
HAL Id: hal-01213681
https://hal.science/hal-01213681v1

Submitted on 8 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architecture internalisation in BIP
Simon Bliudze, Joseph Sifakis, Marius Bozga, Mohamad Jaber

To cite this version:
Simon Bliudze, Joseph Sifakis, Marius Bozga, Mohamad Jaber. Architecture internalisation in BIP.
17th International ACM SIGSOFT Symposium on Component-Based Software Engineering, Jun 2014,
Lille, France. pp.169-178, �10.1145/2602458.2602477�. �hal-01213681�

https://hal.science/hal-01213681v1
https://hal.archives-ouvertes.fr

Architecture Internalisation in BIP

Simon Bliudze, Joseph Sifakis
EPFL, Station 14, CH-1015 Lausanne, Switzerland

Marius Bozga
UJF-Grenoble 1 / CNRS, VERIMAG, Grenoble, France

Mohamad Jaber
American University of Beirut, Lebanon

Abstract

We consider two approaches for building component-based systems,
which we call respectively architecture-based and architecture-agnostic.
The former consists in describing coordination constraints in a purely
declarative manner through parametrizable glue operators; it provides
higher abstraction level and, consequently, stronger correctness by con-
struction. The latter uses simple fixed coordination primitives, which are
spread across component behaviour; it is more error-prone, but allows
performance optimisation. We study architecture internalisation leading
from an architecture-based system to an equivalent architecture-agnostic
one, focusing, in particular, on component-based systems described in
BIP. BIP uses connectors for hierarchical composition of components. We
study connector internalisation in three steps. 1) We introduce and study
the properties of interaction expressions, which represent the combined
information about all the effects of an interaction. We show that they are
a very powerful tool for specifying and analysing structured interaction.
2) We formalize the connector semantics of BIP by using interaction ex-
pressions. The formalization proves to be mathematically rigorous and
concise. 3) We introduce the T/B component model and provide a se-
mantics preserving translation of BIP into this model. The translation
is compositional that is, it preserves the structure of the source models.
The results are illustrated by simple examples. A Java implementation is
evaluated on two case studies.

Keywords BIP; interaction expressions; connectors; data transfer; archi-
tecture internalisation; Top/Bottom component model

1

1 Introduction

Architectures depict design principles, paradigms that can be understood by
all, allow thinking on a higher plane and avoiding low-level mistakes. They are
a means for ensuring correctness by construction by enforcing global properties
characterizing the coordination between components.

Using architectures largely accounts for our ability to master complexity and
develop systems cost-effectively. System developers extensively use libraries of
reference architectures ensuring both functional and non-functional properties,
for example fault-tolerant architectures, architectures for resource management
and QoS control, time-triggered architectures and security architectures.

Using architectures allows shifting the focus of developers from low-level
code to high-level structures ensuring coordination in a component-based sys-
tem. These structures are constraints between the coordinated components ex-
pressed in terms of communication mechanisms such as multiparty interaction,
message passing, broadcast etc. Formally they can be understood as the assem-
bly of coordination mechanisms which restrict the behavior of the coordinated
components so as to satisfy a global characteristic property.

There exists an abundant literature on software architectures. Most papers
study Architecture Description Languages (ADLs) for representing and analyz-
ing architectural designs [15]. ADLs provide both conceptual frameworks and
concrete syntax for characterizing software architectures. They also provide
tools for parsing, compiling, analyzing, or simulating architectural descriptions
written in their associated language. While all ADLs are concerned with ar-
chitectural design, there is no agreement on what is an ADL, what aspects of
architecture should be modeled in an ADL, and which of several possible ADLs
is best suited for a particular problem. The borders between the realm of the
ADLs and that of programming languages are blurring.

Despite the considerable diversity in the capabilities of different ADLs, they
all share a common paradigm: software can be designed as the hierarchical
composition of components by application of architectures. Components are
computational elements characterized by their behavior and their interface. The
latter defines points of interaction between a component and its environment.

ADLs specify the “glue” of architectural designs, usually expressed as the
combination of connections between components. Connections may denote sim-
ple interaction mechanisms such as rendezvous, broadcast and function call.
But they also may represent more complex ones such as protocols, buses and
schedulers. In both cases, they are intended to specify two main aspects of in-
teraction: 1) control-flow that is synchronization constraints; 2) data-flow that
is how data of each component are transformed upon interaction.

If the ADL is expressive enough, it is possible to describe architectures in
a purely declarative manner. Architectures can be understood as constraints
that adequately restrict the behavior of the coordinated components so as to
achieve a desired coordination property. They are defined to a large extent,
independently from the components that make up the system. We speak then
of an architecture-based approach for building component-based systems. An-

2

xp := xw;xq := xw]

p xp q xq

w xw

(w ← p q).[tt : xw := max(xp, xq) //

(a) Simple BIP connector

p xp q xq

(w ← p q).[tt : xw := max(xp, xq) // xp := xw;xq := xw]
(r ← w s).[tt : xr := max(xw, xs) // xw := xr;xs := xr]

s xs

w xw

r xr

(b) Hierarchical BIP connector

p xp q xq

r xr

s xs

(r ← p q s).[tt : xr := max(xp, xq, xs) //
xp, xq, xs := xr]

(c) Simple equivalent of Fig. 1b

Figure 1: BIP connectors

other approach considers irrelevant the distinction between atomic components
and their associated coordination mechanisms: a system consists of a set of
components—some providing basic functionality and some ensuring coordina-
tion. Dependencies between components are explicitly described by their be-
havior (code) via import clauses, function calls and read/write instructions. We
call this approach architecture-agnostic.

The distinction between architecture-based and architecture-agnostic ap-
proaches appears very early in process algebra theories. CCS proposes a single
parallel composition operator based on matching between input and output ac-
tions occurring in the description of processes. On the contrary, CSP, proposes
a parallel composition operator parameterized by a set of actions that must syn-
chronize. The dichotomy illustrated by this example is further accentuated in
practice. Architecture-based approaches adopted by ADLs are CSP-like. They
consider coordination as external and independent from the evolution of com-
ponents. Architectures are, to a large extent, entities distinct from behavior.
They are combinations of operators parameterized by the allowed interactions.
Architecture-agnostic designs are based on a single composition operator. Co-
ordination is described in terms of communication primitives appearing in their
code. This approach is taken by most programming languages and by the vari-
ous process algebras cloned from CCS.

In this paper, we study architecture internalization leading from an architecture-
based system to an equivalent architecture-agnostic one. Two main reasons mo-
tivate this study. One is the exploration of relationships between architecture-
based and architecture-agnostic approaches. The other is more practically ori-
ented and deals with the possibility to compile declarative-style architectural
constraints into executable code. Is it possible to generate from an architecture-
based system an equivalent architecture-agnostic one, where architecture glue
is cast in dependencies between components explicitly described in their code?

3

We study the internalization problem for component-based systems described
in BIP [5]. BIP (Behaviour, Interaction, Priority) is a component-based frame-
work that allows hierarchical composition of components by using connectors.
Components can be considered as transition systems. A component interface
consists of ports that label its transitions with associated exported variables.
From some state, a port p can participate in an interaction if the component
has a transition labeled by p which is enabled at this state.

In BIP, a connector is composed of two distinct parts:
Control-flow part specifies a relation between a set of bottom ports and a

set of top ports. The interaction requires synchronization of all the ports. The
top ports can be used to export the results of the interaction.

Data-flow part specifies the computation associated with the interaction.
The computation can affect local variables and those associated with the ports.

In Fig. 1a, we provide the specification of the connector describing the in-
teraction between two ports p and q. The control flow part is described by
the relation w ← pq meaning that for the interaction w to take place both p
and q should participate—{p, q} is the set of bottom ports and {w} is the set
of top ports. The data-flow part consists of an upward computation followed
by a downward computation separated by “ // ”. The execution of an inter-
action is atomic. For the considered example, the interaction between p and
q consists in computing max(xp, xq) and assigning this value to the variables
xp and xq. Fig. 1b depicts a hierarchical connector r enforcing the interaction
between ports p, q and s. The execution of this interaction results in an upward
computation of max(max(xp, xq), xs) followed by a downward computation as-
signing this value to the port variables of the atomic components. As shown in
[10], hierarchical connectors can be flattened into equivalent connectors. Fig. 1c
shows a connector equivalent to the hierarchical connector by eliminating the
interaction w.

Internalization of connectors in BIP models, consists in replacing them by a
set of coordinators that directly implement their semantics. Coordinators play
the role of an Engine that handles each interaction atomically. The internalized
BIP model is the plain composition of the atomic BIP components with a set
of coordinators, in bijection with the BIP connectors. To describe coordina-
tors, we extend the BIP component model. The behavior of the components of
the extended model is a set of transitions labeled with interaction expressions.
Their interface is composed of sets of top and bottom ports and associated vari-
ables. As all the interaction capabilities of components are specified in their
behavior, they can be composed without any additional external information.
We show that component composition in the new model, called Top/Bottom
(T/B) model, can be expressed by using a single associative partial operator ‖.

The correspondence between a connector and the associated coordinator is
straightforward. The latter is a T/B component that has the same interface
as the connector (same set of top and bottom ports and associated variables).
It exhibits a cyclic behavior by computing the data transfer functions of the
connector. Fig. 2 illustrates the principle of connector internalization on a
simple example. The corresponding coordinator is a stateless automaton that

4

Internalisation

p

p

q

q

w
(w ← p q).[guard : up // dn] (w ← p q).[guard : up // dn]

p

q

q

w

p

Figure 2: A BIP and the corresponding T/B component

can perform a transition labeled by the interaction expression. Top and bottom
ports are shown by blue outward- and red inward-facing triangles, respectively.

We study the connector internalization problem for BIP in three steps. First,
we study interaction expressions and their properties. We show in particular
that they are a very powerful tool for specifying and analyzing structured inter-
action. Second, we formalize the connector semantics of BIP by using interaction
expressions. The formalization proves to be mathematically rigorous and con-
cise. It treats on an equal footing control and data flow aspects. It differs from
previous formalizations that were focusing mainly on control flow. Third, we
introduce the T/B component model and provide a semantics preserving trans-
lation of BIP into this model. The translation is compositional: it preserves the
structure of the source models.

We discuss an implementation of the T/B components and provide an algo-
rithm for their execution. The implementation can be used for the execution of
BIP components after internalization of their connectors. Furthermore, it can
be used for the execution of general T/B models.

The paper is structured as follows. In Sect. 2, we introduce the notion of
interaction expressions, shared by all the models in the subsequent sections.
In Sect. 3, we provide a formalization of connectors in BIP and present their
properties. In Sect. 4, we present the T/B component model, study its proper-
ties and present a structured encoding of BIP models. In Sect. 5, we provide
experimental results about a Java-based implementation.

2 Interactions

2.1 Structured Partial Functions

Let (Di)i∈I be data domains, I a universal index set. For each I ⊆ I, denote by

D[I]
∆
=
∏
i∈I Di the set of unordered tuples u = (ui)i∈I , such that ui ∈ Di, for

all i ∈ I. For I = ∅, we have D[∅] = 1
∆
= {∗}. For each u = (ui)i∈I ∈ D[I] and

I ′ ⊆ I define the projection uI′ = (ui)i∈I′ ∈ D[I ′]. We also denote uI′
∆
= uI\I′

the complementary projection. For I, J ⊆ I, the merge of tuples is the partial
operation t : D[I] × D[J] → D[I ∪ J] defined only if 6 ∃i ∈ I ∩ J : ui 6= vi, by

putting, for u ∈ D[I],v ∈ D[J], u t v
∆
= (wi)i∈I∪J , with ∀i ∈ I, wi = ui and

∀j ∈ J, wj = vj .
Consider structured partial functions F : D[I] → D[J]. For each J ′ ⊆ J

the projection FJ′ : D[I] → D[J ′] is defined by putting FJ′(u)
∆
= F (u)J′ , for

all u ∈ D[I]. The complementary projection notation is extended analogously:

5

G

FI

K \ J

J ∩K

u (G ◦ F)(u)

J

L

Figure 3: Composition of structured functions

FJ′
∆
= FJ\J′ . The composition of two structured partial functions F : D[I] →

D[J] and G : D[K]→ D[L] is the structured partial function G ◦ F : D[I ∪ (K \
J)]→ D[J ∪L] defined, when all sub-terms are defined, by putting (G◦F)(u)

∆
=

F (uI) tG(FK∩J(uI) t uK\J) (see Fig. 3).

Proposition 2.1 Composition of structured partial functions is associative. It
is commutative whenever J ∩K = I ∩ L = ∅.

For any I ⊆ I, let XI = {xi :Di | i ∈ I} be a set of typed variables xi with
corresponding domains Di. We write XI :D[I] to denote the product domain of
the variables in XI .

Let F : D[I]→ D[J] be a structured partial function, such that I∩J 6= ∅ and
consider a non-empty set of variables XL :D[L] with L ⊆ I ∩ J . The variables
XL can be used with F as local variables to compute values in D[J \ L] based
on values in D[I \ L]; the variables XL are updated by side effect. We write
F [[XL]] : D[I \ L]→ D[J \ L].

Let v ∈ D[L] be the valuation of XL and let u ∈ D[I \L]. If F is defined on
(u,v), an application of F [[XL]] to u produces the values w ∈ D[J \ L] and the
new valuation v′ ∈ D[L] of XL, such that (w,v′) = F (u,v).

Lemma 2.2 Let F1[[XL1
]] and F2[[XL2

]] be two structured partial functions and
assume L1 ∩ L2 = XL1 ∩ XL2 = ∅. Then holds F1[[XL1]] ◦ F2[[XL2]] =

(
F1 ◦

F2

)
[[XL1

∪XL2
]].

Structured partial functions with local variables are particularly useful for
the definition of the semantics of assignment expressions of the form (XJ , XL) :=
e(XI , XL), where e is an expression on variables XI and XL. Indeed, the
expression defines a structured partial function e : D[I ∪L]→ D[J ∪L] and the
fact that variables XL appear on both sides of the assignment is reflected by
considering e[[XL]].

2.2 Interaction Expressions

Interaction expressions defined below represent the combined information about
all the effects of an interaction involving several ports. We show that they are
the basic and general concept for expressing coordination in both architecture-
based and architecture agnostic models.

Let P ⊆ I be a set of ports. For each p ∈ P, let xp : Dp be a typed
variable. The interaction expressions represent the combined information about
the effects of an interaction involving several ports.

6

Definition 2.3 An interaction is an expression of the form α(XL) = (P ←
Q).[g(XQ, XL) : (XP , XL) := up(XQ, XL) //
(XQ, XL) := dn(XP , XL)], where P,Q ⊆ P are the top and bottom sets of
ports ; XL : D[L] is the set of local variables ; g(XQ, XL) is the boolean guard ;
up(XQ, XL) and dn(XP , XL) are respectively the up- and downward data trans-
fer expressions.

For an interaction expression α(XL) as above, we denote by top(α)
∆
= P ,

bot(α)
∆
= Q and supp(α)

∆
= P ∪Q the sets of top, bottom and by all ports in α,

respectively. We denote gα, upα and dnα the corresponding expressions in α.

The first part, (P ← Q), of an interaction expression describes the control
flow, that is the dependency relation between the bottom and the top ports.
The expression in the brackets describes the data flow. The guard g(XQ, XL)
gives the dependency between the two parts: interaction is only enabled when
the values of the local variables together with those of variables associated to
the bottom ports satisfy a boolean condition. As a side effect, the firing of an
interaction expression can modify the local variables XL.

Notice that an interaction expression can be understood as a generalized
synchronous function call involving a set of callees P and a set of callers Q.
When the callers Q are enabled, they offer a set of parameter values XQ that
are used to compute sequentially the two functions up and dn. The computation
is possible only if the guard g is true depending on the values of the exported
parameters and the local variables. The up function updates the variables of the
callees and the local variables. The returned values of the caller variables are
computed by the dn function that also updates the local variables. As explained
in Section 3, when interactions are structured hierarchically, the callees at one
level may become callers for the upper levels.

Formally, the data transfer semantics of α is defined by two parameterised
structured partial functions α↑[[XL]] : D[Q]→ D[P] and α↓[[XL]] : D[P]→ D[Q]:

α↑[[XL]](u) = up[[XL]](u) if g(u,v) = tt , for all u ∈ D[Q] ,

α↓[[XL]](u) = dn[[XL]](u) , for all u ∈ D[P] ,

where v is the current valuation of variables XL. The top-level semantics of α

is
_
α [[XL]] : D[Q]→ D[Q], with

_
α [[XL]] = α↓[[XL]] ◦ α↑[[XL]].

Example 2.4 The interaction expression αio(∅) = (w ← out in1 in2).[tt :
xw := xout // xin1

, xin2
:= xw] represents the coordination between an port out

that delivers simultaneously its value to two ports in1 and in2. To avoid synchro-
nization when the data at ports in have the same value as at out, we add a guard:
(w ← out in1 in2).[(xout 6= xin1)∨ (xout 6= xin2) : xw := xout // xin1 , xin2 := xw] .
The interaction expression Max (∅) = (w ← pqr).[tt : xw := max(xp, xq, xr) // xp, xq, xr := xw]
allows the synchronization between ports p, q and r and returns the maximum
of the values associated to these ports.

7

Definition 2.5 The composition of interaction expressions is a partial opera-
tion ‘ ;’ defined, for two interaction expressions α1, α2, with XL1 ∩ XL2 = ∅,
XL = XL1

∪XL2
and αi(XLi

) = (Pi ← Qi).[gi(XQi
, XLi

) : (XPi
, XLi

) := upi(XQi
,

XLi
) // (XQi

, XLi
) := dni(XPi

, XLi
)], for i = 1, 2, by putting

(α1;α2)(XL)
∆
= (P ← Q).[g(XQ, XL) :

(XP , XL) := up(XQ, XL) // (XQ, XL) := dn(XP , XL)] ,

where P = P1∪P2 and Q = Q1∪Q2, up(XQ, XL) = up2(XQ2
, XL2

) ◦up1(XQ1
, XL1

),
dn(XP , XL) =
dn1(XP1

, XL1
) ◦ dn2(XP2

, XL2
), g(XQ, XL) =

g1(XQ1
, XL1

) ∧
[
g2(XQ2

, XL2
) ◦ up1(XQ1

, XL1
)
]
P1∪L1

(the projection in the second conjunct removes the outputs of up1, keeping only
the boolean value of g2—cf. Fig. 3).

Notice that three expressions g(XQ, XL), up(XQ, XL) and dn(XP , XL) do
not involve variables in XP1∩Q2 .

Example 2.6 We continue Ex. 2.4. The composition of two interaction expres-
sions, Max1(∅) and Max2(∅), respectively

(w ← pqr).[tt : xw := max(xp, xq, xr) // xp, xq, xr := xw]

(z ← uvw).[tt : xz := max(xu, xv, xw) // xu, xv, xw := xz]

is the new interaction expression:

(Max1;Max2)(∅) = (wz ← pqruvw).[tt :

xw := max(xp, xq, xr), xz := max(xu, xv,max(xp, xq, xr) //

xp, xq, xr, xu, xv, xw := xz]

Proposition 2.7 The operator ‘ ;’ is associative. When P1 ∩ Q2 = P2 ∩ Q1 =
XL1 ∩XL2 = ∅, it is also commutative.

Under this disjointness condition, we write α1|α2
∆
= α1;α2 = α2;α1 and

speak of interaction synchronisation.

3 Architecture-Based Model

This section provides a brief overview of BIP and a formalisation for simple
and hierarchical connectors in BIP. The latter formalisation comprises abstract
syntax and denotational semantics in terms of partial functions operating on
structured domains. In addition, it formalises the flattening as a rewriting rule
on hierarchical connectors and proves its soundness as a semantics-preserving
transformation.

8

cnt1 mv2

ready1

ready2

cnt2mv1

(mv0 ← mv1mv2).[d1, d2 > 0 : d0 := min(d1, d2); dir0 := dir1 + dir2 // d1, d2 := d0; dir1, dir2 := dir0]

(cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0]

ldr := (id2 = 2)]

(cnt2 ← ∅).
[tt : id2 := 2 //

(mv2 ← ∅).[tt :

// e := h2(e, d2, dir2)]

d2 := f2(e); dir2 := dir

(ready2 ← ∅).[ldr : dir := rnd(−1,+1) //−]

(ready2 ← ∅).[¬ldr : dir := 0 //−]

Local data: e, dir :R; ldr :B

(mv1 ← ∅).[tt :

// e := h1(e, d1, dir1)]

d1 := f1(e); dir1 := dir

ldr := (id1 = 1)]

(cnt1 ← ∅).
[tt : id1 := 1 //

(ready1 ← ∅).[¬ldr : dir := 0 //−]

(ready1 ← ∅).[ldr : dir := rnd(−1,+1) //−]

Local data: e, dir :R; ldr :B

Figure 4: Leader/Follower example

3.1 Simple Connectors in BIP

In BIP, systems are build by composing atomic components with interactions
defined using connectors. As in Sect. 2, let P ⊆ I be a set of ports and assume
that a variable xp :Dp is associated with each port p ∈ P.

Definition 3.1 An atomic component B is a tuple B = (Σ, P,XL : D[L],−→)
where Σ is a finite set of control locations ; P ⊆ P is a finite set of ports—the
interface of B ; XL :D[L] is a set of local variables, with XL ∩ XP = ∅ ; −→ ⊆
Σ×E ×Σ is a finite transition relation, with E the set of interaction expressions
of the form p(X) = (p← ∅).[g(X) : xp := up(X) //X := dn(xp, X)], for p ∈ P
and X ⊆ XL.

Henceforth, we call interaction expressions of this form actions. We use p
for both the port and the action.

Definition 3.2 The operational semantics of an atomic component B = (Σ, P,XL :
D[L],−→) is given by an LTS σ (B) =

(
Σ×D[L], 2P × (

⋃
p∈P Dp)

2,−→
)
, where a

state (q, v) consists of a control state of B and the valuation v ∈ D[L] of local
variables; −→ is the minimal transition relation defined by the following rule:

p(X) = (p← ∅).[g(X) : xp := up(X) //X := dn(xp, X))]

q
p(X)−−−→ q′, g(v) = tt , vpup = upp(v) , v′ = dn

(
vpdn, upX(v)

)
(q, v)

p−−−−−→
vpup:vpdn

(q′, v′) ,

where upp and upX are the corresponding components of the up expression;
vpup, v

p
dn ∈ Dp are the data values associated to the port p at the upward and

downward data transfer.

Example 3.3 The system shown in Fig. 4 consists of two identical atomic
components that can toghether move in one of two opposite directions. They
have to agree on the distance, based on their respective energy levels. Each
component has two real local variables: e to store its energy level and dir to
store its opinion on the direction to follow, as well as a boolean variable ldr
to remember whether it is a leader or not. In each operation cycle the i-th
component performs the following three steps:

First, the component performs the connect action cnti(ldr) = (cnti ← ∅).[tt :
idi := i // ldr := (idi = i)], where i is the constant component id (see Fig. 4)

9

and idi is the variable associated to the port cnti. In the upward transfer, the
component proposes itself as a candidate for the leadership. In the downward
transfer, the updated value of idi is compared to the component id. The result
of this comparison is stored in the local variable ldr.

In the second step, the component performs its corresponding action readyi(dir, ldr).
The leader randomly picks the direction and stores it in the local variable
dir: (readyi ← ∅).[ldr : dir := rnd(−1,+1) //−]. The follower stores zero:
(readyi ← ∅).[¬ldr : dir := 0 //−]. These actions do not have any downward
data transfer, but only update the local data in the upward transfer.

In the last step, the leader and the direction of the movement are chosen. The
component performs the action move: (mvi ← ∅).[tt : di := fi(e); diri := dir // e := hi(e, di, diri)].
In the upward transfer, the component exposes the distance it can cover based
on its available energy stored in the local variable e, as well as its direction sug-
gestion stored in the local variable dir from the previous step. In the downward
transfer, the move is materialised by updating the energy level of the component,
based on the new values of the direction and distance of the move.

Definition 3.4 A simple connector is an interaction expression α(XL), such
that top(α) = {w} is a single port w ∈ P, bot(α) = a ⊆ P, such that w 6∈ a,
and both up and g expressions do not involve local variables, i.e. α(XL) = (w ←
a).[g(Xa) : (xw, XL) := up(Xa) //Xa := dn(xw, XL)].

Example 3.5 Consider the connector (without local variables) shown in Fig. 4:

(cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0].

On every cnti port the value idi represents the id of a component interacting
through this port. The guard of the interaction expression is a constant true,
hence no additional restrictions are imposed on the interaction. As part of
the upward data transfer the connector randomly picks and propagates one
of the proposed id’s. At the downward data transfer, the updated value is
communicated to both participating ports.

Definition 3.6 Let B = {B1, . . . , Bn} be a finite set of atomic components with
Bi = (Σi, Pi, XLi

:D[Li],−→) such that their respective sets of ports and variables
are pairwise disjoint. Let Γ be a set of simple connectors such that, for every
α ∈ Γ, top(α) 6∈

⋃n
i=1 Pi, bot(α) ⊆

⋃n
i=1 Pi and |supp(α) ∩ Pi| ≤ 1 for all

i ∈ [1, n]. The operational semantics of the parallel composition Γ(B) is defined
as the LTS (Σ, P,−→) where Σ =

∏n
i=1(Σi × D[Li]), P = {top(α) |α ∈ Γ}, −→ is

the minimal transition relation defined by the rule

α(XL) ∈ Γ top(α) = w bot(α) = a = {pi | i ∈ I}
∀i ∈ I, qi

pi(Xi)−−−−→ q′i ∀i 6∈ I, (qi = q′i ∧ ui = u′
i)

α? = (|a);α (u′
i)i∈I =

[
_
α? [[XL]]

(
(ui)i∈I

)]⋃
i∈I Li

(q1,u1), . . . , (qn,un)
w−→ (q′1,u

′
1), . . . , (q′n,u

′
n) ,

where |a is the synchronisation of all pi(Xi) with pi ∈ a.

10

Notice that the involved interaction expressions are partial. Hence, for in-
stance, when the guard of one of the actions is not satisfied, the values (u′

i)i∈I
are undefined and, thus, the rule is not applicable.

Intuitively, an interaction can be fired only if its guard and all guards asso-
ciated to the corresponding component actions are true. When an interaction
is fired, its upward transfer is computed first using the exposed values offered
by the participating components. Then, the downward transfer modifies back
all the port variables followed by execution of the update functions associated
to component actions.

Example 3.7 The first synchronisation among the atomic components of Ex. 3.3
is performed through the connector (cnt0 ← cnt1cnt2).[tt : id0 := rnd(id1, id2) // id1, id2 := id0].
The id of the leader is randomly selected in the connector and transferred down-
ward through both participating ports. In the next step each component idepen-
dently performs its corresponding step readyi (see Ex. 3.3). Finally, components
synchronise again through the connector

(mv0 ← mv1mv2).[d1, d2 > 0 :

d0 := min(d1, d2); dir0 := dir1 + dir2 //

d1, d2 := d0; dir1, dir2 := dir0)] .

The distances each component can cover and their direction suggestions are
combined in the connector to compute the global distance and direction (vari-
ables d0 and dir0), which are propagated further, updated and then distributed
down to components.

3.2 Hierarchical Connectors in BIP

Definition 3.8 A hierarchical connector hα is a term generated by the gram-
mar hα ::= α | α〈hα1, . . . , hαn〉, where α denotes an arbitrary simple connector.
We extend the top(), bot() and supp() to hierarchical connectors:

top(α〈hα1, . . . , hαn〉) = top(α) ,

bot(α〈hα1, . . . , hαn〉) =
⋃n
i=1 bot(αi) ,

supp(α〈hα1, . . . , hαn〉) = supp(α) ∪
⋃n
i=1 supp(hαi) .

hα = α〈hα1, . . . , hαn〉 is valid iff all sets supp(hαi), for i ∈ [1, n], are
pairwise disjoint; for all i ∈ [1, n], holds supp(hαi)∩ supp(α) = {top(hαi)} and
top(hαi) ∈ bot(α) ; and all hierarchical sub-connectors hα1, . . . , hαn are valid.

We tacitly restrict ourselves to valid hierarchical connectors. Their data
transfer semantics is defined structurally:

α〈hα1, . . . , hαn〉↑ = α↑ ◦ (hα1
↑ ◦ · · · ◦ hαn↑)

α〈hα1, . . . , hαn〉↓ = (hα1
↓ ◦ · · · ◦ hαn↓) ◦ α↓

Notice that the order of composition for sub-connector functions is irrelevant as
they operate on disjoint sets of ports.

11

cnt1mv1

ready1

ready2

cnt2 mv2 cnt3 mv3

ready3

cnt0

mv0

(mv ← mv0mv3).[d0, d3 > 0 : d := min(d0, d3); dir := dir0 + dir3 // d0, d3 := d; dir0, dir3 := dir]

(cnt← cnt0cnt3).[tt : id := rnd(id0, id3) // id0, id3 := id]

ready1

ready1

cnt
1 m

v 1

ready3

ready3

cnt
3

m
v 3

ready2

ready2

cnt
2

m
v 2

Figure 5: Leader/follower example with three atomic components

Example 3.9 We continue the running example of this section. Consider a sys-
tem shown in Fig. 5, combining that of Fig. 4 with a third atomic component of
exactly the same type as the other two. The behavour of the systems is gener-
alised by a hierarchical application of the same (up to port renaming) connec-
tors mv and cnt. Composing the interaction expressions for simple connectors
cnt0 and cnt gives (cnt0 cnt ← cnt0 cnt1 cnt2 cnt3).[tt : id0 := rnd(id1, id2);
id := rnd(id1, id2, id3) // id0, id1, id2, id3 := id]. Notice that, by discarding the
port cnt0 and the associated variable id0, we obtain an equivalent simple con-
nector (cnt← cnt1 cnt2 cnt3).[tt : id := rnd(id1, id2, id3) // id1, id2, id3 := id].

Similarly, any hierarchical connector can be flattened into a simple one [10],
allowing us to extend BIP operational semantics (Def. 3.6) to hierarchical con-
nectors. This is done formally in the extended version of this paper [6].

4 Architecture Agnostic Model

4.1 T/B Component Model

Architecture-agnostic models are obtained from BIP models as the plain com-
position of Top/Bottom (T/B) components. In the translation, BIP connectors
are replaced by T/B components that play the role of coordinators. These are
extensions of the BIP components whose transitions are labeled with interac-
tion expressions. The parallel composition mechanism relies on the matching
between bottom and top ports (as for hierarchical connectors).

Interaction execution exhibits a cyclic pattern. In each cycle, the data of
interacting atomic components are propagated upwards through top ports to-
wards all relevant coordinators. At each stage, the computation can influence
the decision as to what transitions of atomic components are enabled. Finally,
once a global interaction has been choosen at the top level, the updated data is
propagated back to atomic components. As above, we assume a universal set of
ports P and, for each port p ∈ P, a typed variable xp :Dp.

Definition 4.1 A T/B component is a tuple T = (Σ, P bot, P top, XL :D[L],−→),
where Σ is a set of states, P bot, P top ⊆ P are finite sets of bottom and top
ports; XL :D[L] is a set of local data variables; −→⊆ Σ × E × Σ is a transition
relation, with E being the set of action expressions α(X), such that X ⊆ XL,

top(α) ⊆ P top, bot(α) ⊆ P bot. We write q
α(X)−−−→ q′ for

(
q, α(X), q′

)
∈−→.

12

A T/B component (Σ, P bot, P top, XL :D[L],−→) is an atomic component, if
P bot = ∅; it is a coordinator if P bot 6= ∅, but P bot ∩ P top = ∅. Finally, if
P bot ∩ P top 6= ∅, the T/B component is compound (obtained by hierarchically
composing atomic components and coordinators).

Definition 4.2 The operational semantics of a T/B component T = (Σ, P bot, P top, XL :
D[L],−→) is given by an LTS σ (T) = (Σ × D[L], 2P × D[P]2,−→), where a state
(q, v) consists of a control state of T and the value v ∈ D[L]; −→ is the minimal
transition relation defined by the following rule:

α(X) = (atop ← abot).[g(Xabot , X) :
(Xatop , X) := up(Xabot , X) // (Xabot , X) := dn(Xatop , X)]

q
α(X)−−−→ q′ g(vbotup , v) = tt vtopup = upatop(vbotup , v)

(vbotdn , v
′) = dn

(
vtopdn , upX(vbotup , v)

)
(q, v)

a−−−−−→
vup:vdn

(q′, v′) ,

where a = atop ∪ abot; upatop and upX are the corresponding components of
the up expression; vup,vdn ∈ D[P] are partial data valuations associated to
ports at the upward and downward data transfer phases respectively (the values
of variables assocaited to ports that do not participate in the interaction are
undefined).

Notice that T/B components and their operational semantics generalise
atomic BIP components (Def. 3.2). In particular, all components in the ex-
amples of Sect. 3 are T/B components without bottom ports.

Note 4.3 Notice that the values vup and vdn do not directly correspond to
inputs and outputs. Indeed, in terms of the transferred data, the component
input is the pair (vbotup ,v

top
dn), whereas its output is the pair (vtopup ,v

bot
dn).

Recall the generalised function call metaphor (see the discussion after Def. 2.3).
When a transition labelled by α(X) is called, it is provided the values vbotup . If
these values satisfy the guard g, they are used by the function up to compute
the values vtopup , which are provided to the subsequent callees. In return, the

latter provide the updated values vtopdn , which are, finally, used by the function
dn to compute vbotdn .

4.2 Systems and Composition

Definition 4.4 Let S = {(Σi, P boti , P topi , XLi
: D[Li],−→)}ni=1 be a finite set of

T/B components and denote P bot
∆
=
⋃n
i=1 P

bot
i and P top

∆
=
⋃n
i=1 P

top
i . Here and

below, we skip the index on −→ since it is always clear from the context. S is
a system iff the sets of local variables and top ports of all the components are
pairwise disjoint, i.e. ∀i 6= j, Xi ∩Xj = P topi ∩ P topj = ∅. A system is closed if

P bot = P top.

13

0 1

32

∅ ← t0

t1 ← t0

∅ ← t1

t2 ← t1

R0

R1

t0

t1

t2

(a)

20 21

3031

∅ ← t0

∅
←
t 0
t 1 ∅ ←

t
1

t1 ← t0

t
1
←
t
0 t

1

∅ ← t0

t
2
←
t
0 t

1

t
2 ←

t
1

t1 ← t0

t
1 t

2
←
t
0 t

1

t1 t2

t0 t1

(b)

R0 R1

t0 ← ∅

∅ ← t2

t0

t1 t2

(c)

20 21

3031

t0 ← t0

t
0 t

1
←
t
0 t

1

t0 ← t0

t 0
t 1
t 2
←
t 0
t 1
t 2

(d)

Figure 6: T/B component model for the Mod-4 Counter

Definition 4.5 Let Ti = (Σi, P
bot
i , P topi , XLi

: D[Li],−→), for i = 1, 2, be two
T/B components, such that P top2 ∩ P bot1 = ∅ (cf. Def. 4.8 below). Their paral-

lel composition is a compound T/B component T1 ‖ T2
∆
= (Σ, P bot, P top, XL :

D[L],−→), where Σ = Σ1 × Σ2, P bot = P bot1 ∪ P bot2 , P top = P top1 ∪ P top2 ,
XL = XL1 ∪ XL2 and −→ is the minimal transition relation defined by the fol-
lowing rules (i 6= j ∈ {1, 2}):

qi
αi(Xi)−−−−→ q′i

qiqj
αi(Xi)−−−−→ q′iqj ,

q1
α1(X1)−−−−→ q′1 q2

α2(X2)−−−−→ q′2

q1q2
(α1;α2)(X)−−−−−−−→ q′1q

′
2 .

When P top1 ∩ P bot2 = ∅, we put T1 ‖ T2
∆
= T2 ‖ T1. Thus, ‖ is a commutative

partial operator defined when P top2 ∩ P bot1 = ∅ or P top1 ∩ P bot2 = ∅. When both
equalities hold, the transition in the conclusion of the second rule is labelled
by α1 ‖ α2, which is symmetric in the order of its operands. When both
P top2 ∩ P bot1 6= ∅ and P top1 ∩ P bot2 6= ∅, this means that there is a data-flow
causality loop among the two components (as in I/O models [11, 14]) and the
composition is undefined.

Example 4.6 Fig. 6a shows a simple model consisting of two T/B components
R0 and R1 without data variables and transfer, identical up to port renaming.
Each models a Mod-2 counter, which produces one event on its top port (shown
by blue outward-facing triangles) for every second event on its bottom port
(shown by red inward-facing triangles). R0 and R1 share port t1. Fig. 6b shows
the T/B component R0 ‖ R1 (for clarity we omit two transitions indicated by
the dotted green arrow).

Proposition 4.7 Composition operator ‖ is associative.

Definition 4.8 Let S be a system and consider the directed graph τ(S) =
(S,E), having the components of the system as vertices and the set of edges
E = {(Ti, Tj) |P topi ∩ P botj 6= ∅}. In other words, there is an edge from Ti to
Tj if some of the top ports of the former are bottom ports of the latter. S is
composable iff τ(S) is a directed acyclic graph.

In a composable system S, any pair of components can be ordered so as
to satisfy the requirement of Def. 4.5. Thus, by Prop. 4.7, the composed T/B
component ‖S is well-defined.

14

As in process calculi like CCS [16], in order for the composition operator ‖ to
be associative, it must allow interleaving (i.e. independent firing) of transitions
involving matchable ports (compare first and third rules in Def. 4.5 with the
second rule). The meaning of a complete system is defined as the largest closed
sub-system obtained by pruning out all the non-matching transitions; thus the
following definition.

Definition 4.9 Let S = {(Σi, P boti , P topi , XLi
:D[Li],−→)}ni=1 be a closed com-

posable system and let ‖S =
(
Σ, P bot, P top, XL :D[L],−−→

par

)
. The restriction of

S is given by a T/B component ρ(S) =
(
Σ, P bot, P top, XL :D[L],−→

pr

)
, where −→

pr

is the minimal transition relation defined by the rule

q
α(X)−−−→
par

q′ bot(α) = top(α)

q
α(X)−−−→
pr

q′ .

The second premise means that, for every bottom (resp. top) port, α must
also contain the corresponding top (resp. bottom) port. Restriction, in our
context, is the generalisation of the CCS restriction operator.

Example 4.10 Fig. 6c shows a system comprising T/B components R0 and R1

as in Ex. 4.6 and closed with two additional components: an atomic T/B com-
ponent that generates events t0 and a top-level T/B component that consumes
t2. One can easily see that the restriction of this system, shown in Fig. 6d is,
indeed, a Mod-4 counter.

Lemma 4.11 For any transition in the restriction of a closed composable sys-
tem, the data transfer coincides with the top-level semantics of the composition
of the corresponding interaction expressions.

4.3 T/B Component Encoding of BIP Models

Any atomic BIP component B = (Σ, P,XL :D[L],−→) can be trivially encoded as
a T/B component by making all ports of B top ports, i.e. τ(B) = (Σ, ∅, P,XL :
D[L],−→). Thus, we only have to provide the encoding for connectors. Let
α(X) = (w ← a).[g(Xa) : (xw, X) := up(Xa) //Xa := dn(xw, X)] be a simple
connector with a set of local variables X :D. The T/B component encoding of

α is given by τ(α)
∆
=
(
{∗}, P, {w}, X :D, {∗ α(X)−−−→ ∗}

)
.

Hierarchical connectors are encoded component-wise:

τ
(
α〈hα1, . . . , hαn〉

) ∆
=
{
τ(α)

}
∪
⋃n
i=1 τ(hαi).

In the BIP operational semantics Def. 3.6, only one connector α ∈ Γ can
be fired at a time. On the contrary, parallel composition of T/B compo-
nents allows any number of component transitions to synchronise. To en-
force BIP semantics, for a set of connectors Γ, we add an arbiter: τ(Γ) =(
{∗}, PΓ, ∅, {yw :Dw |w ∈ PΓ}{∗

α̃−→ ∗ |α ∈ Γ}
)
,

15

where PΓ =
⋃
α∈Γ top(α), yw are fresh variables and, for each α ∈ Γ and

{w} = top(α), we put α̃(yw) = (∅ ← w).[tt : yw := xw // xw := yw], that is
the data provided by α in the upward data transfer is reinjected back into the
downward data transfer by α̃.

Theorem 4.12 Let B be a set of atomic BIP components and Γ be a set of
hierarchical connectors and put S = {τ(Γ)} ∪

⋃
B∈B

{
τ(B)

}
∪
⋃
α∈Γ τ(α). The

LTS σ (ρ(S)) and Γ(B) are isomorphic: there exist agreeing bijections between
their sets of states and transitions.

5 Experimental Results

5.1 Java Implementation

The implementation consists mainly of: 1) atomic components; 2) coordinators;
and 3) connections. Recall that, atomic components have no bottom ports.
Connections connect top ports to bottom ports. For composable system they
define a hierarchy on T/B components. We assume that a bottom port is
connected to exactly one top port; a top port may be connected to more than
one bottom port (cf. Def. 4.4). In [6], we provide the Java implementation of
the Mod-4 counter from Ex. 4.6.

At runtime, we create a Java thread for each atomic component and a thread
that plays the role of an arbiter for all the coordinators. The implementation
of the execution engine can be drastically optimized in case where the coordi-
nators are deterministic, i.e. if from any state: 1) there exists only one outgoing
transition; or 2) the guards of all the outgoing transitions are mutually exclu-
sive. Non-deterministic coordinators may contain a state with more than one
outgoing transitions that could be enabled at the same time. That is, more than
one up function may be executed. For the sake of clarity, we first provide the
algorithm for deterministic coordinators. Atomic component threads cyclically
execute the following protocol: 1) Notify the top ports of the current outgo-
ing transitions, whereof the guards are satisfied; 2) Notify the arbiter thread;
3) Wait for a notification from the arbiter; 4) Upon the notification from the
arbiter, execute the action that corresponds to the received top port; 5) Modify
the current state according to transition labeled by the received top port. Below
is the algorithm of the atomic component thread.

// atomic component ’s thread
run() {

while(true) {
for all current outgoing transitions t {

if guard of t is true {
t.sendPort.notify ();

} }
notify arbiter thread;
wait for arbiter thread;
port = notification received from arbiter thread;
performTransition(port);

} }

16

Notification of the top ports is executed by the threads of the atomic compo-
nents. It is propagated upward by the atomic component thread until it reaches
a top-level coordinator component (i.e. a coordinator whereof current outgoing
transition does not have a top port).

topPort.notify () {
notify bottom ports that are connected to topPort;
for each coordinator component c that has a
bottom port notified {

if exists a current outgoing transition t in c
where all its bottom ports have been notified
and its guard is true {

store the values of the variables of c;
execute its corresponding up function;

if t is labeled by a top port {
t.topPort.notify ();

} } } }

Note that, upward propagation is done in parallel by the atomic components’
threads. Arbiter thread resumes its execution when the upward propagation is
completed by all the atomic components’ threads. Arbiter’s thread cyclically
executes the following:

1. Select non-deterministically an enabled top-level coordinator component,
i.e. such that its the current outgoing transition has no top ports and all
its bottom ports have been notified. (If such a component does not exist,
a deadlock has occurred.)

2. Execute the dn function of the selected transition and update the state of
the coordinator accordingly.

3. Notify all the top ports that are connected to the bottom ports of the
selected transition until we reach atomic components. Execute the dn
function of the transition that has a top port notified.

4. When the downward propagation is completed, notify all the atomic com-
ponents to execute their corresponding transitions. Moreover, recover the
values of the variables of all the coordinators that have been notified dur-
ing the upward propagation without being modified during the downward
propagation.

Notice that arbiter selects only one top-level coordinator even though there
exits more than one top-level coordinator that are non conflicting. Two top-level
coordinators are conflicting if the downward propagation will lead to notify the
same atomic component but with two different top ports. Obviously, selecting
two top-level coordinators that are conflicting will lead to the violation of the
semantics presented in Sect. 4. Thread arbiter is parameterized to support the
two implementations (one top-level selection, or multiple non-conflicting top
level selection).

For non-deterministic coordinators, the upward propagation has to be mod-
ified as follows. First the up function does not modify the actual data of a
coordinator but it creates a copy of its variables. If a transition has a top port,

17

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60 70
Ti

m
e

(s
ec

on
ds

)
Number of Base Components

Normal-Deterministic
Merged-Deterministic

Normal-NonDeterministic
Merged-NonDeterministic

(a) Deterministic/Non-
Deterministic

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35 40 45 50

Ti
m

e
(s

ec
on

ds
)

Size Local Array (x1000)

MultipleTop-Deterministic
OneTop-Deterministic

MultipleTop-NonDeterministic
OneTop-NonDeterministic

(b) One Top/Multiple-Top

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 10 20 30 40 50 60

Ti
m

e
(s

ec
on

ds
)

Number of Clients

1000 calls
10000 calls

100000 calls

(c) POTS

Figure 7: Performance (execution time in seconds) of the case-study examples:
(a),(b) NSA; (c) POTS

we notify that port with an index which represents the values of the data that
make this transition enabled. Recall that, the guard of a given transition de-
pends on the value of the variables of the coordinator and the variables of the
top ports that are connected to the bottom ports of that transition. So that,
before evaluating the guard of a given transition of a coordinator component,
we should first set the indices of the bottom coordinators. As the upward prop-
agation is done in parallel, we should also lock those bottom coordinators to
avoid the evaluation of other guards that depend on those coordinators but with
different indices.

5.2 Case Studies

5.2.1 Network Sorting Algorithm (NSA)

NSA [2] can be considered as the coordinated product of 2n atomic components,
each containing an array of N items. The goal is to sort the items, so that all the
items in the first component are smaller than those of the second component and
so on. In [10], we have provided a BIP application implementing this algorithm.
In order to evaluate the results of the present paper, we have implemented
an internalised version using T/B components. We have also implemented a
modified version of this model, where we merge some coordinators, which might
improve the performance. Detailed descriptions are available in [6].

Figures 7a and 7b provide benchmarks for NSA by considering the ini-
tial and merged models for the two implementations (deterministic and non-
deterministic). Fig. 7a shows that the non-deterministic implementation intro-
duces some overhead. We also study the efficiency of selecting all non-conflicting
top-level coordinators versus selecting only one top-level coordinator. Fig. 7b
shows that the former implies slightly better performance.

18

5.2.2 Plain Old Telephone Service (POTS)

We have implemented a T/B component model for POTS [12], which provides
voice connections between pairs of clients. We distinguish between clients and
coordinators. Clients are atomic components with three states. Initially a client
can start a new call by dialing the callee id, or it can receive a call from an-
other caller. Then, a voice connection is established between the two clients.
When a client hangs up the call is disconnected. We have two-level hierar-
chy of coordinators. The first level includes coordinators that collect requests
coming from the clients as follows: 1) CallerAgregration collects dialing re-
quests, 2) CalleeAgregation collects waiting requests, 3) V oiceAgregation1

and V oiceAgregation2 collect voice requests, 4) DiscAgregation1 and
DiscAgregation2 collect disconnect requests. The second level includes co-
ordinators that synchronize requests of bottom coordinators. More precisely,
DialWaitSync synchronizes a dialing request (from CallerAgregation) with
its corresponding waiting request (from CalleeAgregation). V oiceSync syn-
chronizes voice request (from V oiceAgregation1) with its corresponding voice
request (from V oiceAgregation2). DiscSync synchronizes a disconnect re-
quest (from DiscAgregation1) with its corresponding disconnect request (from
DiscAgregation2). More detailed description is available in [6]. The proposed
model is very concise and can be modified incrementally, e.g. by adding new
clients.

Fig. 7c shows the performance of POTS for three different values of the
number of calls to be satisfied.

6 Related Work

Coordination [13] as a means to alleviate complexity in complex system design
by distinguishing between a computing part comprising components involved in
manipulating data and a coordination part responsible for the harmonious co-
operation between the components. The paper points out two main approaches
to coordination and studies their relationship. The key concept relating the two
approaches is internalisation meaning that external architectural constraints
applied to a set of components are cast into their code. To the best of our
knowledge, there is no work clearly addressing the problem. In [17], a survey
of coordination models and languages is presented and their classification as
either “data-driven” or “control-driven”. Data-driven coordination languages
offer coordination primitives which are mixed within the purely computational
part of the code. In the control-driven category, there is a complete separation
of coordination from computational concerns. The state of the computation at
any moment in time is defined in terms of only the coordinated patterns that
the components involved in some computation adhere to. There exists a broad
literature on bridging the gap between the design level, as this is expressed
by some ADL, and the implementation level, as this is realized by some com-
putational model. ArchJava [1, 3] is a small, backwards-compatible extension

19

to Java that smoothly integrates software architecture specifications into Java
implementation code. It seamlessly unifies architectural structure and imple-
mentation in one language, allowing flexible implementation techniques, ensur-
ing traceability between architecture and code, and supporting the co-evolution
of architecture and implementation. In [18], is presented a methodology for
mapping architectural representations written in ACME a generic language for
describing software architectures, down to executable code. The mapping pro-
cess involves the use of the coordination paradigm. All these works lack formal
foundation and do not allow a deep understanding of the differences between
architecture-based and architecture-agnostic approaches. The T/B-component
model has some similarities with formalisms using an input/output interaction
mechanism for the description of hierarchically structured automata such as
Argos [14] and Statecharts [11]. Our model extends the interaction mechanism
with data transfer. To avoid causality anomalies [14], we restrict composition
to composable systems where hierarchical structure of interaction eliminates by
construction cyclic dependencies.

7 Conclusion and Future Work

We study a formal framework bridging the gap between architecture descrip-
tion languages and their implementation. The framework clearly distinguishes
between two main approaches for tackling the coordination paradigm. One
approach is based on the separation between computational and coordination
mechanisms; the latter are described as constraints that are independent from
the internal behavior of the coordinated components. The other approach con-
sists in internalising the constraints by generating a set of coordinators that play
the role of an execution engine. Formally relating the two approaches opens the
way for consistent code generation and guarantees that important architectural
properties are guaranteed to hold in the implementation.

Interaction expressions are a key concept, fully describing the control- and
data-flow involved in an interaction. They are used both to specify connectors,
i.e. architectural constraints, and executable code in the coordinators. They
directly express multiparty interactions and have features for hierarchical struc-
turing. They can be assimilated to synchronous function calls from the bottom
ports, that return values computed when the interaction occurs. The proposed
coordination mechanism is general enough to directly encompass existing mech-
anisms. In particular it can express data-driven and event-driven interaction.
Usually, ADLs use connectors that do not involve computation. For example,
data-flow is defined by distinguishing between input and output ports. When
an interaction occurs the value of an output is copied into possibly many in-
puts. For such languages, the expression of interactions involving computation
requires the use of additional components.

We have already published formal operational semantics for BIP and devel-
oped implementations in the form of various execution engines [4]. Nonetheless,
so far the relation between semantics and the corresponding implementation

20

was not fully formalized. The proposed translation provides a full formalization
of the execution engine as a set of interacting coordinators and an arbiter. It
preserves the structure of the BIP models: each connector is implemented by
a coordinator. Furthermore, by applying the T/B component composition rule
the executable model can be flattened in different possible ways. As shown in
[10] flattening allows the generation of more efficient code.

The implementation of T/B component models can be used either for the
execution of BIP models after internalisation of their connectors or for the exe-
cution of such models written independently of BIP.

We see two main directions for future work. One is to study extensions
of interaction expressions to encompass dynamic coordination. This can be
achieved by including in the set of local variables XL, port and component
variables as in the Dy-BIP coordination language [9]. These could be used in
the guards and affected by the up and dn functions, making possible dynamic
configuration of a model.

The second direction is to study techniques for distributing the generated
engine in the form of a T/B component model. So far, we have studied code
generation techniques for BIP, that generate distributed implementations for
flattened models [7, 8]. This limits the possibility of physically distributing
coordinators by preserving the architecture hierarchy. The new techniques will
allow full preservation of the coordination structure and enhanced freedom for
discovering optimal implementations.

References

[1] Marwan Abi-Antoun, Jonathan Aldrich, David Garlan, Bradley R.
Schmerl, Nagi H. Nahas, and Tony Tseng. Modeling and implementing
software architecture with ACME and ArchJava. In ICSE, pages 676–677.
ACM, 2005.

[2] Miklós Ajtai, János Komlós, and Endre Szemerédi. Sorting in c log n par-
allel steps. Combinatorica, 3(1):1–19, 1983.

[3] Jonathan Aldrich, Craig Chambers, and David Notkin. ArchJava: con-
necting software architecture to implementation. In ICSE, pages 187–197.
ACM, 2002.

[4] Ananda Basu, Philippe Bidinger, Marius Bozga, and Joseph Sifakis. Dis-
tributed semantics and implementation for systems with interaction and
priority. In FORTE, volume 5048 of LNCS, pages 116–133. Springer, 2008.

[5] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling heterogeneous
real-time components in BIP. In 4th IEEE Int. Conf. on Software En-
gineering and Formal Methods (SEFM06), pages 3–12, September 2006.
Invited talk.

21

[6] Simon Bliudze, Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Ar-
chitecture internalisation in BIP. Technical Report EPFL-REPORT-
196997, EPFL IC IIF RiSD, February 2014. Available at:
http://infoscience.epfl.ch/record/196997.

[7] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and
Joseph Sifakis. From high-level component-based models to distributed
implementations. In EMSOFT, pages 209–218, 2010.

[8] Borzoo Bonakdarpour, Marius Bozga, Mohamad Jaber, Jean Quilbeuf, and
Joseph Sifakis. A framework for automated distributed implementation of
component-based models. Distributed Computing, 25(5):383–409, 2012.

[9] Marius Bozga, Mohamad Jaber, Nikolaos Maris, and Joseph Sifakis. Model-
ing dynamic architectures using Dy-BIP. In Software Composition, volume
7306 of LNCS, pages 1–16. Springer, 2012.

[10] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-source archi-
tecture transformation for performance optimization in BIP. IEEE Trans.
Industrial Informatics, 6(4):708–718, 2010.

[11] David Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231–274, 1987.

[12] Jonathan D. Hay and Joanne M. Atlee. Composing features and resolving
interactions. In SIGSOFT FSE, pages 110–119. ACM, 2000.

[13] Thomas W. Malone and Kevin Crowston. The interdisciplinary study of
coordination. ACM Comput. Surv., 26(1):87–119, 1994.

[14] Florence Maraninchi and Yann Rémond. Argos: an automaton-based syn-
chronous language. Comput. Lang., 27(1/3):61–92, 2001.

[15] Nenad Medvidovic and Richard N. Taylor. A framework for classifying and
comparing architecture description languages. In SIGSOFT ESEC/FSE,
volume 1301 of LNCS, pages 60–76. Springer, 1997.

[16] Robin Milner. Communication and Concurrency. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, 1989.

[17] George A. Papadopoulos and Farhad Arbab. Coordination models and
languages. Advances in Computers, 46:329–400, 1998.

[18] George A. Papadopoulos, Aristos Stavrou, and Odysseas Papapetrou. An
implementation framework for software architectures based on the coordi-
nation paradigm. Sci. Comput. Program., 60(1):27–67, March 2006.

22

