Laura Bocchi

Tzu-Chun Chen

Romain Demangeon

Kohei Honda

Nobuko Yoshida

Monitoring Networks through Multiparty Session Types

In large-scale distributed infrastructures, applications are realised through communications among distributed components. The need for methods for assuring safe interactions in such environments is recognized, however the existing frameworks, relying on centralised verification or restricted specification methods, have limited applicability. This paper proposes a new theory of monitored π-calculus with dynamic usage of multiparty session types (MPST), offering a rigorous foundation for safety assurance of distributed components which asynchronously communicate through multiparty sessions. Our theory establishes a framework for semantically precise decentralised run-time enforcement and provides reasoning principles over monitored distributed applications, which complement existing static analysis techniques. We introduce asynchrony through the means of explicit routers and global queues, and propose novel equivalences between networks, that capture the notion of interface equivalence, i.e. equating networks offering the same services to a user. We illustrate our static-dynamic analysis system with an ATM protocol as a running example and justify our theory with results: satisfaction equivalence, local/global safety and transparency, and session fidelity.

Introduction

One of the main engineering challenges for distributed systems is the comprehensive verification of distributed software without relying on ad-hoc and expensive testing techniques. Multiparty session types (MPST) is a typing discipline for communication programming, originally developed in the π-calculus [START_REF] Honda | Multiparty Asynchronous Session Types[END_REF][START_REF] Bettini | Global progress in dynamically interleaved multiparty sessions[END_REF][START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF][START_REF] Deniélou | Dynamic multirole session types[END_REF][START_REF] Deniélou | Multiparty session types meet communicating automata[END_REF][START_REF] Chen | Theories for Session-based Governance for Large-Scale Distributed Systems[END_REF] towards tackling this challenge. The idea is that applications are built starting from units of design called sessions. Each type of session, involving multiple roles, is first modelled from a global perspective (global type) and then projected onto local types, one for each role involved. As a verification method, the existing MPST systems focus on static type checking of endpoint processes against local types. The standard properties enjoyed by well-typed processes are communication safety (all processes conform to globally agreed communication protocols) and freedom from deadlocks.

The direct application of the theoretical MPST techniques to the current practice, however, presents a few obstacles. Firstly, the existing type systems are targeted at calculi with first class primitives for linear communication channels and communication-oriented control flow; the majority of mainstream engineering languages would need to be extended in this sense to be suitable for syntactic session type checking. Unfortunately, it is not always straightforward to add these features to the specific host languages (e.g. linear resource typing for a very liberal language like C). Furthermore, the executable processes in a distributed system may be implemented in different languages. Secondly, for domains where dynamically typed or untyped languages are popular (e.g., Web programming), or in multi-organizational scenarios, the introduction of static typing infrastructure to support MPST may not be realistic.

This paper proposes a theoretical system addressing the above issues by enabling both static and dynamic verification of communicating processes. The aim is to capture the decentralised nature of distributed application development, providing better support for heterogeneous distributed systems by allowing components to be independently implemented, using different languages, libraries and programming techniques, as well as being independently verified, either statically or dynamically, while retaining the strong global safety properties of statically verified homogeneous systems.

This work is motivated in part by our ongoing collaboration with the Ocean Observatories Initiative (OOI) [17], a project to establish cyberinfrastructure for the delivery, management and analysis of scientific data from a large network of ocean sensor systems. Their architecture relies on the combination of highlevel protocol specifications (to express how the infrastructure services should be used) and distributed run-time monitoring to regulate the behaviour of thirdparty applications in the system.

A formal theory for static/dynamic verification Our framework is based on the idea that, if each endpoint is independently verified (statically or dynamically) to conform to their local protocols, then the global protocol is respected as a whole. To this goal, we propose a new formal model and bisimulation theories of heterogeneous networks of monitored and unmonitored processes.

For the first time, we make explicit the routing mechanism implicitly present inside the MPST framework: in a session, messages are sent to abstract roles (e.g. to a Seller) and the router, a dynamically updated component of the network, translates these roles into actual addresses.

By taking this feature into account when designing novel equivalences, our formal model can relate networks built in different ways (through different distributions or relocations of services) but offering the same interface to an external observer. The router, being in charge of associating roles with principals, hides to an external user the internal composition of a network: what distinguishes two networks is not their structure but the services they are able to perform, or more precisely, the local types they offer to the outside.

We formally define a satisfaction relation to express when the behaviour of a network conforms to a global specification and we prove a number of properties of our model. Local safety states that a monitored process respects its local protocol, i.e. that dynamic verification by monitoring is sound, while local transparency states that a monitored process has equivalent behaviour to an unmonitored but well-behaved process, e.g. statically verified against the same local protocol. Global safety states that a system satisfies the global protocol, provided that each participant behaves as if monitored, while global transparency states that a fully monitored network has equivalent behaviour to an unmonitored but well-behaved network, i.e. in which all local processes are well-behaved against the same local protocols. Session fidelity states that, as all message flows of a network satisfy global specifications, whenever the network changes because some local processes take actions, all message flows continue to satisfy global specifications. Together, these properties justify our framework for decentralised verification by allowing monitored and unmonitored processes to be safely mixed while preserving protocol conformance for the entire network. Technically, these properties also ensure the coherence of our theory, by relating the satisfaction relations with the semantics and static validation procedures.

Paper summary and contributions § 2 introduces the formalisms for protocol specifications (§ 2.1) and networks (§ 2.2) used to provide a formal framework for monitored networks based on π-calculus processes and protocol-based runtime enforcement through monitors. § 3 introduces: a semantics for specifications (§ 3.1), a novel behavioural theory for compositional reasoning over monitored networks through the use of equivalences (bisimilarity and barbed congruence) and the satisfaction relation (§ 3.2). § 3.4 establishes key properties of monitored networks, namely local/global safety, transparency, and session fidelity. We discuss future and related work in § 4. The proofs can be found in [START_REF] Bocchi | Monitoring networks through multiparty session types[END_REF].

Types, Processes and Networks: a Formal Presentation

This section and the next one provide a theoretical basis for protocol-centred safety assurance. We first summarise the syntax of MPSTs (multiparty session types) annotated with logical assertions [START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF]. We then introduce a novel monitored session calculus as a variant of the π-calculus, modelling distributed dynamic components (whose behaviours are realised by processes) and monitors, all residing in global networks.

Multiparty Session Types with Assertions

Multiparty session types with assertions [START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF] are abstract descriptions of the structure of interactions among the participants of a multiparty session, specifying potential flows of messages, the conditions under which these interactions may be done, and the constraints on the communicated values. In this framework, global types with assertions, or just global types, describe multiparty sessions from a network perspective. From global types one can derive, through endpoint projection, local types with assertions, or just local types, describing the protocol from the perspective of a single endpoint.

A ::= tt | ff | e1 = e2 | e1 < e2 | ¬A | A1 ∧ A2 | A1 ∨ A2 e ::= v | e1 + e2 | e1 -e2 | e1 * e2 | e1 mod e2 S::=bool | int | string G ::= r1 → r2 : {li(xi : Si){Ai}.Gi}i∈I | G1 | G2 | G1; G2 | µt.G | t | | end T ::= r!{li(xi : Si){Ai}.Ti}i∈I | r?{li(xi : Si){Ai}.Ti}i∈I | T1 | T2 | T1; T2 | µt.T | t | | end
The syntax of the global types (G, G , . . .) and local types (T, T , . . .) is given above. The grammar is based on [START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF][START_REF] Deniélou | Multiparty session types meet communicating automata[END_REF] extended with parallel threads, which also require sequential composition to merge parallel threads as in [START_REF] Yoshida | Parameterised multiparty session types[END_REF]. We let values v, v , . . . range over boolean constants, numerals and strings, and e, e , . . . range over first-order expressions. For expressing constraints, we use logical predicates, or assertions, ranged over by A, A , . . ., following the grammar given above, although other decidable logics could be used. 1 The sorts of exchanged values (S, S , . . .) consists of atomic types.

Global types with assertions r 1 → r 2 : {l i (x i : S i){A i }.G i } i∈I models an interaction where role r 1 sends role r 2 one of the branch labels l i , as well as a value denoted by an interaction variable x i of sort S i . Interaction variable x i binds its occurrences in A i and G i . A i is the assertion which needs to hold for r 1 to select l i , and which may constrain the values instantiating x i . G 1 | G 2 specifies two parallel sessions, and G 1 ; G 2 denotes sequential composition (assuming that G 1 does not include end). µt.G is a recursive type, where t is guarded in G in the standard way, is the inaction for absence of communication, and end ends the session.

Example 1 (ATM: the global type). We present global type G ATM that specifies an ATM scenario. Each session of ATM involves three roles: a client (C), the payment server (S) and a separate authenticator (A).

GATM = C → A : { Login(xi : string){tt}. A → S : { LoginOK(){tt}. A → C : {LoginOK(){tt}. GLoop}, LoginFail(){tt}. A → C : {LoginFail(){tt}. end}}} GLoop = µ LOOP. S → C : { Account(x b : int){x b ≥ 0}. C → S : { Withdraw(xp : int){xp > 0 ∧ x b -xp ≥ 0}. LOOP, Deposit(x d : int){x d > 0}. LOOP, Quit(){tt}.end}}
At the start of the session C sends its login details x i to A, then A informs S and C whether the authentication is successful, by choosing either the branch with label LoginOK or LoginFail. In the former case C and S enter a transaction loop specified by G Loop . In each iteration S sends C the amount x b available in the account, which must be non negative. Next, C has three choices: Withdraw withdraws an amount x p (x p must be positive and not exceed the current amount x b) and repeats the loop, Deposit deposits a positive amount x d in the account and repeats the loop, and Quit ends the session.

We consider global types that satisfy the consistency conditions defined in [START_REF] Deniélou | Dynamic multirole session types[END_REF][START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF][START_REF] Deniélou | Multiparty session types meet communicating automata[END_REF] which rule out, for instance, protocols where interactions have causal relations that cannot be enforced (e.g., we write r A → r B :

l 1 (){tt} | r C → r D : l 2 (){tt} instead of r A → r B : l 1 (){tt}.r C → r D : l 2 (){tt}
). In addition we assume monitorability requiring that in all the interactions of the form r → r : l(x : S){A} occurring in a global type G both r and r know (i.e., have sent or received in a previous or in this interaction) the free variables in A.

Local types with assertions Each local type T is associated with a role taking part in a session. Local type r!{l i (x i : S i){A i }.T i } i∈I models an interaction where the role under consideration sends r a branch label l i and a message denoted by an interaction variable x i of sort S i . Its dual is the receive interaction r?{l i (x i : S i){A i }.T i } i∈I . The other local types are similar to the global types. One can derive a set of local types T i from a global type G by endpoint projection, defined as in [START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF]. We write G r for the projection of G onto role r. We illustrate the main projection rule, which is for projecting a global type modelling an interaction. Let G be (r → r : A?{LoginOK(){tt}. TLoop LoginFail(){tt}. end}}

{l i (x i : S i){A i }.G i } i∈I); the projection of G on r is r !{l i (x i : S i){A i }.(G i r)} i∈I , and the projection of G on r is r?{l i (x i : S i){A i }.(G i r)} i∈I
TLoop = µ LOOP. S?{Account(x b : int){x b ≥ 0}. S!{Withdraw(xp : int){xp > 0 ∧ x b -xp ≥ 0}. LOOP, Deposit(x d : int){x d > 0}.LOOP, Quit(){tt}.end}}
T C specifies the behaviour that C should follow to meet the contract of global type G AT M . T C states that C should first authenticate with A, then receive the Account message from S, and then has the choice of sending Withdraw (and enact the recursion), or Deposit (and enact the recursion) or Quit (and end the session).

Formal Framework of Processes and Networks

In our formal framework, each distributed application consists of one or more sessions among principals. A principal with behaviour P and name α is represented as [P] α . A network is a set of principals together with a (unique) global transport, which abstractly represents the communication functionality of a distributed system. The syntax of processes, principals and networks is given below, building on the multiparty session π-calculus from [START_REF] Bettini | Global progress in dynamically interleaved multiparty sessions[END_REF]. The session invitation a s[r] : T invites, through a shared name a, another process to play r in a session s. The session accept a(y[r] : T).P receives a session invitation and, after instantiating y with the received session name, behaves in its continuation P as specified by local type T for role r. The selection k[r 1 , r 2]!l e sends, through session channel k (of an established session), and as a sender r 1 and to a receiver r 2 , an expression e with label l. The branching k[r 1 , r 2]?{l i (x i).P i } i∈I is ready to receive one of the labels and a value, then behaves as P i after instantiating x i with the received value. We omit labels when I is a singleton. The conditional, parallel and inaction are standard. The recursion µX.P defines X as P . Processes (νa)P and (νs)P hide shared names and session names, respectively.

P ::= a s[r] : T | a(y[r] : T).P | k[r1, r2]!l e | k[r1, r2]?{li(xi).Pi}i∈I | if e then P else Q | P | Q | 0 | µX.P | X | P ; Q | (νa) P | (νs)P N ::= [P]α | N1 | N2 | 0 | (νa)N | (νs)N | r ; h r ::= a → α | s[r] → α h ::= m • h | ∅ m ::= a s[r] : T | s r1, r2, l v r,
Principals and network A principal [P] α , with its process P and name α, represents a unit of behaviour (hence verification) in a distributed system. A network N is a collection of principals with a unique global transport.

A global transport r ; h is a pair of a routing table which delivers messages to principals, and a global queue. Messages between two parties inside a single session are ordered (as in a TCP connection), otherwise unordered. More precisely, in r ; h , h is a global queue, which is a sequence of messages a s[r] : T or s r 1 , r 2 , l v , ranged over by m. These m represent messages-in-transit, i.e. those messages which have been sent from some principals but have not yet been delivered. The routing table r is a finite map from session-roles and shared names to principals. If, for instance, s[r] → α ∈ r then a message for r in session s will be delivered to principal α.

Let n, n , . . . range over shared and session channels. A network N which satisfies the following conditions is well-formed: (1) N contains at most one global transport; (2) two principals in N never have the same principal name; and (3) if N ≡ (ν ñ)(i [P i] αi | r ; h), each free shared or session name in P i and h occurs in ñ (we use i P i to denote

P 1 | P 2 • • • | P n).
Semantics The reduction relation for dynamic networks is generated from the rules below, which model the interactions of principals with the global queue.

[a s[r] : T]α | r ; h -→ [0]α | r ; h • a s[r] : T req [a(y[r] : T).P]α | r ; a s[r] : T • h -→ [P [s/y]]α | r•s[r] → α ; h † acc [s[r1, r2]!lj v]α | r ; h -→ [0]α | r ; h • s r1, r2, lj v † † sel [s[r1, r2]?{li(xi).Pi}i]α | r ; s r1, r2, lj v • h -→ [Pj[v/xj]]α | r ; h † † † bra [if tt then P else Q]α -→ [P]α [if ff then P else Q]α -→ [Q]α cnd [P]α | N -→ [P]α | N [E(P)]α | N -→ [E(P)]α | N e -→ e [E(e)]α -→ [E(e)]α N -→ N E(N) -→ E(N) ctx † : r(a) = α † † : r(s[r 2]) = α † † † : r(s[r 2]) = α E ::= () | E | P | (νs)E | (νa)E | E; P | E | N | if E then P else Q | s[r1, r2]!l E
Rule req places an invitation in the global queue. Dually, in acc , a process receives an invitation on a shared name from the global queue, assuming a message on a is to be routed to α. As a result, the routing table adds s[r] → α in the entry for s. Rule sel puts in the queue a message sent from r 1 to r 2 , which selects label l j and carries v, if it is not going to be routed to α (i.e. sent to self). Dually, bra gets a message with label l j from the global queue, so that the j-th process P j receives value v. The reduction is also defined modulo the structural congruence ≡ defined by the standard laws over processes/networks, the unfolding of recursion (µX.P ≡ P [µX.P /X]) and the associativity and commutativity and the rules of message permutation in the queue [START_REF] Honda | Multiparty Asynchronous Session Types[END_REF][START_REF] Deniélou | Dynamic multirole session types[END_REF]. The other rules are standard.

Example 3 (ATM: an implementation). We now illustrate the processes implementing the client role of the ATM protocol. We let P C be the process implementing T C (from Example 2) and communicating on session channel s. Note that P C selects only two of the possible branches (i.e., Withdraw and Quit) and Deposit is never selected. One can think of P C as an ATM machine that only allows to withdraw a number of £10 banknotes, until the amount exceeds the current balance. This ATM machine does not allow deposits. We assume getmore() to be a local function to the principal running P C that returns tt if more notes are required (ff otherwise). P S below implements the server role: where getBalance() is a local function to the principal running P S that synchronously returns the current balance of the client.

Theory of Dynamic Safety Assurance

In this section we formalise the specifications (based on local types) used to guard the runtime behaviour of the principals in a network. These specifications can be embedded into system monitors, each wrapping a principal to ensure that the ongoing communication conforms to the given specification. Then, we present a behavioural theory for monitored networks and its safety properties.

Semantics of Global Specifications

The specification of the (correct) behaviour of a principal consists of an assertion environment Γ ; ∆ , where Γ is the shared environment describing the behaviour on shared channels, and ∆ is the session environment representing the behaviour on session channels (i.e., describing the sessions that the principal is currently participating in). The syntax of Γ and ∆ is given by:

Γ ::= ∅ | Γ, a : I(T [r]) | Γ, a : O(T [r]) ∆ ::= ∅ | ∆, s[r] : T In Γ , the assignment a : I(T [r]) (resp. a : O(T [r]
)) states that the principal can, through a, receive (resp. send) invitations to play role r in a session instance specified by T . In ∆, we write s[r] : T when the principal is playing role r of session s specified by T . Networks are monitored with respect to collections of specifications (or just specifications) one for each principal in the network. A specification Σ, Σ , . . . is a finite map from principals to assertion environments:

Σ ::= ∅ | Σ, α : Γ ; ∆
The semantics of Σ is defined using the following labels:

::= a s[r] : T | a s[r] : T | s[r1, r2]!l v | s[r1, r2]?l v | τ
The first two labels are for invitation actions, the first is for requesting and the second is for accepting. Labels with s[r 1 , r 2] indicate interaction actions for sending (!) or receiving (?) messages within sessions. The labelled transition relation for specification is defined by the rules below.

α : Γ, a : O(T [r]); ∆ a s[r]:T -----→ α : Γ, a : O(T [r]); ∆ [Req] s ∈ dom(∆) α : Γ, a : I(T [r]); ∆ a s[r]:T -----→ α : Γ, a : I(T [r]); ∆, s[r] : T [Acc] Γ v : Sj, Aj[v/xj] ↓ tt, j ∈ I α : Γ ; ∆, s[r2] : r1?{li(xi : Si){Ai}.T i }i∈I s[r 1 ,r 2]?l j v --------→ α : Γ ; ∆, s[r2] : T j [v/xj] [Bra] Γ v : Sj, Aj[v/xj] ↓ tt, j ∈ I α : Γ ; ∆, s[r1] : r2!{li(xi : Si){Ai}.T i }i∈I s[r 1 ,r 2]!l j v --------→ α : Γ ; ∆, s[r1] : T j [v/xj] [Sel] α : Γ1; ∆1 -→ α : Γ 1 ; ∆ 1 α : Γ1; ∆1|∆2 -→ α : Γ 1 ; ∆ 1 |∆2 Σ τ -→ Σ Σ1 -→ Σ2 Σ1, Σ3 -→ Σ2, Σ3 [Spl,Tau,Par]
Rule [Req] allows α to send an invitation on a properly typed shared channel a (i.e., given that the shared environment maps a to T [r]). Rule [Acc] allows α to receive an invitation to be role r in a new session s, on a properly typed shared channel a. Rule [Bra] allows α, participating to sessions s as r 2 , to receive a message with label l j from r 1 , given that A j is satisfied after replacing x j with the received value v. After the application of this rule the specification is T j . Rule [Sel] is the symmetric (output) counterpart of [Bra]. We use ↓ to denote the evaluation of a logical assertion. [Spl] is the parallel composition of two session environments where ∆ 1 |∆ 2 composes two local types:

∆ 1 |∆ 2 = {s[r] : (T 1 | T 2) | T i = ∆ i (s[r]), s[r] ∈ dom(∆ 1) ∩ dom(∆ 2)} ∪ dom(∆ 1)/dom(∆ 2) ∪ dom(∆ 2)/dom(∆ 1).
[Tau] says that the specification should be invariant under reduction of principals. [Par] says if Σ 1 and Σ 3 are composable, after Σ 1 becomes as Σ 2 , they are still composable.

Semantics of Dynamic Monitoring

The endpoint monitor M, M , ... for principal α is a specification α : Γ ; ∆ used to dynamically ensure that the messages to and from α are legal with respect to Γ and ∆. A monitored network N is a network N with monitors, obtained by extending the syntax of networks as:

N ::= N | M | N | N | (νs)N | (νa)N
The reduction rules for monitored networks are given below and use, in the premises, the labelled transitions of monitors. The labelled transitions of a monitor are the labelled transitions of its corresponding specification (given in § 3.1).

Req M a s[r]:T -----→ M [a s[r] : T]α | M | r ; h -→ [0]α | M | r ; h • a s[r] : T Acc M a s[r]:T -----→ M r(a) = α [a(y[r] : T).P]α | M | r ; a s[r] : T • h -→ [P [s/y]]α | M | r•s[r] → α ; h Bra M s[r 1 ,r 2]?l j v --------→ M r(s[r2]) = α [s[r1, r2]?{li(xi).Pi}i]α | M | r ; s r1, r2, lj v • h -→ [Pj[v/xj]]α | M | r ; h Sel M s[r 1 ,r 2]!l v -------→ M r(s[r2]) = α [s[r1, r2]!l v]α | M | r ; h -→ [0]α | M | r ; h • s r1, r2, l v ReqEr M a s[r]:T -----→ [a s[r] : T]α | M | r ; h -→ [0]α | M | r ; h AccEr M a s[r]:T -----→ [a(y[r] : T).P]α | M | r ; a s[r] : T • h -→ [a(y[r] : T).P]α | M | r ; h SelEr M s[r 1 ,r 2]!l v -------→ [s[r1, r2]!l v]α | M | r ; h -→ [0]α | M | r ; h
The first four rules model reductions that are allowed by the monitor (i.e., in the premise). Rule Req inserts an invitation in the global queue. Rule Acc is symmetric and updates the router so that all messages for role r in session s will be routed to α. Similarly, Bra (resp. Sel) extracts (resp. introduces) messages from (resp. in) the global queue. The error cases for Req and Sel , namely ReqEr and SelEr , 'skip' the current action (removing it from the process), do not modify the queue, the router nor the state of the monitor. The error cases for Acc and Bra , namely AccEr and BraEr (the latter omitted for space constraint), do not affect the process, which remains ready to perform the action, and remove the violating message from the queue.

Example 4 (ATM: a monitored network). We illustrate the monitored networks for the ATM scenario, where the routing table is defined as

r = a → α, b → β, c → γ, s[S] → α, s[C] → β, s[A] → γ
We consider the fragment of session where the authentication has occurred, the process of C (resp. S) is P C (resp. P S) from Example 3, and the process of A is 0.

NS = [P S]α | MS = [s[S, C]! Account(100); P S]α | MS (assuming getBalance() = 100) NC = [P C] β | MC = [s[S, C]? Account(x b).P C] β | MC NA = [0]γ | γ : c : TA[A] ; s[A] : end where MS = α : a : TS[S] ; s[S] : C! Account(x b : int){x b ≥ 0}.T S and MC is dual. N1 = [s[S, C]! Account(100); P S]α | MS | [s[S, C]? Account(x b).P C] β | MC | NA | r ; ∅ -→-→ [P S]α | M S | [P C [100/x b]] β | M C | NA | r ; ∅ where M S = α : a : TS[S] ; s[S] : T S and M C = β : b : TC[C] ; s[C] : T C Above, x b ≥ 0 is satisfied since x b = 100.
If the server tried to communicate e.g., value -100 for x b , the monitoring (by rule SelEr) would drop the message.

Network Satisfaction and Equivalences

Based on the formal representations of monitored networks, we now introduce the key formal tools for analysing their behaviour. First, we introduce bisimulation and barbed congruence over networks, and develop the notion of interface. Then we define the satisfaction relation |= N : M, used in § 3.4 to prove the properties of our framework.

Bisimulations We use M, M , ... for a partial network, that is a network which does not contain a global transport, hence enabling the global observation of interactions. The labelled transition relation for processes and partial networks M is defined below.

(Req) [a s[r] : T ; P]α a s[r]:T -----→ [0]α (Acc) [a(y[r] : T).P]α a s[r]:T -----→ [P [s/y]]α (Bra) [s[r1, r2]?{li(xi : Si).Pi}i]α s[r 1 ,r 2]?l j v --------→ [Pj[v/xj]]α (Sel) [s[r1, r2]!lj v]α s[r 1 ,r 2]!l j v --------→ [0]α (ctx) [P]α -→ [P]α n() ∩ bn(E) = ∅ [E(P)]α -→ [E(P)]α (tau) M -→ M M τ -→ M (res) M -→ M a ∈ sbj() (νa)M \a --→ (νa)M (str) M ≡ M0 -→ M 0 ≡ M M -→ M
In (ctx), n() indicates the names occurring in while bn(E) indicates binding E induces. In (res), sbj() denotes the subject of . In (tau) the axiom is obtained either from the reduction rules for dynamic networks given in § 2.2 (only those not involving the global transport), or from the corresponding rules for monitored networks (which have been omitted in § 3.2).

Hereafter we write =⇒ for τ -→ * , =⇒ for =⇒ -→=⇒, and ˆ =⇒ for =⇒ if = τ and =⇒ otherwise.

Definition 1 (Bisimulation over partial networks).

A binary relation R over partial networks is a weak bisimulation when M 1 RM 2 implies: whenever

M 1 - → M 1 such that bn() ∩ fn(M 2) = ∅, we have M 2 ˆ
=⇒ M 2 such that M 1 RM 2 , and the symmetric case. We write

M 1 ≈ M 2 if (M 1 , M 2) are in a weak bisimu- lation.
Interface We want to build a model where two different implementations of the same service are related. Bisimilarity is too strong for this aim (as shown in Example 5). We use instead a contextual congruence (barbed reduction-closed congruence [START_REF] Honda | On reduction-based process semantics[END_REF]) ∼ = for networks. Intuitively, two networks are barbed-congruent when they are indistinguishable for any principal that connects to them. In this case we say they propose the same interface to the exterior. Formally, two networks are related with ∼ = when, composed with the same third network, they offer the same barbs (the messages to external principals in the respective global queues are on the same channels) and this property is preserved under reduction.

We say that a message m is routed for

α in N if N = (ν ñ)(M 0 | r ; h), m ∈ h, either m = a s[r] : T and r(a) = α or m = s[r 1 , r 2]!l e and r(s[r 2]) = α.
Definition 2 (Barb). We write N ↓ a when the global queue of N contains a message m to free a and m is routed for a principal not in N . We write N ⇓ a if N -→ * N ↓ a .

We denote P(N) for a set of principals in N , P([P i] αi) = {α 1 , ..., α n }. We say N 1 and N 2 are composable when P(N 1) ∩ P(N 2) = ∅, the union of their routing tables remains a function, and their free session names are disjoint. If N 1 and N 2 are composable, we define

N 1 N 2 = (ν ñ1 , ñ2)(M 1 | M 2 | r 1 ∪ r 2 ; h 1 • h 2) where N i = (ν ñi)(M i | r i ; h i) (i = 1, 2)
. Notice that both equivalences are compositional, as proved in Proposition § 4.

Definition 3 (Barbed reduction-closed congruence).

A relation R on networks with the same principals is a barbed r.c. congruence [START_REF] Honda | On reduction-based process semantics[END_REF] if the following holds: whenever N 1 RN 2 we have: [START_REF] Bettini | Global progress in dynamically interleaved multiparty sessions[END_REF]

for each composable N , N N 1 RN N 2 ; (2) N 1 -→ N 1 implies N 2 -→ * N 2 s.t. N 1 RN 2 again
, and the symmetric case;

(3) N 1 ⇓ a iff N 2 ⇓ a . We write N 1 ∼ = N 2 when they are related by a barbed r.c. congruence.

The following result states that composing two bisimilar partial networks with the same network -implying the same router and global transport -yields two undistinguishable networks.

Proposition 4 (Congruency

). If M 1 ≈ M 2 , then (1) M 1 |M ≈ M 2 |M for each composable partial M ; and (2) M 1 |N ∼ = M 2 |N for each composable N .
Example 5 (ATM: an example of behavioural equivalence). We use an example to illustrate our notion of interface. As our verification by monitors is done separately for each endpoint, one can safely modify a global specification as long as its projection on the public roles stays the same. The barbed congruence we introduce takes this into account: two networks proposing the same service, but organised in different ways, are equated even if the two networks correspond to different global specifications. As an example, consider global type

G 2 ATM defined as G ATM where G 2 Loop is used in place of G Loop from Example 3. G 2
Loop involves a fourth party, the transaction agent B: S sends a query to B which gives back a one-use transaction identifier. Then, the protocol proceeds as the original one. Notably, G ATM and G 2 ATM have the same interfaces for the client (resp. the authenticator), as their projections of on C (resp. A) are equal.

G 2 Loop = µ LOOP. S → B : { Query(){true}. B → S : { Answer(xt : int){true}. S → C : { Account(x b : int){x b ≥ 0}. C → S : { Withdraw(xp : int){xp ≥ 0 ∧ x b -xp ≥ 0}.
(NS | ∅ ; s[S] → α, s[C] → β, s[A] → γ) ∼ = (N 2 S | NB | ∅ ; s[S] → α, s[C] → β, s[A] → γ, s[B] → δ)
even if the first one implements the original ATM protocol while the second one implements its variant. Indeed, composed with any tester, such as

N C | N A = [P C] β | [P A
] γ these two networks will produce the same interactions. However, the corresponding partial networks N 2 S | N B and N S are not bisimilar: the former is able to perform a transition labelled s[S, B]!Query while the latter is not. This difference in behaviour is not visible to the barbed congruence, as it takes into account the router which prevents the messages s[S, B]!Query to be caught by a tester. As an example of network bisimilar to N S , consider:

N 1 = (νk) ([P S | P S [k/s]] α | [P C [k/s]] δ)
In this partial network, principal α plays both S in public session s (as in N S) and S in the private session k. Principal δ plays C in the latter. As k is private, N 1 offers the same observable behaviour than N S (no action on k can be observed), and we have N 1 ≈ N S .

Satisfaction We present a satisfaction relation for partial networks, which include local principals. If M is a partial network, |= M : Σ s.t. dom(Σ) = P(M), means that the specification allows all outputs from the network; that the network is ready to receive all the inputs indicated by the specification; and that this is preserved by transition.

Safety Assurance and Session Fidelity

In this section, we present the properties underpinning safety assurance in the proposed framework from different perspectives.

Theorem 7 shows local safety/transparency, and global safety/transparency for fully monitored networks. A network N is fully monitored wrt Σ when all its principals are monitored and the collection of the monitors is congruent to Σ. Local safety (7.1) states that a monitored process always behaves well with respect to the specification. Local transparency (7.2) states that a monitored process behaves as an unmonitored process when the latter is well-behaved (e.g., it is statically checked). Global safety (7.3) states that a fully monitored network behaves well with respect to the given global specification. This property is closely related to session fidelity, introduced later in Theorem 11. Global transparency (7.4) states that a monitored network and an unmonitored network have equivalent behaviour when the latter is well-behaved with respect to the same (collection of) specifications.

By Proposition 4 and (7.2), we derive Corollary 8 stating that weakly bisimilar static networks combined with the same global transport are congruent.

Corollary 8 (Local transparency). If |= [P]

α : α : Γ ; ∆ , then for any r ; h , we have (

[P] α | r ; h) ∼ = ([P] α | M | r ; h) with M = α : Γ ; ∆ .
By Theorem 7, we can mix unmonitored principals with monitored principals still obtaining the desired safety assurances.

In the following, we refer to a pair Σ; r ; h of a specification and a global transport as a configuration. The labelled transition relation for configurations, denoted by -→ g , is relegated to [START_REF] Bocchi | Monitoring networks through multiparty session types[END_REF]. Here it is sufficient to notice that the transitions of a configuration define the correct behaviours (with respect to Σ) in terms of the observation of inputs and outputs from/to the global transport r ; h . We write that a configuration Σ; r ; h is configurationally consistent if all of its multi-step input transition derivatives are receivable and the resulting specifications Σ is consistent.

We also use -→ g to model globally visible transitions of networks (i.e., those locally visible transitions of a network that can be observed by its global transport). Below, we state that a message emitted by a valid output action is always receivable. Theorem 11 (Session Fidelity). Assume configuration Σ; r ; h is configurationally consistent, and network N ≡ M | r ; h conforms to configuration Σ; r ; h . For any , whenever we have N -→ g N s.t. Σ; r ; h -→ g Σ ; r ; h , it holds that Σ ; r ; h is configurationally consistent and N conforms to Σ ; r ; h . By session fidelity, if all session message exchanges in a monitored/unmonitored network behave well with respect to the specifications (as communications occur), then this network exactly follows the original global specifications.

Lemma 9. Assume a network N ≡ M | r ; h conforming to Σ; r ; h which is configurationally consistent, if N - → g N such that is an output and Σ; r ; h - → g Σ ; r ; h•m then h • m is receivable to Σ .

Conclusion and Future Work

We proposed a new formal safety assurance framework to specify and enforce the global safety for distributed systems, through the use of static and dynamic verification. We formally proved the correctness (with respect to distributed principals) of our architectural framework through a π-calculus based theory, identified in two key properties of dynamic network: global transparency and safety. We introduced a behavioural theory over monitored networks which allows compositional reasoning over trusted and untrusted (but monitored) components.

Implementation As a part of our collaboration with the Ocean Observatories Initiative [17], our theoretical framework is currently realised by an implementation, in which each monitor supports all well-formed protocols and is automatically self-configured, via session initiation messages, for all sessions that the endpoint participates in. Our implementation of the framework automates distributed monitoring by generating FSM from the local protocol projections. In this implementation, the global protocol serves as the key abstraction that helps unify the aspects of specification, implementation and verification (both static and dynamic) of distributed application development. Our experience has shown that the specification framework can accommodate diverse practical use cases, including real-world communication patterns used in the distributed services of the OOI cyberinfrastructure [17].

Future work Our objectives include the incorporation in the implementation of more elaborate handling of error cases into monitor functionality, such as halting all local sessions or coercing to valid actions [START_REF] Schneider | Enforceable security policies[END_REF][START_REF] Ligatti | Run-time enforcement of nonsafety policies[END_REF]. In order to reach this goal, we need to combine a simplification of [START_REF] Capecchi | Global escape in multiparty session[END_REF] and nested sessions [START_REF] Demangeon | Nested protocols in session types[END_REF] to handle an exception inside MPSTs. We aim to construct a simple and reliable way to raise and catch exceptions in asynchronous networks. Our work is motivated by ongoing collaborations with the Savara2 and Scribble3 projects and OOI [17]. We are continuing the development of Scribble, its toolsuite and associated environments towards a full integration of sessions into the OOI infrastructure.

Related Work

Our work features a located, distributed process calculus to model monitored networks. Due to space limitations, we focus on the key differences with related work on dynamic monitoring.

The work in [START_REF] Ferrari | Guardians for ambient-based monitoring[END_REF] proposes an ambient-based run-time monitoring formalism, called guardians, targeted at access control rights for network processes, and Klaim [START_REF] De Nicola | Klaim: a kernel language for agents interaction and mobility[END_REF] advocates a hybrid (dynamic and static) approach for access control against capabilities (policies) to support static checking integrated within a dynamic access-control procedure. These works address specific forms of access control for mobility, while our more general approach aims at ensuring correct behaviour in sessions through a combination of static or run-time verification.

The work in [START_REF] Capecchi | Information flow safety in multiparty sessions[END_REF] presents a monitor-based information-flow analysis in multiparty sessions. The monitors in [START_REF] Capecchi | Information flow safety in multiparty sessions[END_REF] are inline (according to [START_REF] Chen | MOP:An Efficient and Generic Runtime Verification Framework[END_REF]) and control the information-flow by tagging each message with security levels. Our monitors are outline and aim at the application to distributed systems.

An informal approach to monitoring based on MPSTs, and an outline of monitors are presented in [START_REF] Chen | Asynchronous distributed monitoring for multiparty session enforcement[END_REF]. However, [START_REF] Chen | Asynchronous distributed monitoring for multiparty session enforcement[END_REF] only gives an overview of the desired properties, and requires all local processes to be dynamically verified through the protections of system monitors. In this paper, instead, we integrate statically and dynamically verified local processes into one network, and formally state the properties of this combination.

In summary, compared to these related works, our contribution focuses on the enforcement of global safety, with protocols specified as multiparty session types with assertions. It also provides formalisms and theorems for decentralised runtime monitoring, targeting interaction between components written in multiple (e.g., statically and dynamically typed) programming languages.

 . The other rules are homomorphic, following the grammar of global types inductively. Example 2 (ATM: the local type of C). We present the local type T C obtained by projecting G AT M on role C. TC = A!{Login(xi : string){tt}.

 PC = s[C, A]!Login(alice pwd123); s[A, C]?{LoginOK(); µX.P C , LoginFail().0} P C = s[S, C]?Account(x b); P C P C = if getmore() ∧ (x b ≥ 10) then s[C, S]!Withdraw(10); X else s[C, S]!Quit(); 0

PS

 = s[A, S]?{LoginOK(); µX.P S , LoginFail().0} P S = s[S, C]!Account(getBalance()); P S P S = s[C, S]?{Withdraw(xp).X, Deposit(x d).X, Quit().0 }

Definition 5 (

 5 Satisfaction). Let sbj() denote the subject of = τ . A relation R from partial networks to specifications is a satisfaction when M RΣ implies: 1. If Σ -→ Σ for an input and M has an input at sbj(), then M -→ M s.t. M RΣ . 2. If M -→ M for an output at , then Σ -→ Σ s.t. M RΣ . 3. If M τ -→ M , then Σ τ -→ Σ s.t. M RΣ (i.e. M RΣ since Σ τ -→ Σ always). When M RΣ for a satisfaction relation R, we say M satisfies Σ, denoted |= M : Σ. By Definition 5 and Proposition 4 we obtain: Proposition 6. If M 1 ∼ = M 2 and |= M 1 : Σ then |= M 2 : Σ.

Theorem 7 (

 7 Safety and Transparency).

1 .

 1 (Local Safety) |= [P] α | M : α : Γ ; ∆ with M = α : Γ ; ∆ . 2. (Local Transparency) If |= [P] α : α : Γ ; ∆ , then [P] α ≈ ([P] α | M) with M = α : Γ ; ∆ . 3. (Global Safety) If N is fully monitored w.r.t. Σ, then |= N : Σ. 4. (Global Transparency) Assum N and N have the same global transport r ; h . If N is fully monitored w.r.t. Σ and N = M | r ; h is unmonitored but |= M : Σ, then we have N ∼ N .

 Also, we state that, as N ≡ M | H and |= M : Σ, the satisfaction relation of M and Σ is preserved by transitions. Lemma 10. Assume N ≡ M | H and |= M : Σ. If N -→ g N ≡ M | H and Σ -→ Σ , then |= M : Σ .

 r1, . . . roles s, s , . . . session names X, Y, . . . process variables a, b, . . . shared names x, y, . . . variables P, Q, . . . processes α, β, . . . principal names N, N , . . .

networks

Processes Processes are ranged over by P, P , . . . and communicate using two types of channel: shared channels (or shared names) used by processes for sending and receiving invitations to participate in sessions, and session channels (or session names) used for communication within established sessions. One may consider session names as e.g., URLs or service names.

 LOOP, Deposit(x d : int){x d > 0}. LOOP, Quit(){true}.end }}}} We define P 2 S as P S in Example 3 but replacing the occurrence of P S in P S by s[S, B]!Query ; s[B, S]?Answer(x t).P S

	and also N 2 S = [P 2 S] α and N B = [µX.s[S, B]?Query ; s[B, S]!Answer getT rans()] δ .
	By definition, the two following networks are barbed-congruent:

We use a logic without quantifiers, contrary to[START_REF] Bocchi | A theory of design-by-contract for distributed multiparty interactions[END_REF], to simplify the presentation and because monitorability, defined later in this section, makes them unnecessary.

http://www.jboss.org/savara

http://www.scribble.org

This work has been partially sponsored by the project Leverhulme Trust Award Tracing Networks, Ocean Observatories Initiative and EPSRC EP/K011715/1, EP/G015635/1 and EP/G015481/1.