otherwise). PS below implements the server role:

PS = s[A, S]?{LoginOK();µX.P ′
S , LoginFail().0}

P ′
S = s[S, C]!Account(getBalance());P ′′

S

P ′′
S = s[C, S]?{Withdraw(xp).X,

Deposit(xd).X,
Quit().0 }

7

where getBalance() is a local function to the principal running PS that syn-
chronously returns the current balance of the client.

3 Theory of Dynamic Safety Assurance

In this section we formalise the specifications (based on local types) used to
guard the runtime behaviour of the principals in a network. These specifications
can be embedded into system monitors, each wrapping a principal to ensure
that the ongoing communication conforms to the given specification. Then, we
present a behavioural theory for monitored networks and its safety properties.

3.1 Semantics of Global Specifications

The specification of the (correct) behaviour of a principal consists of an assertion
environment 〈Γ ;∆〉, where Γ is the shared environment describing the behaviour
on shared channels, and ∆ is the session environment representing the behaviour
on session channels (i.e., describing the sessions that the principal is currently
participating in). The syntax of Γ and ∆ is given by:

Γ ::= ∅ | Γ, a : I(T [r]) | Γ, a : O(T [r]) ∆ ::= ∅ | ∆, s[r] :T

In Γ , the assignment a : I(T [r]) (resp. a : O(T [r])) states that the principal can,
through a, receive (resp. send) invitations to play role r in a session instance
specified by T . In ∆, we write s[r] : T when the principal is playing role r of
session s specified by T . Networks are monitored with respect to collections of
specifications (or just specifications) one for each principal in the network. A
specification Σ,Σ′, . . . is a finite map from principals to assertion environments:

Σ ::= ∅ | Σ,α :〈Γ ;∆〉
The semantics of Σ is defined using the following labels:

` ::= a〈s[r] :T 〉 | a〈s[r] :T 〉 | s[r1, r2]!l〈v〉 | s[r1, r2]?l〈v〉 | τ
The first two labels are for invitation actions, the first is for requesting and
the second is for accepting. Labels with s[r1, r2] indicate interaction actions for
sending (!) or receiving (?) messages within sessions. The labelled transition
relation for specification is defined by the rules below.

α :〈Γ, a : O(T [r]);∆〉 a〈s[r]:T 〉−−−−−→ α :〈Γ, a : O(T [r]);∆〉 [Req]

s 6∈ dom(∆)

α :〈Γ, a : I(T [r]);∆〉 a〈s[r]:T 〉−−−−−→ α :〈Γ, a : I(T [r]);∆, s[r] :T 〉
[Acc]

Γ ` v :Sj , Aj [v/xj] ↓ tt, j∈I

α :〈Γ ;∆, s[r2] :r1?{li(xi :Si){Ai}.T ′
i}i∈I〉

s[r1,r2]?lj〈v〉−−−−−−−−→ α :〈Γ ;∆, s[r2] :T ′
j [v/xj]〉

[Bra]

Γ `v :Sj , Aj [v/xj] ↓ tt, j∈I

α :〈Γ ;∆, s[r1] :r2!{li(xi :Si){Ai}.T ′
i}i∈I〉

s[r1,r2]!lj〈v〉−−−−−−−−→ α :〈Γ ;∆, s[r1] :T ′
j [v/xj]〉

[Sel]

α :〈Γ1;∆1〉
`−→ α :〈Γ ′

1;∆′
1〉

α :〈Γ1;∆1|∆2〉
`−→ α :〈Γ ′

1;∆′
1|∆2〉

Σ
τ−→ Σ Σ1

`−→ Σ2

Σ1, Σ3
`−→ Σ2, Σ3

[Spl,Tau,Par]

8

Rule [Req] allows α to send an invitation on a properly typed shared channel a
(i.e., given that the shared environment maps a to T [r]). Rule [Acc] allows α to
receive an invitation to be role r in a new session s, on a properly typed shared
channel a. Rule [Bra] allows α, participating to sessions s as r2, to receive a
message with label lj from r1, given that Aj is satisfied after replacing xj with
the received value v. After the application of this rule the specification is Tj .
Rule [Sel] is the symmetric (output) counterpart of [Bra]. We use ↓ to denote
the evaluation of a logical assertion. [Spl] is the parallel composition of two
session environments where ∆1|∆2 composes two local types: ∆1|∆2 = {s[r] :
(T1 | T2) | Ti = ∆i(s[r]), s[r] ∈ dom(∆1) ∩ dom(∆2)} ∪ dom(∆1)/dom(∆2) ∪
dom(∆2)/dom(∆1). [Tau] says that the specification should be invariant under
reduction of principals. [Par] says if Σ1 and Σ3 are composable, after Σ1 becomes
as Σ2, they are still composable.

3.2 Semantics of Dynamic Monitoring

The endpoint monitor M,M′, ... for principal α is a specification α : 〈Γ ;∆〉 used
to dynamically ensure that the messages to and from α are legal with respect to
Γ and ∆. A monitored network N is a network N with monitors, obtained by
extending the syntax of networks as:

N ::= N | M | N | N | (νs)N | (νa)N

The reduction rules for monitored networks are given below and use, in the
premises, the labelled transitions of monitors. The labelled transitions of a mon-
itor are the labelled transitions of its corresponding specification (given in § 3.1).

dReqe M
a〈s[r]:T 〉−−−−−→ M′

[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · a〈s[r] : T 〉〉

dAcce M
a〈s[r]:T 〉−−−−−→ M′ r(a) = α

[a(y[r] : T).P]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [P [s/y]]α | M′ | 〈r ·s[r] 7→ α ; h〉

dBrae M
s[r1,r2]?lj〈v〉−−−−−−−−→ M′ r(s[r2]) = α

[s[r1, r2]?{li(xi).Pi}i]α | M | 〈r ; s〈r1, r2, lj〈v〉〉 · h〉 −→ [Pj [v/xj]]α | M′ | 〈r ; h〉

dSele M
s[r1,r2]!l〈v〉−−−−−−−→ M′ r(s[r2]) 6= α

[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M′ | 〈r ; h · s〈r1, r2, l〈v〉〉〉

dReqEre M 6a〈s[r]:T 〉−−−−−→
[a〈s[r] : T 〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

dAccEre M 6a〈s[r]:T 〉−−−−−→
[a(y[r] : T).P]α | M | 〈r ; a〈s[r] : T 〉 · h〉 −→ [a(y[r] : T).P]α | M | 〈r ; h〉

dSelEre M 6s[r1,r2]!l〈v〉−−−−−−−→
[s[r1, r2]!l〈v〉]α | M | 〈r ; h〉 −→ [0]α | M | 〈r ; h〉

The first four rules model reductions that are allowed by the monitor (i.e., in
the premise). Rule dReqe inserts an invitation in the global queue. Rule dAcce
is symmetric and updates the router so that all messages for role r in session

9

s will be routed to α. Similarly, dBrae (resp. dSele) extracts (resp. introduces)
messages from (resp. in) the global queue. The error cases for dReqe and dSele,
namely dReqEre and dSelEre, ‘skip’ the current action (removing it from the
process), do not modify the queue, the router nor the state of the monitor.
The error cases for dAcce and dBrae, namely dAccEre and dBraEre (the latter
omitted for space constraint), do not affect the process, which remains ready to
perform the action, and remove the violating message from the queue.

Example 4 (ATM: a monitored network). We illustrate the monitored networks
for the ATM scenario, where the routing table is defined as

r = a 7→ α, b 7→ β, c 7→ γ, s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ

We consider the fragment of session where the authentication has occurred, the
process of C (resp. S) is P ′C (resp. P ′S) from Example 3, and the process of A is 0.

NS = [P ′
S]α | MS = [s[S, C]! Account(100);P ′′

S]α | MS (assuming getBalance() = 100)
NC = [P ′

C]β | MC = [s[S, C]? Account(xb).P
′′
C]β | MC

NA = [0]γ | γ : 〈c : TA[A] ; s[A] : end〉

where MS = α : 〈a : TS[S] ; s[S] : C! Account(xb : int){xb ≥ 0}.T ′
S〉 and MC is dual.

N1 = [s[S, C]! Account(100);P ′
S]α | MS | [s[S, C]? Account(xb).P

′
C]β | MC | NA | 〈r ; ∅〉

−→−→ [P ′
S]α | M′

S | [P ′
C [100/xb]]β | M′

C | NA | 〈r ; ∅〉

where M′
S = α : 〈a :TS[S] ; s[S] : T ′

S〉 and M′
C = β : 〈b : TC[C] ; s[C] : T ′

C〉

Above, xb ≥ 0 is satisfied since xb = 100. If the server tried to communicate e.g.,
value −100 for xb, the monitoring (by rule dSelEre) would drop the message.

3.3 Network Satisfaction and Equivalences

Based on the formal representations of monitored networks, we now introduce the
key formal tools for analysing their behaviour. First, we introduce bisimulation
and barbed congruence over networks, and develop the notion of interface. Then
we define the satisfaction relation |= N : M, used in § 3.4 to prove the properties
of our framework.

Bisimulations We use M,M ′, ... for a partial network, that is a network which
does not contain a global transport, hence enabling the global observation of
interactions. The labelled transition relation for processes and partial networks
M is defined below.

(Req) [a〈s[r] : T 〉;P]α
a〈s[r]:T 〉−−−−−→ [0]α (Acc) [a(y[r] : T).P]α

a〈s[r]:T 〉−−−−−→ [P [s/y]]α

(Bra) [s[r1, r2]?{li(xi :Si).Pi}i]α
s[r1,r2]?lj〈v〉−−−−−−−−→ [Pj [v/xj]]α

(Sel) [s[r1, r2]!lj〈v〉]α
s[r1,r2]!lj〈v〉−−−−−−−−→ [0]α (ctx)

[P]α
`−→ [P ′]α n(`) ∩ bn(E)=∅
[E(P)]α

`−→ [E(P ′)]α

(tau) M −→M ′

M
τ−→M ′ (res)

M
`−→M ′ a 6∈ sbj(`)

(νa)M
`\a−−→ (νa)M ′

(str)M ≡M0
`−→M ′

0 ≡M ′

M
`−→M ′

10

In (ctx), n(`) indicates the names occurring in ` while bn(E) indicates binding E
induces. In (res), sbj(`) denotes the subject of `. In (tau) the axiom is obtained
either from the reduction rules for dynamic networks given in § 2.2 (only those
not involving the global transport), or from the corresponding rules for monitored
networks (which have been omitted in § 3.2).

Hereafter we write =⇒ for
τ−→
∗
,

`
=⇒ for =⇒ `−→=⇒, and

ˆ̀
=⇒ for =⇒ if ` = τ

and
`

=⇒ otherwise.

Definition 1 (Bisimulation over partial networks). A binary relation R
over partial networks is a weak bisimulation when M1RM2 implies: whenever

M1
`−→M ′1 such that bn(`)∩ fn(M2) = ∅, we have M2

ˆ̀
=⇒M ′2 such that M ′1RM ′2,

and the symmetric case. We write M1 ≈ M2 if (M1,M2) are in a weak bisimu-
lation.

Interface We want to build a model where two different implementations of
the same service are related. Bisimilarity is too strong for this aim (as shown in
Example 5). We use instead a contextual congruence (barbed reduction-closed
congruence [14]) ∼= for networks. Intuitively, two networks are barbed-congruent
when they are indistinguishable for any principal that connects to them. In
this case we say they propose the same interface to the exterior. Formally, two
networks are related with ∼= when, composed with the same third network, they
offer the same barbs (the messages to external principals in the respective global
queues are on the same channels) and this property is preserved under reduction.

We say that a message m is routed for α in N if N = (νñ)(M0 | 〈r ; h〉),
m ∈ h, eitherm = a〈s[r] : T 〉 and r(a) = α orm = s[r1, r2]!l〈e〉 and r(s[r2]) = α.

Definition 2 (Barb). We write N ↓a when the global queue of N contains a
message m to free a and m is routed for a principal not in N . We write N ⇓a if
N −→∗ N ′ ↓a.

We denote P(N) for a set of principals in N , P(
∏

[Pi]αi
) = {α1, ..., αn}. We say

N1 and N2 are composable when P(N1)∩P(N2) = ∅, the union of their routing
tables remains a function, and their free session names are disjoint. If N1 and
N2 are composable, we define N1 �N2 = (νñ1, ñ2)(M1 |M2 | 〈r1 ∪ r2 ; h1 · h2〉)
where Ni = (νñi)(Mi | 〈ri ; hi〉) (i = 1, 2). Notice that both equivalences are
compositional, as proved in Proposition § 4.

Definition 3 (Barbed reduction-closed congruence). A relationR on net-
works with the same principals is a barbed r.c. congruence [14] if the following
holds: whenever N1RN2 we have: (1) for each composable N , N �N1RN �N2;
(2) N1 −→ N ′1 implies N2 −→∗ N ′2 s.t. N ′1RN ′2 again, and the symmetric case;
(3) N1 ⇓a iff N2 ⇓a. We write N1

∼= N2 when they are related by a barbed r.c.
congruence.

The following result states that composing two bisimilar partial networks
with the same network – implying the same router and global transport – yields
two undistinguishable networks.

11

Proposition 4 (Congruency). If M1 ≈M2, then (1) M1|M ≈M2|M for each
composable partial M ; and (2) M1|N ∼= M2|N for each composable N .

Example 5 (ATM: an example of behavioural equivalence). We use an example
to illustrate our notion of interface. As our verification by monitors is done sep-
arately for each endpoint, one can safely modify a global specification as long
as its projection on the public roles stays the same. The barbed congruence
we introduce takes this into account: two networks proposing the same service,
but organised in different ways, are equated even if the two networks corre-
spond to different global specifications. As an example, consider global type
G2

ATM defined as GATM where G2
Loop is used in place of GLoop from Example 3.

G2
Loop involves a fourth party, the transaction agent B: S sends a query to B

which gives back a one-use transaction identifier. Then, the protocol proceeds
as the original one. Notably, GATM and G2

ATM have the same interfaces for the
client (resp. the authenticator), as their projections of on C (resp. A) are equal.
G2

Loop = µ LOOP.
S→ B : { Query(){true}.
B→ S : { Answer(xt : int){true}.
S→ C : { Account(xb : int){xb ≥ 0}.
C→ S : { Withdraw(xp : int){xp ≥ 0 ∧ xb − xp ≥ 0}. LOOP,

Deposit(xd : int){xd > 0}. LOOP,
Quit(){true}.end }}}}

We define P 2
S as PS in Example 3 but replacing the occurrence of P ′S in PS by

s[S, B]!Query〈〉; s[B, S]?Answer(xt).P
′
S

and alsoN2
S = [P 2

S]α andNB = [µX.s[S, B]?Query〈〉; s[B, S]!Answer〈getTrans()〉]δ.
By definition, the two following networks are barbed-congruent:

(NS | 〈∅ ; s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ〉) ∼=
(N2

S | NB | 〈∅ ; s[S] 7→ α, s[C] 7→ β, s[A] 7→ γ, s[B] 7→ δ〉)

even if the first one implements the original ATM protocol while the second one
implements its variant. Indeed, composed with any tester, such as NC | NA =
[PC]β | [PA]γ these two networks will produce the same interactions.

However, the corresponding partial networks N2
S | NB and NS are not bisim-

ilar: the former is able to perform a transition labelled s[S, B]!Query〈〉 while the
latter is not. This difference in behaviour is not visible to the barbed congruence,
as it takes into account the router which prevents the messages s[S, B]!Query〈〉
to be caught by a tester. As an example of network bisimilar to NS, consider:

N1 = (νk) ([PS | PS[k/s]]α | [PC[k/s]]δ)

In this partial network, principal α plays both S in public session s (as in NS)
and S in the private session k. Principal δ plays C in the latter. As k is private, N1

offers the same observable behaviour than NS (no action on k can be observed),
and we have N1 ≈ NS.

12

Satisfaction We present a satisfaction relation for partial networks, which in-
clude local principals. If M is a partial network, |= M : Σ s.t. dom(Σ) = P(M),
means that the specification allows all outputs from the network; that the net-
work is ready to receive all the inputs indicated by the specification; and that
this is preserved by transition.

Definition 5 (Satisfaction). Let sbj(`) denote the subject of ` 6= τ . A relation
R from partial networks to specifications is a satisfaction when MRΣ implies:

1. If Σ
`−→ Σ′ for an input ` and M has an input at sbj(`), then M

`−→ M ′ s.t.
M ′RΣ′.

2. If M
`−→M ′ for an output at `, then Σ

`−→ Σ′ s.t. M ′RΣ′.
3. If M

τ−→M ′, then Σ
τ−→ Σ′ s.t. M ′RΣ′ (i.e. M ′RΣ since Σ

τ−→ Σ always).

When MRΣ for a satisfaction relation R, we say M satisfies Σ, denoted |= M :
Σ. By Definition 5 and Proposition 4 we obtain:

Proposition 6. If M1
∼= M2 and |= M1 : Σ then |= M2 : Σ.

3.4 Safety Assurance and Session Fidelity

In this section, we present the properties underpinning safety assurance in the
proposed framework from different perspectives.

Theorem 7 shows local safety/transparency, and global safety/transparency
for fully monitored networks. A network N is fully monitored wrt Σ when all its
principals are monitored and the collection of the monitors is congruent to Σ.

Theorem 7 (Safety and Transparency).

1. (Local Safety) |= [P]α | M : α : 〈Γ ;∆〉 with M = α :〈Γ ;∆〉.
2. (Local Transparency) If |= [P]α : α : 〈Γ ;∆〉, then [P]α ≈ ([P]α | M)

with M = α : 〈Γ ;∆〉.
3. (Global Safety) If N is fully monitored w.r.t. Σ, then |= N : Σ.
4. (Global Transparency) Assum N and N have the same global transport
〈r ; h〉. If N is fully monitored w.r.t. Σ and N = M | 〈r ; h〉 is unmonitored
but |= M : Σ, then we have N ∼ N .

Local safety (7.1) states that a monitored process always behaves well with
respect to the specification. Local transparency (7.2) states that a monitored pro-
cess behaves as an unmonitored process when the latter is well-behaved (e.g.,
it is statically checked). Global safety (7.3) states that a fully monitored net-
work behaves well with respect to the given global specification. This property is
closely related to session fidelity, introduced later in Theorem 11. Global trans-
parency (7.4) states that a monitored network and an unmonitored network have
equivalent behaviour when the latter is well-behaved with respect to the same
(collection of) specifications.

By Proposition 4 and (7.2), we derive Corollary 8 stating that weakly bisim-
ilar static networks combined with the same global transport are congruent.

13

Corollary 8 (Local transparency). If |= [P]α : α : 〈Γ ;∆〉, then for any
〈r ; h〉, we have ([P]α | 〈r ; h〉) ∼= ([P]α | M | 〈r ; h〉) with M = α :〈Γ ;∆〉.

By Theorem 7, we can mix unmonitored principals with monitored principals
still obtaining the desired safety assurances.

In the following, we refer to a pair Σ; 〈r ; h〉 of a specification and a global
transport as a configuration. The labelled transition relation for configurations,

denoted by
`−→g, is relegated to [2]. Here it is sufficient to notice that the tran-

sitions of a configuration define the correct behaviours (with respect to Σ) in
terms of the observation of inputs and outputs from/to the global transport
〈r ; h〉. We write that a configuration Σ; 〈r ; h〉 is configurationally consistent if
all of its multi-step input transition derivatives are receivable and the resulting
specifications Σ is consistent.

We also use
`−→g to model globally visible transitions of networks (i.e., those

locally visible transitions of a network that can be observed by its global trans-
port). Below, we state that a message emitted by a valid output action is always
receivable.

Lemma 9. Assume a network N ≡M |〈r ; h〉 conforming to Σ; 〈r ; h〉 which is

configurationally consistent, ifN
`−→g N

′ such that ` is an output andΣ; 〈r ; h〉 `−→g

Σ′; 〈r ; h·m〉 then h ·m is receivable to Σ′.

Also, we state that, as N ≡ M | H and |= M : Σ, the satisfaction relation of
M and Σ is preserved by transitions.

Lemma 10. Assume N ≡ M | H and |= M : Σ. If N
`−→g N

′ ≡ M ′ | H ′ and

Σ
`−→ Σ′, then |= M ′ : Σ′.

Theorem 11 (Session Fidelity). Assume configuration Σ; 〈r ; h〉 is config-
urationally consistent, and network N ≡ M |〈r ; h〉 conforms to configuration

Σ; 〈r ; h〉. For any `, whenever we have N
`−→g N

′ s.t. Σ; 〈r ; h〉 `−→g Σ
′; 〈r′ ; h′〉,

it holds that Σ′; 〈r′ ; h′〉 is configurationally consistent and N ′ conforms to
Σ′; 〈r′ ; h′〉.

By session fidelity, if all session message exchanges in a monitored/unmonitored
network behave well with respect to the specifications (as communications oc-
cur), then this network exactly follows the original global specifications.

4 Conclusion and Future Work

We proposed a new formal safety assurance framework to specify and enforce the
global safety for distributed systems, through the use of static and dynamic ver-
ification. We formally proved the correctness (with respect to distributed princi-
pals) of our architectural framework through a π-calculus based theory, identified
in two key properties of dynamic network: global transparency and safety. We
introduced a behavioural theory over monitored networks which allows compo-
sitional reasoning over trusted and untrusted (but monitored) components.

14

Implementation As a part of our collaboration with the Ocean Observatories
Initiative [17], our theoretical framework is currently realised by an implemen-
tation, in which each monitor supports all well-formed protocols and is auto-
matically self-configured, via session initiation messages, for all sessions that the
endpoint participates in. Our implementation of the framework automates dis-
tributed monitoring by generating FSM from the local protocol projections. In
this implementation, the global protocol serves as the key abstraction that helps
unify the aspects of specification, implementation and verification (both static
and dynamic) of distributed application development. Our experience has shown
that the specification framework can accommodate diverse practical use cases,
including real-world communication patterns used in the distributed services of
the OOI cyberinfrastructure [17].

Future work Our objectives include the incorporation in the implementation of
more elaborate handling of error cases into monitor functionality, such as halting
all local sessions or coercing to valid actions [18, 16]. In order to reach this goal,
we need to combine a simplification of [5] and nested sessions [10] to handle
an exception inside MPSTs. We aim to construct a simple and reliable way to
raise and catch exceptions in asynchronous networks. Our work is motivated by
ongoing collaborations with the Savara2 and Scribble3 projects and OOI [17].
We are continuing the development of Scribble, its toolsuite and associated en-
vironments towards a full integration of sessions into the OOI infrastructure.

4.1 Related Work

Our work features a located, distributed process calculus to model monitored
networks. Due to space limitations, we focus on the key differences with related
work on dynamic monitoring.

The work in [13] proposes an ambient-based run-time monitoring formalism,
called guardians, targeted at access control rights for network processes, and
Klaim [9] advocates a hybrid (dynamic and static) approach for access control
against capabilities (policies) to support static checking integrated within a dy-
namic access-control procedure. These works address specific forms of access
control for mobility, while our more general approach aims at ensuring correct
behaviour in sessions through a combination of static or run-time verification.

The work in [4] presents a monitor-based information-flow analysis in multi-
party sessions. The monitors in [4] are inline (according to [6]) and control the
information-flow by tagging each message with security levels. Our monitors are
outline and aim at the application to distributed systems.

An informal approach to monitoring based on MPSTs, and an outline of
monitors are presented in [8]. However, [8] only gives an overview of the desired
properties, and requires all local processes to be dynamically verified through
the protections of system monitors. In this paper, instead, we integrate statically

2 http://www.jboss.org/savara
3 http://www.scribble.org

15

and dynamically verified local processes into one network, and formally state the
properties of this combination.

In summary, compared to these related works, our contribution focuses on the
enforcement of global safety, with protocols specified as multiparty session types
with assertions. It also provides formalisms and theorems for decentralised run-
time monitoring, targeting interaction between components written in multiple
(e.g., statically and dynamically typed) programming languages.

References

1. L. Bettini et al. Global progress in dynamically interleaved multiparty sessions. In
CONCUR, volume 5201 of LNCS, pages 418–433, 2008.

2. L. Bocchi, T.-C. Chen, R. Demangeon, K. Honda, and N. Yoshida. Monitoring
networks through multiparty session types. Technical Report 2013/3, Department
of Computing, Imperial College London, 2013.

3. L. Bocchi, K. Honda, E. Tuosto, and N. Yoshida. A theory of design-by-contract
for distributed multiparty interactions. In CONCUR, volume 6269 of LNCS, pages
162–176, 2010.

4. S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information flow safety in
multiparty sessions. In EXPRESS, volume 64 of EPTCS, pages 16–30, 2011.

5. S. Capecchi, E. Giachino, and N. Yoshida. Global escape in multiparty session. In
FSTTCS’10, volume 8 of LIPICS, pages 338–351, 2010.

6. F. Chen and G. Rosu. MOP:An Efficient and Generic Runtime Verification Frame-
work. In OOPSLA, pages 569–588, 2007.

7. T.-C. Chen. Theories for Session-based Governance for Large-Scale Distributed
Systems. PhD thesis, Queen Mary, University of London, 2013. To appear.

8. T.-C. Chen, L. Bocchi, P.-M. Deniélou, K. Honda, and N. Yoshida. Asynchronous
distributed monitoring for multiparty session enforcement. In TGC, volume 7173
of LNCS, pages 25–45, 2011.

9. R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: a kernel language for agents
interaction and mobility. IEEE Trans. Softw. Eng., 24:315–330, 1998.

10. R. Demangeon and K. Honda. Nested protocols in session types. In CONCUR,
volume 7454 of LNCS, pages 272–286, 2012.

11. P.-M. Deniélou and N. Yoshida. Dynamic multirole session types. In POPL, pages
435–446, 2011.

12. P.-M. Deniélou and N. Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of LNCS, pages 194–213, 2012.

13. G. Ferrari, E. Moggi, and R. Pugliese. Guardians for ambient-based monitoring.
In F-WAN, pages 141–202. Elsevier, 2002.

14. K. Honda and N. Yoshida. On reduction-based process semantics. TCS,
151(2):437–486, 1995.

15. K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types.
In POPL’08, pages 273–284. ACM, 2008.

16. J. Ligatti, L. Bauer, and D. Walker. Run-time enforcement of nonsafety policies.
ACM Trans. Inf. Syst. Secur., 12:19:1–19:41, 2009.

17. OOI. http://www.oceanobservatories.org/.
18. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3:30–50, 2000.
19. N. Yoshida, P.-M. Deniélou, A. Bejleri, and R. Hu. Parameterised multiparty

session types. In FoSSaCs’10, volume 6014 of LNCS, pages 128–145, 2010.

16

