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Ambiguity function and Cramer-Rao bounds
for standard and new modified Costas
signals

N. Touati™, C. Tatkeu, T. Chonavel, Y. Elhillali and
A. Rivenq

The Cramer-Rao bound (CRB) gives a lower variance bound that an
estimator can achieve. Presented is a mathematical approach to esti-
mate it for specific radar signals, namely Costas signals and their modi-
fied versions. The modified versions design consists in widening
Costas frequency hops and replacing rectangular pulses with other
waveforms (namely linear frequency modulated pulses, phase codes
and other Costas codes). The calculation is based on approximations
of the ambiguity function (AF) around the mainlobe. The CRBs are
then derived based on relationships between the AF and these bounds.

Introduction: The Cramer-Rao bound (CRB) is a well-known tool to
evaluate the performances of a given estimator. Estimators that
achieve this bound are called efficient estimators. The maximum-
likelihood estimator is a well-known estimator that reaches the CRB
for high signal-to-noise ratios (SNRs). In a radar context, the CRB
bounds the error variance of the estimates of the delay 7 and the
Doppler v obtained from the radar measurements. This is useful
because it gives an indication of the best achievable performance, inde-
pendent of the estimation technique. Furthermore, it can be used for
different radar waveforms to compare their best performances. The
CRB is related to the inverse of the Fisher information matrix (FIM)

Ju [1]

CRB(7) = [Jy (7. a1 )

CRB®) = [Jy ™' (1, W) @

The FIM is derived from the received data log-likelihood function (LLF)
[2]. A relationship between the ambiguity function (AF) y(z, v)and the
FIM was derived, based on the observation that the AF is the LLF
excluding the effect of signal attenuation and noise [1]. It was shown
that the CRB depends on the second derivatives of the squared magni-
tude of the AF © (7, v)=|x(z, v)]* [3]

90(t, v) FO(r, v)

or oTdv
A = —2SNR 3
Ju(n v) PO(r, v) PO(r, v) ®
vor o2 (,1)=(0,0)

In this Letter, it is proposed to evaluate the CRB’s of Costas signals and
their modified versions. A Costas signal of size N consists in N adjacent
rectangular pulses of duration #,, with a random-like frequency hopping
from pulse to pulse, with step Af'=1/£,[4]. The modified versions
propose widening frequency hops, that is Af>1/t,, by replacing
rectangular pulses with other waveforms. According to the nature of
these pulse waveforms, several designs were proposed: Costas-linear
frequency modulated (LFM) [5], phase-coded Costas [6] and doubly
coded Costas [7]. Their main purpose is to achieve the same delay
and Doppler resolutions with a smaller Costas size. To evaluate the
CRB of these waveforms, closed-form equations describing the AF
must be derived.

Ambiguity function: In the following, the AF of basic Costas signals,
derived in [4], is extended to any modified version of Costas signals.

The complex envelope of basic Costas signal of size N is given by:
u(t) = 1/ /Nty SN0 p,(t — nty), where p,(t)=A(t)e*™t, f,,= a,As (a,
. _ _JL o=i=y

is the frequency order) and A(7) = Rect,, (f) = { 0. elsewhere’ The

corresponding AF is given by [4]

N-1 ejZ’n’nvtp N-1
X1 0) =Y | @unln v+ Y P70 = m)ty, v) | (4)
n=0 m=0

m#n

where  ®,,(7, v) = 1/t [*7 pt(0)p,,(t — D*™dt, |7] <1, We
propose to extend (4) for other pulse waveforms. For modified Costas
signals, A(#) will be the novel pulse waveform, namely LFM pulse,
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phase code or Costas code and ®,,,,(z, v) changes to

1+ o o )
(T, V) = t_j A*(t)e PThA(t — 7)elPTIn(m D™ gt
P

—o00

1 . +oo . o
D, (7, v) = tfe*ﬂ”ﬁzfj A DAt — 7)™ ID e (5)
p —

00

1 oy
Dp(r, v) = ey (7, v+ (f = o)) 7L< 0
P
where y,(z, v)is the AF of the pulse waveform. The overall AF is then
given by

1 A= o
X(T’ v)=— Z e Hi2mviy [XA(T’ v)e—127f1,7+
Nt, poar

N-l A Q)
S X7 (= M)ty v (fy = fy))e 2 mi)]
=0
1’7717 #n
In [4], it was stated that the mainlobe mainly depends on the first term of
the sum and sidelobes on the second one. Since the CRB reflects the
sharpness of the mainlobe, an approximation of the AF around it, that
is |7] < t,, is proposed

1 N—1 .
X7, v) =2 xa(7 ) D e i 7 <4, 7
3 n=0

The AF depends on the pulse AF y,(z, v), the adjacent pulses order n
and the frequency at each pulse f;,. In the following, the closed-forms
of the pulse AF y4(7, v) of investigated pulse waveform A(¢) is given.

For basic Costas signals, A(?) is a rectangular pulse A(f) = Rect, (¥)
and y4(z, v) is given by [8]

Sin(’TTV(tp - |T|)) e—j‘m;(lp+7')
m(ty, — |7)

Xa(T: v) = (&, — |7) ®)

For an LFM pulse of bandwidth B, A(f) is equal to

A(t) = Rect,p(t)e]”wl’/’r’)’2 and y4(z, v) is given by [8]

sin(m(vt, — 7Bp)(1 — |71/%)) e
vty — TBp)(1 — |7/1,)

For phase-coded Costas signals, a phase code of length L and time chip

t.=t,/L is used to encode the Costas pulses. The complex envelope is
given by A(t) = Z,LZ_OI qiRect, (t — It.) and y4(z, v) is given by [9]

€))

Xa(m, V) = (6, — |7)

L-11-1

1
A = * — si te — — k)t
X4(7, V) kgon;)qkqn[ s sin(mv(te — |7+ (n — k)tc])) (10)
O (- bl <ao)]

For |7| <t. (n=k), we have
sin(mv(te — |7 ﬁmkl 2 vk
Xa(T, ]}):Me] Zlqklzeﬂ kte 1n
™ =0
Furthermore, for phase codes |¢,°> =1, the pulse AF simplifies to

sin(mv(t, — |7])) sin(mvlt.)

— jro(TH(L— 1)

X v) = ™ Sin(mvty) © (12)
For doubly coded Costas signals, the pulse waveform is another
Costas signal of size L, pulse duration # and frequency spacing Af;. The
complex envelope is A(t) = Zf;ol p(t —Ity), where p(t)=
Rect, (Ne?™, fi = IAf; and t,=t/L. Hence, according to (7), the
pulse AF is given by

L—-1
XA('T’ V)= Xs(T’ v)zeﬂfﬂ(lvts*fsf)’ |7 <t (13)
1=0

Here, y(z, v) is the AF of the pulse waveform of the secondary Costas

signal, which is a rectangular pulse. From (8), with secondary Costas

parameters #; and Af;, we obtain
sin(mv(Z

—|7) eI 7 < g (14)
m(ts — |7])

Xs(1, v) = (ts — |7])
CRBs calculation: We propose to calculate the CRBs according to (2)
and (3), from theoretical expressions of the signals’ AF. Some assump-
tions are used: the AF is continuous and derivable around its
maximum (z, v)=(0, 0) with [y(z, V)| )=0,0)=1 and dlx(z, v)I/
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07z, v)=0, 0) = (7, VIOV, v)= 0= =0. Hence, the second deriva-
tives simplify to: d’ly(r, V) /0a10as|(z, vy=(0, 0) = =2Re(d*(r, V)/
0a,0as|;, -0, 0)), Where (a;, ay)€{r, v}. The total AF y(z, v)
depends on the pulse AF jyu(r, v) and xy(7 v)=
SV et =/ which are maximum at (0, 0) and equal to ,
and N, respectively. Hence, second derivatives are given by
3 x(1, v)? 2 0 T, V

% i w=0.0) = Ve, [NR (% |z, v)=0. 0)>+

F xy (7, .
tpRe<%|(m):(o’o))], (ay, a»)€{r, v}. Then, algebraic

manipulations lead to the derivation results summarised in Table 1.

dalaz -

Table 1: CRB dala coefficients (a;, ay) € {r, v}
Standard Costas Costas-LFM
der ™ -1 5
_Zn 0 5 Zn 0 A
do| s, i Eﬁ
3 T N L= " 3P N P
dy, 877 N1 21
Ttp ano nf, =By LS pz
e 272 s
Pzn o IPB TN IP Zn 0 Lz
Phase coded Costas Doubly coded Costas
der 87 - 1f2 8T i1y 8T Wl
N L 1=0 /1 N n=0 /n
d, 8
" —ngtlz)—bfzt + 47 ot ,,#2,7 Z
_ % V- n? 8 2 N-1 5
N P Lan=0 - T P n
dry ﬂl 8
4 v Z T 52 Ui+ tPZ
ve 8 =y
b Zn o T’» I tpz

Finally, the CRBs are given by

-1 dvv
CRB 15
(D= 35NR drdyy — drvdy (15
1 dTT
CRB 16
)= 3SNR drdyy — drydys (16)
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Fig. 1 Range CRB for standard and modified Costas signals

Simulation results: In the following, we numerically evaluate CRBs for
the waveforms above with the signals bandwidth B= 500 MHz and dur-
ation ~T'=Nt, =900 ns. Results are presented in Figs. 1 and 2 (one
pulse case) where R and V refer to range and velocity with standard devi-

ations o = %,/CRB(T) and oy = % +/CRB(v). The carrier frequency
C

is fo =79 GHz. It can be seen that the CRB allows the evaluation of per-
formances for each signal as well as comparision with other signals. In
this case, signals achieve almost the same performances. For example,
for SNR =15 dB, oy is about 1.8 cm and oy is about 133 m/s.

To make velocity errors smaller, the signal duration must be increased
as well as the Doppler resolution and hence the mainlobe frequency
width. A well-known way to do this is to use a pulse train of K pulses
with time repetition 7, instead of a single pulse. The novel AF y(z, v),
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when |7] < 7, is given by [8]

)sm(Km:T)elm,(K o

X (7, v) = X7, Ksin(7vT;)

I71<=T an
(7, v)is the single waveform AF described in (7). The improvement can
be seen in Figs. 1 and 2 (train of pulses case) when previous waveforms are
used in a pulse train of K = 100 pulses and 7;, = 57. The effective duration is
Tx = KT, instead of 7'= M, hence the improvement. For SNR = 15 dB, or
is now about 1 cm and oy is about 0.7 m/s.
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Fig. 2 Velocity CRB for standard and modified Costas signals

Conclusion: In this Letter, CRBs for delay and Doppler estimations are
derived for basic and modified Costas signals. The calculation is based
on relationships between the CRB and Fischer inverse matrix (FIM)
which is also related to the AF of the signals. This last is first derived
for modified Costas signals based on the AF of basic Costas signals.
The CRBs are then derived using second derivatives calculations.
CRBs allow the evaluation and comparison of the performances of
different waveforms. In future work, other bounds will be studied in
order to evaluate the threshold SNR for these waveforms.
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