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1 INTRODUCTION  

Transport demand is growing worldwide. Indeed the 
road freight transport has increased in Europe by 
45.7% between 1995 and 2008 and this strong 
growth trend seems likely to keep continuing at the 
same rate of about 2.7% per year (European Com-
mission 2010). It is important to ensure that the Eu-
ropean transport network, which has been mainly 
designed using the national codes, can sustain this 
continuing growth in demand.  

The currently used normal load model, LM1, in 
Eurocode 1, Part 2 was first calibrated with a two 
weeks heavy traffic dataset from Auxerre (A6 mo-
torway, Paris to Lyon, France) in the late 1980s; it 
was then re-calibrated by O’Connor et al (2001) 
with several representative European traffic datasets 
recorded at France weigh-in-motion (WIM) sites. 
The increasing traffic load effect has been found as 
the augmentation of traffic flow and probability of 
multiple trucks on bridge simultaneous. Therefore, 
the load model needs to be periodically re-assessed 
by current traffic, because of the wide changes in 
traffic volume, composition of traffic, vehicle 
weights and sizes, to ensure a satisfactory safety lev-
el for the design of new bridges; and also the quality 
of WIM data has increased greatly in the last decade 

due to improved technologies and the development 
of specifications regulating accuracy levels. Accu-
rate prediction of extreme load effects expected dur-
ing the proposed or remaining lifetime of a structure 
is a key issue for the design or assessment of high-
way bridges. 

This paper reviews several methods to obtain the-
se extreme effects: the extrapolation methods (fitting 
distribution to the upper tail data and Rice’s formu-
la) implemented in the background study of the 
normal load model, LM1, in Eurocode 1 Part 2, and 
recently extensively used methods (block maxima 
method and peaks over threshold method). The 
methods are applied on WIM recorded traffic to ex-
trapolate characteristic values of long return period. 
Comparisons are made on the extrapolated extreme 
gross vehicle weight, total load on lane, and induced 
traffic load effect. We compare the difference be-
tween various prediction methods and between past 
and recent recorded data in France. 

This paper is organized as follows: Section 2 re-
views the methods. Section 3 describes the WIM da-
ta used in this study. Section 4 compares the extrap-
olation of GVWs, TLLs and TLEs with different 
methods based on the three sets of WIM data and 
gives some comments and section 5 gives some con-
clusions.  
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2 REVIEW OF EXTRAPOLATION METHODS 

In bridge engineering, the GVW of a heavy truck is 
particularly important to assess load effects on struc-
tures, as a single-heavy-truck combined with com-
mon trucks governs the traffic loading scenarios for 
short- to medium-span bridges; while multiple 
trucks on bridge simultaneously governs the traffic 
loading scenarios for medium-span to large span 
bridges. The extreme traffic load effects induced by 
these loading events should be obtained by extrapo-
lating. 
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Figure 1 Comparison of extreme value distributions. 

 
Let X  be a random variable with distribution 

F , and 1, , nx x , an identically and independent 
distributed sample from X . The maximum value 
over the "n-observation" period is 

1max , ,n nM x x . Then the distribution of nM  
can be derived by Pr

n

nM z F X z , see 
Figure 2. This distribution has a well known limit, 
given in Figure 1 (Weibull, Gumbel, Fréchet). 
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Figure 2 Extreme value distribution PDF for varying n 

 

2.1 Prediction methods used in the background 
studies of Eurocode 

In the background studies for the development of the 
Eurocode for bridge loading (EC1.2 2003), Bruls et 

al. (1996) and Flint & Jacob (1996) consider several 
methods of extrapolation, including: a half-normal 
curve fitted to the histogram tail; a Gumbel distribu-
tion fitted to the histogram tail; Rice’s formula for a 
stationary Gaussian process. O’Connor et al (2001) 
perform a study on the normal load model in ENV 
1991-3 to validate the adequacy by a number of 
newly collected representative WIM data, and Rice’s 
formula is adopted to extrapolate the characteristic 
load effects. 

2.2 Basic of theory 

The methods of statistical inference used in the liter-
ature to predict extreme traffic load effects are nu-
merous. The following critique of the literature dis-
tinguishes four types of methods: those fitting 
distribution to the upper tail data, those extrapolating 
traffic load effects by Rice formula, those dealing 
with the generalized extreme value distribution 
based block maximum method and those fitting gen-
eralized Pareto distribution to peaks over threshold. 

2.2.1 Fitting a Gaussian distribution to the upper 
tail 

The distribution of nM  can be derived exactly ac-
cording to the parent distribution function F  of the 
sample (Coles 2001). However, raising an initial dis-
tribution function to a power leads to various types 
of extreme value distribution (see Figure 1), because 
of the tail of the initial distribution function. Only 
the upper tail of parent distribution function serious-
ly contributes to the maximum distribution function 
(Bailey 1996) which is obtained by raising F  to a 
power (see Figure 2).  

Jacob (1990) fits a half normal distribution and 
Gumbel distribution to the high tail in order to pre-
dict the characteristic load and load effects of longer 
return periods. To calibrate AASHTO and develop a 
new load model, Nowak et al. (1994) fits a normal 
distribution to the upper tail of the ratio of load ef-
fect to HS20 load effect to extrapolate the average 
75-year maximum load effect. However, neither the 
plotting position method nor the rules of threshold 
selection are described. Fu & You (2009) fit a 
Gumbel distribution to extrapolate load effects for 
long return periods.  

There is a common agreement on using multi-
modal normal distribution to fit the curve of the 
GVW: O'Brien et al. (2010) fit normal distribution to 
the high upper tail, O'Connor & O’Brien (2005) use 
trimodal, while Mei and Qin (2004) utilize bimodal 
to fit GVW data. Thus a normal distribution is 
adopted to fit the upper tail of GVW for prediction. 
Its cumulative distribution function is: 
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where the parameter vector is , , the mean 
and standard deviation values, respectively. The R-
year return level, z, corresponding to exceeded prob-
ability of  is: 

1 1z  (2) 

where 
-1

 is the generalized inverse of the normal 

distribution function. 

2.2.2 Rice formula 
Jacob (1996) considered Rice's formula to predict 
longer term return level of the load effect for the 
case of free traffic and congested traffic. To apply 
Rice's formula, the load effect should be assumed to 
Gaussian stationary process. Ditlevsen (1994) 
proved that a load effect from a long traffic load 
(several days) on a large bridge with slowly and 
smoothly varying influence lines could be modeled 
as a Gaussian random process.  

Then, under the Gaussian hypothesis, the mean 
rate ( )v x  of excedences of a level 0x (number 
of times the level x  is crossed with increasing val-
ues) during a reference period refT  can be ex-
pressed by Rice formula,  

2

2
; exp

2 2

x m
v x    (3) 

where  is the vector of parameters: m  is the 
mean of the process,  is its standard deviation 
and  is the standard deviation of the differentiat-
ed process. 
Then the characteristic value for a long return period 
R can be extrapolated based on the definition of re-
turn period which is the mean period between two 
occurrences. Therefore the corresponding value is: 

 1 ,z R  (4) 

The critical issue in using the Rice formula is to 
estimate the parameters. Cremona (2001) provided 
an approach to obtain the optimal extrapolation of 
traffic load effect. By taking the logarithm of the 
Rice formula, the parameter estimation problem is 
simplified to the identification of the parameters of a 
second order polynomial function. The same as in 
fitting a distribution to the upper tail, only the upper 
tail of the level crossing histogram is important to 
extrapolate the R-year return level. Cremona (2001) 
suggested determining the optimal number of class 
intervals of the level-crossing histogram to use for 
fitting the Rice formula via Kolmogorov test. 
Getachew (2005) adopted Cremona's approach to 
analyze traffic load effects on bridge induced by 
both surveyed and Monte Carlo simulated traffic da-
ta. O'Connor & O’Brien (2005) compared the pre-
dicted extremes of simply supported moment for 
span lengths of 5, 10, 20, 50, 100 and 200 m by the 
Rice formula, classic Gumbel and Weibull extreme 

value distribution. There is approximately a 10% 
difference between Rice and others. It demonstrates 
the importance of appropriate selection of an ex-
treme value prediction method. 

2.2.3 Block maxima method 
As shown in Figure 2, the higher power to which we 
raise the initial distribution function, the less data 
that contributes to the maximum distribution func-
tion. In other words, very small discrepancies in the 
estimate of F can lead to substantial discrepancies 
for nF . Fu  & You (2009) states that 500 million 
data entries are needed to accurately predict a 75 
year maximum with 4000 average daily truck traffic 
(ADTT): it is obviously impossible to obtain accu-
rate extreme values in that way.  

However, statisticians have found that nF as-
ymptotically tends to three classical extreme value 
distributions: Gumbel, Frechet and Weibull, which 
correspond to three different tail behaviors of the 
initial distribution function F, exponential, polyno-
mial and bounded, see Figure 1 (Kotz & Nadarajah, 
2000; Castillo et al., 2004). A unification of the 
three families of extreme value distribution into a 
single family known as generalized extreme value 
(GEV) distribution has been widely used in recent 
years to avoid choosing which of the three families 
is most appropriate for the data at hand. Moreover, 
reducing the power will increase the stability of pre-
diction. So the block maximum method may be the 
best method that fits the GEV distribution to period-
ic, thus the GEV distribution is fitted to the daily 
maxima in this paper. Its cumulative distribution 
function is: 

1/

; exp 1
z

G z  (5) 

where the parameter vector is , , , the 
shape, local and scale parameters, respectively. The 
R-year return level, z, corresponding to a probability 

 of exceedance is: 

1 log 1z  (6) 

2.2.4 Peaks-over-threshold method 
In hydrology, finance and wind engineering disci-
plines, it is extensively agreed that the way of using 
information is rather uneconomical and unreasona-
ble in the block maxima method. The discarding of 
some of the largest observation in the block, given 
that only the block maximum is considered, repre-
sents a loss of information. Peaks-over-threshold 
(POT) method is an approach that can avoid decid-
ing distribution type and efficiently using upper tail 
data. Crespo-Minguillon and Casas (1997) use POT 
approach to study weekly maximal traffic load ef-
fects. James (2003) analyzes traffic load effects on 



railway bridges by POT approach. Asymptotic theo-
ry reveals that the excesses over sufficiently high 
threshold have an approximate distribution follow-
ing generalized Pareto (GP) family which is: 

1/

( ; ) 1 1
y

H y

 (7) 

where y x u  is the excess of x  over threshold 
u , and the parameter vector is , , the shape 
and scale parameters, respectively. The R-year re-
turn level, z, corresponding to m observations over 
R-year is: 

1uz u m  (8) 

where u  is the proportion of data over the thresh-
old u . 
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Figure 3 Proportion of vehicle types 

 

3 WIM DATA USED 

For this study two sets of WIM data are studied to 
extrapolate the extreme value of GVW and traffic 
load effect on a given bridge. One was recorded in 
the 1986, and the other consists of modern data that 
was recorded in 2010. In order to eliminate possible 
measurement errors, these data were scrubbed first 
before processing with cleaning rules (Sivakumar et 
al., 2010; Getachew 2005; Enright 2010), such as 
GVW greater than 3.5t, vehicle speed in the range of 
35 km/h to 160 km/h etc.. 

The first set was recorded by the same WIM sta-
tion on A6 highway at Auxerre in France, and this 
site has 4 lanes of traffic (2 in each direction). How-
ever, two lanes were recorded for one week from 
26

th
 May to 2

nd
 June 1986. It contains 46049 trucks 

after filtration. The second set of data was from a 
piezo-ceramic weigh-in-motion system on the A9 
motorway near Saint Jean de Védas, South-East of 
France in 2010. Only the upstream traffic lanes are 
recorded. In total 835468 trucks from January 2010 

to May 2010 (GVW greater than 3.5 t) were record-
ed in the three lanes, with an average daily truck 
flow of 6217 trucks.  

Tables 1 and 2 show the traffic remarkably 
evolved from 1986 to 2010. The average daily truck 
traffic (ADTT) has more than doubled in these 24 
years; the average yearly growth rate is about 4.5% 
that is larger than the average growth rate of 2.7%. 
The composition of traffic has also hugely changed 
as shown in Figure 3, the proportion of 5-axle truck 
increases by about 30%, while the proportion of 4-
axle truck decreases by about 20%, it is caused by an 
increase in the gross vehicle weight limit from 36 to 
40t in 1992. 4-axle tandem trucks were replaced by 
5-axle trimdem trucks. 

 
Table 1 The basic information 

Name of road A6 A9 

Time of recording May, 1986 
Jan. – May, 
2010 

Site location Auxerre 
St Jean-de-
Vedas 

No. of measured lane 2 3 
Record period (days) 7 138 
No. of trucks recorded 46049 835468 
Av. hourly flow per lane 107 259 
Av. daily flow per lane 2558 6217 

 
Table 2 Proportion of vehicle types (classified by no. of axles) 

No. of 
axles 

A6, 1986 A9, 2010 
No. of 
trucks 

Percent 
(%) 

No. of 
trucks 

Percent 
(%) 

4 14306 31.07 82926 9.93 
5 19835 43.07 628709 75.25 

 

4 EXTRAPOLATIONS AND COMMENTS 

To re-assess the load model of Eurocode, three types 
of extrapolation have been done in this paper, which 
are the prediction of extreme GVWs, TLLs and 
TLEs. The prediction of GVW is based on single 
truck weight, the prediction of TLL is based on total 
loads on a single lane with length 50m, and the TLE 
is the induced mid-span moment of a simply sup-
ported structure. The influence lines are illustrated in 
Figure 4, and the time history of TLL and TLE are 
illustrated in Figure 5 (It is a double y-axis figure, on 
which the left y-axis is mid-span moment and the 
right is total traffic load on lane). As proved in the 
authors’ paper (Zhou et al 2012), stable prediction 
can be achieved based on weekday’s traffic, all ex-
trapolations are based on weekday WIM data.  

In order to demonstrate the efficiency of extrapo-
lation, three different R-year return levels have been 
extrapolated: 1000-year return for each data set, 24-
year return level for the data of 1986 and 1-year re-
turn level for the data of 2010. Because of the very 
short measured period, the number of daily maxima 
were not enough to ensure to obtain reasonable ex-



trapolation, the hourly maxima has been used to ap-
ply block maxima method. 

 
Figure 4 Influence lines used in calculation 

 
The predictions are compared with those in 

previousbackground studies. The differences be-
tween characteristic values for the past and this 
study are given. 
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Figure 5 Time history of total load and induced load effect 

 
Table 3 Gross vehicle weight statistics (in tons) 

 A6,1986 A9,2010 
Max of all trucks 76.1 74 
Mean of all trucks 31.865 26.603 
COV of all trucks (%) 0.436 0.407 
Mean of daily maxima 62.120 57.543 
COV of daily maxima (%) 0.084 0.127 
Mean of second mode 41.387 36.505 
COV of second mode (%) 0.148 0.093 

 

4.1 Gross vehicle weight 

The GVWs were analyzed for the purpose of extrap-
olating the extreme traffic load and calibrating the 
traffic load model. 

Figure 6 shows the GVW histogram for these 
three sites’ data. As shown, the modal has moved 
from right to left as time goes on, more details are 
given in Table 3, which shows summary statistics 
for the data. The mean GVW of all trucks has de-
creased from 31.9 t to 26.6 t; and the same phenom-
ena has been found on events like daily maxima and 
top 5% trucks. While this phenomenon is in contra-
diction with the continuous trend of truck load in-
crease, some explanations are: (i) a better precision 
of WIM sensors and stations (more efficient calibra-
tion), (ii) more effective enforcement above all since 
2008 in France with the WIM based scanning 

(Marchadour and Jacob, 2008), and (iii) two differ-
ent sites. 
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Figure 6 GVW histogram 

 
Table 4 Extrapolated characteristic value of GVW (in tons) 

Site Method 

Distribution parameters 
Return  
period 
(years) 

Shape 
 

Scale or 
standard 
deviation 

Location 
or mean 

1000 Short*
 

A6 
1986 

Normal  8.71 28.28 79.99 74.37 
GPD -0.09 2.57  78.42 75.56 
GEV -0.23 4.54 53.44 72.51 71.79 

       

A9 
2010 

Normal  8.64 47.68 100.3 94.69 
GPD -0.20 5.57 - 81.61 75.76 
GEV -0.10 4.85 44.62 82.12 72.41 

*24-year, 1-year return levels for A6-1986 and A9-2010 data 
respectively. 

 
Using the previously mentioned prediction meth-

ods on GVW as the basis for comparing the impact 
of the models and the evolution of traffic, the R-year 
return levels of GVWs are given in Table 4. From 
these sources some general observations can be 
made: 
 Firstly, as expected, the extrapolated values in-

crease from 1986 to 2010 as the traffic flow and 
the proportion of maxi-code 5-axle trucks in-
crease. 

 Secondly, the simply fitting of a normal distribu-
tion to upper tail data almost provides much 
higher estimates than the other two EVT based 
methods. This is surely due to the selected normal 
distribution: the shape parameters of the two EVT 
based methods are negative, which means the un-
derlying parent distribution has a bounded tail, 
while the normal shape has exponential infinite 
bound. This shows once again the efficiency of 
the EVT based methods. 

 Finally, the comparison of characteristic values 
for 24-year return period of the data of 1986 and 
1-year return period of the data of 2010 show that 
these values are quite similar for the same meth-
ods. This means that the extrapolation can predict 
well the future events, i.e. the return levels can be 

(a)  Mid-span  

bending moment 

(b)  Total load 



assessed as well with the data of the 1980s as 
with the data of 2010. 
The GEV method brings about the Weibull dis-

tribution which is bounded (the bounds for Table 4 
are 73.17 t for 1986 and 93.12 t for 2010). So, there 
is a discussion that must take place about whether 
the GVW is bounded or not. This discussion was 
made in the Joint Committee on Structural Safety 
(JCSS) in the 80s. Ditlevsen claimed that because 
the whole truck population is finite, the GVW distri-
bution must be bounded. Jacob and Rackwitz in-
clined for a non upper bounded distribution, because 
the GVW possible values are infinite, and no upper 
limit may be chosen without truncating some ab-
normal loads, or imposing an arbitrary asymptotic 
value much too high. The question is not fully de-
cided, and the choice should carefully take into ac-
count the available information and the consequenc-
es on the extrapolation. 

4.2 Total load on a lane length 

The objective of this section is to predict the maxi-
mum of the total load on a lane length for a typical 
medium span bridge of 50 m. As shown in Figure 5,  
process of total load on lane is a square-wave; there-
fore the Rice formula and fitting a Gaussian to upper 
tail are not a good choice. The block maxima meth-
od is chosen to perform the extrapolation. Table 5 
summarizes the distribution parameters and charac-
teristic values for different cases. The extrapolated 
values are compared with those of past studies, see 
Table 5. Indeed, in the last four columns of Table 5, 
several extrapolations of past studies are given: col-
umn “A6-1” gives the difference between our ex-
trapolated values and those originally extrapolated 

by Calgaro in the background studies for Eurocode 1 
(traffic data is from the A6 highway in 1986); col-
umn “A6-2” is the difference between our extrapo-
lated values and those obtained by Alan O’Connor 
(O’Connor et al, 1998) in his benchmark on extrapo-
lation methods (the traffic is that of highway A6 in 
1998). The last column, called “LM1 Design ef-
fects”, gives the difference between our extrapolated 
values and the design effects of the load model 1 of 
Eurocode 1. Some comments can be made: 
 Firstly, stable predictions have been obtained due 

to the large size of the samples. 
 Secondly, we note that the extrapolated values are 

lower than the effects of load model 1 of 
Eurocode 1, in any cases. If we consider the re-
cent WIM data (of 2010), we see that the 1000-
year return level calculated with this data is be-
tween 40% and 50% inferior to that obtained with 
the load models of Eurocode 1, which is on the 
safe side. 

4.3 Traffic load effect 

The load effect considered in this part is the bending 
moment of a simple supported bridge of 50 m 
length. The partial conclusions that can be made 
based upon the results given in Table 6 are: 
 First, the Rice’s formula provides larger estimates 

than other methods, and it states that the total 
load on a lane length is bounded, which is rea-
sonable as the traffic flow, distribution of GVW 
is stationary. 

 Secondly, generally the characteristic load effects 
provided by modern data are similar to those for 
the 1980s’ data. 

 
Table 5 Extrapolated characteristic value of load on lane (in kNs) 

Site Method 

Distribution parameter Return period Difference (%) 

Shape or 
standard 
deviation 

Scale or stand-
ard deviation 
of differentiate 
process 

Location 
or mean 

Short 
1000 
(years)

 A6-1*
1
 A6-2*

2
 

LM1 
Design 
effects 

A6 
1986 

GEV (see 
2.2.3) 

-0.56 149.2 808 1072 1072 -35.58 -42.74 -45.03 

A9 
2010 

GEV -0.31 126.1 661.6 1033 1055 -36.61 -43.64 -45.90 

*
1
: value extrapolated by Calgaro (quoting from O’Connor et al, 1998)  

*
2
: value extrapolated by O’Connor (quoting from O’Connor et al, 1998)  

 
Table 6 Extrapolated characteristic value of single lane’s traffic load effect (in kN.m) 

Site Method 

Distribution parameter Return period Difference (%) 

shape Scale Location Short 
1000 
(years)

 A6-1 A6-2 
LM1 
Design 
effects 

A6 
1986 

Rice -31973 96892456 4470372.9 16262 19873 99.84 41.67 26.12 
GPD 0.20 292.5 - 14826 26385 123.17 58.20 40.84 
GEV -0.13 517.7 5629 8829 9178 2.87 -27.08 -35.08 

          

A9 
2010 

Rice 10229.3 3821.8 2689502 8563 10229 -7.70 -34.57 -41.75 
GPD -0.13 591.7 - 9128 9631 31.46 -6.81 -17.04 
GEV -0.10 599.2 4764.5 8226 9455 -4.92 -32.60 -39.99 



 Thirdly, among the three methods, the GP distri-
bution based POT approach provides better ex-
trapolations. 

 Finally, the extrapolated characteristic values as-
sessed based on short measurements are more 
prone to variations. This is the case for the return 
levels assessed by means of the traffic of 1986. 

5 CONCLUSIONS 

In this study, various prediction methods are applied 
to extrapolate the characteristic GVWs, TTLs and 
TLEs for long return periods. The results show that 
it is very important to choose the adapted prediction 
method for the considered effect: for example, POT 
is the optimal for bending at mid-span of a single-
span structure of 50m. In generally, the EVT based 
method is the better one in the studied cases. More-
over, a bigger size of sample gives more stable ex-
trapolations, while Monte-Carlo simulation or the 
Bootstrapping method could be a useful method to 
reduce the variation of a sample by expanding the 
size of sample. The comparisons between extrapola-
tions and LM1 design effects show that the normal 
load model LM1 is sufficient for modern traffic. 
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