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Abstract

The Distributed Temporal Logic DTL allows one to reason about temporal properties of
a distributed system from the local point of view of the system’s agents, which are as-
sumed to execute independently and to interact by means of event sharing. In this paper,
we introduce the Quantum Branching Distributed Temporal Logic QBDTL, a variant of
DTL able to represent quantum state transformations in an abstract, qualitative way. In
QBDTL, each agent represents a distinct quantum bit (the unit of quantum information
theory), which evolves by means of quantum transformations and possibly interacts
with other agents, and n-ary quantum operators act as communication/synchronization
points between agents. We endow QBDTL with a DTL-style semantics, which fits the
intrinsically distributed nature of quantum computing, we formalize a labeled deduc-
tion system for QBDTL, and we prove the soundness and completeness of this deduc-
tion system with respect to the given semantics. We give a number of examples and,
finally, we discuss possible extensions of our logic in order to reason about entangle-
ment phenomena.

Keywords: Quantum Computing, Quantum State Transformations, Temporal Logic,
Distributed Temporal Logic, Natural Deduction

1. Introduction

1.1. Background and motivation
The Distributed Temporal Logic DTL [14, 5, 6] allows one to reason about temporal

properties of a distributed system from the local point of view of the system’s agents:
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each asynchronous agent executes independently, evolves linearly along a time-line
built upon some local events, and can interact with the other agents by means of event
sharing. Distribution is implicit and properties of an entire system are formulated in
terms of the local properties of the system’s agents and their interaction. DTL’s se-
mantics was inspired by a conflict-free version of Winskel’s event structures (see, e.g.,
[35]), enriched with information about sequential agents.

DTL has been initially proposed as a logic for specifying and reasoning about dis-
tributed information [14], but it has also been used in the context of security protocol
analysis to reason about the interplay between protocol models and security proper-
ties [6]. In this paper, we show that, after a proper extension of the logic’s syntax and
semantics, DTL is also able to formally model quantum state transformations in an
abstract, qualitative way.

Quantum computing is one of the most promising research fields of computer sci-
ence as well as a concrete future technology (see [27] for a useful introduction to the
basic notions of quantum computing as we here only very briefly summarize the no-
tions that are relevant to our work in this paper). However, at least from the point of
view of theoretical computer science, a number of foundational aspects are still under-
developed: quantum complexity, quantum computability, quantum programming the-
ory (and its logical account), quantum cryptography and security are all active but open
research areas, which still require the development of ad hoc formal methods. These
issues are complex to face since the physical model quantum computing is based on
is sophisticated and all basic definitions and formal tools have to be reformulated in a
non-standard way.

To illustrate this, and our contributions in this paper, in more detail, let us focus our
attention on quantum data, in particular on the unit of quantum information, the quan-
tum bit or qubit, for short. The qubit is the quantum counterpart of the classical bit and,
mathematically, it is simply a normalized vector of the Hilbert space C2. Qubits can
assume both classical values 0 and 1 (as the classical bit) and all their superpositional
values, i.e., linear combinations such as α|0〉 + β|1〉, where α, β ∈ C are called ampli-
tudes, |α|2 + |β|2 = 1 and |c〉, for c ∈ {0, 1}, is the so called Dirac Notation, which is
simply a denotation of basis states (which corresponds to the classical values a bit can
assume).

Intuitively, whereas a classical bit can only be 0 or 1, a quantum bit can assume
both the value 0 and the value 1 (with a certain associated probability) at the same
time. It is possible to modify a quantum bit in two ways:

• by means of a suitable class of algebraic operators called unitary transformations
(that are also called quantum gates and are a class of algebraic operators enjoying
some good properties, which represent the pure quantum computational steps) or

• by measuring it, i.e., probabilistically reducing it to 0 or 1.

In this paper, we deal only with unitary transformations, leaving measurement for fu-
ture work.

The definition of a qubit can, of course, be generalized: a quantum register or
quantum state is the representation of a system of n qubits (mathematically, it is a
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normalized vector of the Hilbert space C2n
). As for the single qubit, a quantum state

can be modified by means of unitary algebraic operators.
Abstracting from any notion of control and considering only pure quantum trans-

formations (i.e., unitary evolution of quantum states as computational steps), it seems
to be interesting to provide a logical account of such a computation. The question then
is: what is a logical approach suitable to represent quantum state evolution?

1.2. Contributions

The main contribution of this paper is the formalization of a logic and of an asso-
ciated deduction system that allows one to formally represent and reason about unitary
transformations of quantum states from a temporal multi-agent system perspective.
More specifically, we view our contributions as two-fold.

First, we define the Quantum Branching Distributed Temporal Logic QBDTL, a
significant variant of DTL that we introduce here to represent quantum state transfor-
mations in an abstract, qualitative way. In QBDTL, we abstract from the value of the
qubits: we are not interested in encoding into our system syntactical and semantical
information about amplitudes or basis values 0 and 1 (in this way, we avoid any quan-
titative information) and we focus instead on the way qubits evolve by means of unitary
transformations. Following DTL’s central notion, in QBDTL we do not only consider
globally quantum states but also, and in particular, the single unit of information, i.e.,
we maintain the local perspective of the qubit in the quantum computation.

In other words, in QBDTL each agent represents a distinct qubit, which is the ob-
ject/subject of computation and which evolves in time by means of quantum transfor-
mations and possibly interacts with other agents/qubits.

There is a crucial difference between our QBDTL and the original DTL formulation.
DTL is based on linear time life-cycles for agents. In QBDTL (and this provides an
additional contribution of our work), we go beyond linearity and consider branching
time since we want to be as general as possible: at each step of the temporal evolution of
an agent/qubit, the accessibility relation between worlds in the subtended Kripke-style
model aims to capture each possible unitary transformation that can be applied to the
qubit. A world (a state in the temporal life-cycle of an agent) represents (an abstraction
of) a 1-qubit quantum state. n-ary quantum operators, which act simultaneously on
more than one qubit (such as control operators, which play a crucial role in quantum
computing), act as communication/synchronization points between agents/qubits.

Second, we give a deduction system N(QBDTL) for QBDTL. In order to deal with
all the semantical notions (temporal, quantum and synchronization information), we
follow the style of labeled deduction [19, 32, 33], a framework for giving uniform pre-
sentations of different non-classical logics, where labels allow one to explicitly encode
in the syntax additional information, of a semantic or proof-theoretical nature, that is
otherwise implicit in the logic one wants to capture.

In addition to the works on DTL, and in particular the labeled tableaux system
given in [5], our starting points forN(QBDTL) are the labeled natural deduction system
for the logic UB (i.e., the until-free fragment of CTL) given in [11] and the approach
developed in [23, 24], where a labeled modal deduction system with specific modalities
able to describe quantum state transformations is given. Fittingly, in N(QBDTL), we
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consider composed labels (i, x, q) that represent an agent/qubit i, a time instant x, and
the quantum information q in the underlying semantics. A further class of labels is
used to represent paths in the life-cycles of the agents.

The rules of N(QBDTL) can then be divided into rules that formalize the local
temporal evolution of an agent/qubit, and synchronization rules that are, in a sense,
global as they lift the reasoning from the local perspective of the agent to the distributed
perspective induced by agent’s synchronizations.

1.3. Related Work

It is important to observe that our QBDTL is not a quantum logic. Since the work
of Birkhoff and von Neumann [10], various logics have been investigated as a means
to formalize reasoning about propositions taking into account the principles of quan-
tum theory, e.g., [13]. In general, it is possible to view quantum logic as a logical
axiomatization of quantum theory, which provides an adequate foundation for a theory
of reversible quantum processes, e.g., [25, 1, 2, 3, 4, 17, 18]. Research has focused
also on automated reasoning (e.g., model checking for quantum systems as considered
in [20]) and on formal analysis of quantum protocols (e.g., [22]). Our work moves
from quite a different point of view, which, to reiterate, is the wish to provide a de-
duction system able to represent and reason about unitary transformations of quantum
states from a temporal multi-agent system perspective and, as will become clear below,
thereby provide a basis to reason about other, more complex properties of quantum
states such as entanglement.

This paper extends and supersedes our preliminary account of QBDTL given in [34].

1.4. Organization

We proceed as follows. In Section 2, we give a brief overview of the basic notions
of quantum computing that are relevant for this paper. Then, after a discussion about
aims and motivations of our approach (Section 3), in Section 4 we introduce the logic
QBDTL and a DTL-style semantics, along with some examples. In Section 5 we de-
fine the natural deduction systemN(QBDTL), providing some example derivations. In
Section 6 and Section 7 we state and prove the Soundness Theorem and the Complete-
ness Theorem (ofN(QBDTL) with respect to the semantics), respectively. Section 8 is
devoted to discussions about our ongoing and future works.

2. Quantum Computing in a Nutshell

The aim of this section is to expand on what we already discussed in the introduc-
tion and provide to the non-expert reader an overview of the basic notions of quantum
computing, focusing on those that are relevant for this paper and our approach in gen-
eral (in particular, the quantum meaning of unitary relations and the interpretation of
propositional symbols, but also what future challenges lie ahead of us, such as the for-
malization of entanglement). Readers familiar with quantum computing are welcome
to skip this section.

The most simple quantum system is a two-dimensional state space whose elements
are called quantum bits or qubits for short. The qubit is thus the unit of quantum
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information. The most direct way to represent a quantum bit is as a unitary vector in
the 2-dimensional Hilbert space `2({0, 1}), which is isomorphic to C2. We denote with
|0〉 and |1〉 the elements of the computational basis of `2({0, 1}). The states |0〉 and |1〉
of a qubit correspond to the Boolean constants 0 and 1, which are the only possible
values of a classical bit.

A qubit, however, can assume other values, different from |0〉 and |1〉. In fact, every
linear combination |ψ〉 = α|0〉 + β|1〉 where α, β ∈ C and |α|2 + |β|2 = 1, represents a
possible qubit state. These states are said to be superposed, and the two values α and
β are called amplitudes. The amplitudes α and β univocally represent the qubit with
respect to the computational basis. Given a qubit |ψ〉 = α|0〉 + β|1〉, we can thus also
denote it by the vectorial notation (α β)>, where > denotes the transposition of the
vector. In particular, the vectorial representation of the elements of the computational
basis |0〉 and |1〉 is: (1 0)> represents |0〉 and (0 1)> represents |1〉.

While we can determine the state of a classical bit, for a qubit we cannot establish
with the same precision the values α and β: quantum mechanics says that a measure-
ment of a qubit with state α|0〉 + β|1〉 has the effect of changing the state to |0〉 with
probability |α|2 and to |1〉 with probability |β|2. For example, if |ψ〉 = 1

√
2
|0〉 + 1

√
2
|1〉,

one can fairly observe 0 or 1 with the same probability | 1
√

2
|2 = 1

2 . Note, however,
that in this brief survey on quantum computing, we will not enter into the details about
the measurement/observation of the qubit(s), since in QBDTL we do not model agent
evolution by measurement of quantum states; for a complete overview of measurement
of qubits and the relationships between different kinds of measurement, see [27].

In order to define arbitrary sets of quantum data, we need a generalization of the
notion of qubit, called quantum register or, more commonly, quantum state [31, 28,
12]. A quantum register can be viewed as a system of n qubits and, mathematically,
it is a normalized vector in the Hilbert space `2({0, 1}n), where {0, 1}n is a compact
notation to represent any binary sequence of length n. The standard computational
basis for `2({0, 1}n) is B = {|i〉 | i is a binary string of length n}.

As notation, for bi ∈ {0, 1}, we write |b1 . . . bk〉 for |b1〉 ⊗ . . . ⊗ |bk〉, where ⊗ is the
tensor product (see below). With a little abuse of language, we say that the number of
qubits n corresponds to the dimension of the space. Note that if the dimension is n,
then the basis B contains 2n elements, and each quantum state is a normalized linear
combination of these elements:

α1|00 . . . 0〉︸    ︷︷    ︸
n

+ α2|00 . . . 1〉 + . . . + α2n |11 . . . 1〉

Example 1. Let us consider a system of two qubits. Each 2-qubit quantum register is
a normalized vector in `2({0, 1}2) and the computational basis is {|00〉, |01〉, |10〉, |11〉}.
For example, 1

√
2
|00〉 + 1

√
4
|01〉 + 1

√
8
|10〉 + 1

√
8
|11〉 is a quantum register of two qubits

and we can represent it as ( 1
√

2
1
√

4
1
√

8
1
√

8
)>.

A Hilbert space of dimension n can be built from smaller Hilbert spaces by means
of the tensor product ⊗. If H1 is a Hilbert space of dimension k and H2 is a Hilbert
space of dimension m, then H3 = H1 ⊗ H2 is a Hilbert space of dimension km (each
element is a vector of km coordinates obtained by “hooking” a vector inH2 to a vector
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in H1). In other words, an n-qubit quantum register with n ≥ 2 can be viewed as
a composite system and, in general, it is possible to combine two (or more) distinct
physical systems into a composite one. If the first system is in the state |φ1〉 (a vector
in a Hilbert space H1) and the second system is in the state |φ2〉 (a vector in a Hilbert
space H2), then the state of the combined system is |φ1〉 ⊗ |φ2〉 (a vector in a Hilbert
space H1 ⊗ H2). We will often omit the ⊗ symbol and write the joint state as |ψ1〉|ψ2〉

or as |ψ1ψ2〉.
Not all quantum states can be viewed as composite systems: this case occurs in

presence of entanglement phenomena (to which we return below). Since normalized
vectors of quantum data represent physical systems, the (discrete) evolution of systems
can be viewed as a suitable transformation on Hilbert spaces. The evolution of a quan-
tum register is linear and unitary. Giving an initial state |ψ1〉, for each evolution to a
state |ψ2〉, there exists a unitary operator U such that |ψ2〉 = U(|ψ1〉). Informally, “uni-
tary” referred to an algebraic operator on a suitable space means that the normalization
constraint of the amplitudes (

∑
i |αi|

2 = 1) is preserved during the transformation. Thus,
a quantum physical system can be described in terms of linear operators and in a de-
terministic way.

In quantum computing, we refer to a unitary operator U acting on a n-qubit quan-
tum register as an n-qubit quantum gate. One can represent operators on the 2n-
dimensional Hilbert space `2({0, 1}n) with respect to the standard basis of C2n

also as
2n × 2n matrices, and it is possible to prove that to each unitary operator on a Hilbert
space we can associate unequivocally an algebraic representation. Matrices that rep-
resent unitary operators enjoy some important properties: for example, they are easily
invertible (invertibility, also called reversibility, is one of the peculiar features of quan-
tum computing). The application of quantum gates to quantum registers thus represents
the pure quantum computational step and captures the internal evolution of quantum
systems.

From a computer science viewpoint, it is common to reason about quantum state
transformations in terms of quantum circuits (see, e.g., [27, 26]). We have introduced
qubits to store quantum information, in analogy with the classical case. We have also
introduced operations acting on them, i.e., quantum gates, and we can think about
quantum gates in analogy with gates in classical logic circuits. A quantum circuit on n
qubits implements a unitary operator on a Hilbert space of dimension C2n

as a primitive
collection of quantum gates, each implementing a unitary operator on k (small) qubits.
It is useful to represent quantum circuits graphically in terms of sequential and parallel
composition of quantum gates and wires, as for Boolean circuits (still, in the quantum
case, the graphical representation does not reflect the physical realization of the circuit).

The most simple quantum gates act on a single qubit: they are operators on the
space `2({0, 1}), represented in C2 by 2 × 2 complex matrices. For example, the quan-
tum gate X is the unitary operator that represents the quantum counterpart of the com-
plementation gate. Being a linear operator, X maps a linear combination of inputs to
the corresponding linear combination of outputs, i.e., X maps the general qubit state
α|0〉 + β|1〉 into the state α|1〉 + β|0〉.

Another fundamental unitary gate is the Hadamard gate H, which acts on the com-
putational basis in the following way: |0〉 7→ 1

√
2
(|0〉 + |1〉) and |1〉 7→ 1

√
2
(|0〉 − |1〉).
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The Hadamard gate is useful when we want to create a superposition starting from a
classical state. It also holds that H(H(|c〉)) = |c〉 for c = {0, 1}.

1-qubit quantum gates can be used to build gates acting on n-qubit quantum states.
If we have a 2-qubit quantum system, we can apply a 1-qubit quantum gate only to one
component of the system, and we implicitly apply the identity operator (the identity
matrix) I to the other one. For example, suppose we want to apply X to the first qubit.
The 2-qubits input |ψ1〉 ⊗ |ψ2〉 gets mapped to X|ψ1〉 ⊗ I|ψ2〉 = (X ⊗ I)|ψ1〉 ⊗ |ψ2〉.

The controlled-not (cnot) is one of the most important quantum operators, usually
represented graphically in the following way:

i •

j

Intuitively, it takes two distinct quantum bits i and j as input and complements the
target bit (the second one, j) if the control bit (the first one, i) is different from 0, and
does not perform any action otherwise. Hence, its behavior on the computational basis
is:

cnot|00〉 = |00〉 cnot|10〉 = |11〉
cnot|01〉 = |01〉 cnot|11〉 = |10〉

We can of course apply the cnot to superpositional states. For instance, if we apply
cnot to the outcome of Hadamard gates applied to combinations of basis states |0〉 and
|1〉, i.e.

i H •

j H

then we have:

cnot(H(|0〉),H(|0〉)) = 1
2 (|00〉 + |01〉 + |10〉 + |11〉)

cnot(H(|0〉),H(|1〉)) = 1
2 (|00〉 − |01〉 − |10〉 + |11〉)

cnot(H(|1〉),H(|0〉)) = 1
2 (|00〉 + |01〉 − |11〉 − |10〉)

cnot(H(|1〉),H(|1〉)) = 1
2 (|00〉 − |01〉 − |11〉 + |10〉)

Note that the control qubit is a “master” agent as its evolution is independent of
the evolution of the target bit (if the first input of the cnot is |φ〉, then the output is the
same), whereas the target qubit is a “slave” agent as its evolution is controlled by the
value of the first qubit. In some sense, a communication between the agents is required
and the quantum circuit is a simple distributed system. By adopting this perspective,
controlled operators like cnot act as “synchronization points” between agents, and this
is indeed one of the main ideas we followed during the development of QBDTL.

Not all quantum states can be viewed as composite systems. In other words, if |ψ〉
is a state of a tensor product space H1 ⊗ H2, it is not generally true that there exist
|ψ1〉 ∈ H1 and |ψ2〉 ∈ H2 such that |ψ〉 = |ψ1〉 ⊗ |ψ2〉. In general, it is not always
possible to decompose an n-qubit register as the tensorial product of n qubits. These
non-decomposable registers are called entangled and enjoy properties that we cannot
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find in any object of classical physics (and therefore in classical data). If n qubits
are entangled, they behave as if connected, independently of the real physical distance.
The strength of quantum computation is essentially based on the existence of entangled
states (see, for example, the teleportation protocol [27]).

Example 2. The 2-qubit states |ψ1〉 = 1
√

2
|00〉+ 1

√
2
|11〉 and |ψ2〉 = 1

√
2
|01〉+ 1

√
2
|10〉 are

entangled. The 2-qubit state |φ〉 = α|00〉 + β|01〉 is not entangled; rather, note that it is
possible to rewrite it in the mathematically equivalent form |φ〉 = |0〉 ⊗ (α|0〉 + β|1〉).

A simple way to create an entangled state is to feed a cnot gate with a target qubit |c〉
and a particular control qubit, more precisely the output of the Hadamard gate applied
to a base qubit, therefore a superposition 1

√
2
|0〉 + 1

√
2
|1〉 or 1

√
2
|0〉 − 1

√
2
|1〉. If, instead,

we fed a cnot gate with two fair superpositional states (as above), that would not create
an entangled state.

As we remarked above, in this paper we assume that no entanglement phenomena
occur during the computation. Still, we have discussed entanglement here as it is a
fundamental feature of quantum states and it has been one of the motivations for our
approach in the first place. We believe that QBDTL will provide a suitable logic to
formalize entanglement and we plan to explicitly model it in the future developments
of our work (see also the discussion in Section 8).

3. Why Branching Temporal Logic and Synchronization?

In this section, we describe how it is possible to use temporal logic and synchro-
nization rules (the core of the DTL approach) to reason in a simple way about quantum
state transformations, whenever one is not interested in the encoding of the mathemat-
ical object that represents a quantum state (i.e., a vector in a suitable Hilbert space) but
in the evolution itself as a sequence of transformations and in a notion of synchroniza-
tion between different quantum bits.

Modal logics are a flexible instrument to describe qualitatively state transforma-
tions as they allow one to put the emphasis on the underlying “transition system” (the
set of possible worlds of the Kripke semantics and the properties of the accessibility re-
lations between them, which model the dynamical behavior of the system) rather than
on the concrete meaning of the internal structures of possible worlds. This intuition
was followed in [23, 24], where two pure modal systems were introduced and studied.
In such systems, a world represents the abstraction of a quantum state and modal op-
erators reflect general properties of quantum state transformations, since the subtended
models are S5-models. The accessibility relation between worlds is therefore an equiv-
alence relation, i.e., it enjoys reflexivity, symmetry and transitivity. This captures, in an
abstract way, key properties of unary quantum operators: roughly speaking, reflexivity
says that the class of the unitary operators includes the identity transformation; sym-
metry captures reversibility (it is always possible to reverse a quantum transformation,
since the inverse operator is easily definable and is unitary); finally, transitivity models
algebraic compositionality, i.e., the composition of two or more unitary operators is
always a unitary operator [27].
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The main difference between the modal systems proposed in [23, 24] and QBDTL
is that whereas in the former case a world represents the abstraction of an arbitrary
quantum state (i.e., a state that describes an arbitrary number n of qubits), in the case
of QBDTL we focus on the single qubit and on its transformation by means of unary
quantum operators and on a notion of local formula built upon a local language. More-
over, we move from a modal to a temporal system: in some sense we “unfold” the ac-
cessibility relation between worlds obtaining, for each agent, a tree-like structure that
represents the agent’s local life-cycle. In this way, we “link” the subtended branch-
ing temporal model to the abstract transition system induced by all the unary quantum
transformations possibly occurring in each world, which are uniformly modeled in the
semantics and in the deduction system by an equivalence relation. Reflexivity, symme-
try and transitivity can be plainly expressed in QBDTL: for example, symmetry can be
abstractly captured by the labeled formula (i, x, q) : p ⊃ ∃�∃�p, where p is a proposi-
tional symbol, ⊃ is implication and ∃�A expresses that the formula A is true at the next
time instant in some possible future.

A licit question at this stage is what is the meaning of the set of propositional sym-
bols that QBDTL formulas are built upon. We maintain an abstract definition of the
set (we simply say that it is a set of syntactic objects), following the style of DTL and
also in the spirit of modal/temporal logic as we discussed above. Then, working with
labeled expressions like (i, x, q) : A, where the formula A is built by temporal opera-
tors, synchronization and propositional symbols, it is not actually crucial to say what
propositional symbols stand for.2 Still, it is important to consider what modal/temporal
formulas, possible worlds and the accessibility relation stand for.

One could even choose to instantiate the set of propositional symbols to capture
quantitative information about quantum states or general properties that permit one to
reason about them. Let us provide here a simple example, related to the examples
that we will give later. A possible choice (cf. Example 3) is to fix a set of atomic
propositions representing mathematical descriptions of the qubit, i.e., a normalized
vector in C2. In other words, given a qubit |ψ〉 = α|0〉 + β|1〉, the encoding p|ψ〉q of
this mathematical description is an atomic proposition. Let si stand for a label (i, x, q),
take p as p|ψ〉q and consider the labeled formula si : p ⊃ ∃�p (whose derivation will
be given in Figure 5 and where ∃�p expresses that p is true at every time instant in
some possible future). This labeled formula can be intuitively interpreted as follows: a
(potentially infinite) sequence of identity unitary transformations does not change the
mathematical description of the qubit.

Now, let p still be the encoding p|ψ〉q of a state |ψ〉 = α|0〉 + β|1〉 and let us con-
sider again the labeled formula (i, x, q) : p ⊃ ∃�∃�p, which fits a peculiar feature of
quantum computation, i.e., reversibility. This labeled formula says that: if p holds for
i in some state x, then there exists a temporal path such that, in two steps, i reaches
a new state in which p still holds (i.e., the mathematical description of such a state is
again α|0〉+ β|1〉). This models the fact that if one transforms a qubit state by means of
a unitary operator U, then one can obtain again the same state by applying the adjoint

2In analogy, note, e.g., that temporal logics developed to deal with concurrent systems do not possess any
concurrent feature.
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U∗ of U, where, in the class of unitary operators, the adjoint corresponds to the inverse
U−1, and algebraically, one has U∗(U(α|0〉+ β|1〉)) = U(U∗(α|0〉+ β|1〉)) = α|0〉+ β|1〉,
i.e., U∗U = UU∗ = I, where I is the identity operator. Looking for a concrete ex-
ample, we can take α = 1

√
3

and β =
√

2
√

3
and instantiate U to X, the complementation

gate, which corresponds to an exchange between amplitudes of basis states. Among
the temporal states reachable from x there exists, in particular, the successor state in
which p and ∃�p hold, where p = p

√
2
√

3
|0〉 + 1

√
3
|1〉q. We will provide further examples

in the following sections.
We conclude this section by recalling that in quantum computing, it is useful to

compose small states in order to obtain bigger quantum states (this operation has a
precise algebraic meaning, see the previous section and [27]). Collecting agents, one
can model quantum systems of n qubits. In some sense, we can see a quantum state
of n qubits as a global state built upon the local states of the single qubits. Each qubit
evolves independently but, in a realistic perspective, different qubits do not always
evolve asynchronously, and so sometimes they interact, by means of n-ary quantum
gates. This is modeled, in our system, by means of ad hoc “tools”, properly adapted
from DTL: by a special construct in the local language (an operator c© named call-
ing), it is possible to express the fact that an agent/qubit i synchronizes with another
agent/qubit j. This choice has a precise quantum meaning. In quantum computing, one
can, of course, globally modify a set of n qubits by means of n-ary algebraic operators.
We view n-ary quantum gates as synchronization points between states of different life-
cycles, i.e., between states of different qubits. The inputs of an n-ary quantum gate may
each have previously been subject to a sequence of other transformations, i.e., in DTL
terms, a sequence of events, and the gate itself then can be seen as a transformation
event that is shared by the inputs. In this paper, we model this synchronization mecha-
nism abstractly (since, as we said, we model unitary transformations by an equivalence
relation), but it is possible to plan a concrete research direction based on the further
development of this interpretation of n-ary gates as synchronization mechanisms. We
will return to this in Section 8, where we give a more detailed discussion of our ongoing
and future works.

4. The logic QBDTL

We introduce the Quantum Branching Distributed Temporal Logic QBDTL by pre-
senting its syntax and semantics. As we mentioned above, QBDTL is a significant
variant of DTL, with which it shares, of course, a number of similarities, but with re-
spect to which it also sports several differences. For instance, we do not consider the
sets of actions of the agents and, most importantly, in order to reason about quantum
state transformations, QBDTL considers branching time as opposed to the linear time
typical of DTL.

4.1. Syntax

Definition 1. Given a finite set Id = {i, j, . . .} of agent identifiers and a set Prop =

{p, p1, p2, . . .} of atomic propositions (which characterize the current local states of
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the agents), we define the local language of an agent i ∈ Id by the grammar

Li ::= p | ⊥ | Li ⊃ Li | ∃�Li | ∃�Li | ∀�Li | c© jL j ,

where p ∈ Prop and j ∈ Id with i , j.

Local formulas, as their names suggest, hold locally for the different agents. ⊥ is
falsum and ⊃ is implication. As in DTL, the formula c© j A means that agent i has just
communicated (i.e., synchronized) with agent j, for whom A holds. We follow here
the Peircean branching temporal logic UB [8] and only consider the temporal operators
that are obtained as a combination of one single linear-time operator immediately pre-
ceded by one single path quantifier. More specifically, we consider here the Peircean
operators

• ∃� (as we noted previously, ∃�A expresses that the formula A in the scope of
this operator is true at the next time instant in some possible future),

• ∃� (“it is true at every time instant in some possible future”) and

• ∀� (“it is true at every time instant in every possible future”).

For simplicity, in this work we do not consider the temporal operator until, although
such an extension would not be problematic. Moreover, as usual, other connectives and
temporal operators can be defined as abbreviations and will sometimes be explicitly
used in the following.

Definition 2. The global language of QBDTL is defined by the grammar

L ::= @i1 Li1 | . . . | @in Lin ,

where i1, . . . , in ∈ Id.

The global formula @ik A means that A holds for agent ik.

4.2. Semantics
The models of QBDTL are inspired by those of DTL and built upon a form of

Winskel’s event structures (cf. [35], where also the relationship to other concurrency
models is discussed). There is, however, a fundamental difference with respect to the
semantics that has (actually, with respect to the slightly different semantics that in the
literature have) been given for DTL, which is based on distributed families of linear
life-cycles local to each agent, i.e., countable, discrete and totally ordered local events.
Since our logic QBDTL is inherently branching, we need to define its semantics ac-
cordingly, and we thus modify DTL’s semantics as follows.

Definition 3. Given an agent i ∈ Id, a branching local life-cycle of i is an ω-tree, i.e.,
a pair λi = 〈Evi, <i〉, where Evi is the set of local events of i and <i ⊆ Evi × Evi is a
binary relation such that:

(i) <i is transitive and irreflexive;
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(ii) for each e ∈ Evi, the set {e′ ∈ Evi | e′ <i e} is linearly ordered by <i;
(iii) there is a <i-smallest element 0i called the root of λi;
(iv) each maximal linearly <i-ordered subset of Evi is order-isomorphic to the natu-

ral numbers.

We write e →i e′ to denote the fact that e′ is an immediate local successor of e, i.e.,
e <i e′ and there is no e′′ such that e <i e′′ <i e′. A →i-path is a sequence of local
events (e0, . . . , en) such that ek →i ek+1 for 0 ≤ k ≤ n − 1. An e-branch b of i is
an infinite →i-path b = (e0, e1, . . .) such that e = e0 and we write →b

i to denote the
restriction of →i to b, i.e., e′ →b

i e′′ iff e′ = ek and e′′ = ek+1 for some k, and denote
with Bi the set of all such→b

i . Further, we denote with→b∗
i the reflexive and transitive

closure of→b
i .

A local state is a finite set ξ ∈ Evi down-closed for local causality, i.e., if e <i e′

and e′ ∈ ξ then also e ∈ ξ. In general, each non-empty local state ξ is reached by
the occurrence of an event that we call last(ξ), from the local state ξ \ {last(ξ)}. Given
e ∈ Evi, the set e↓i = {e′ ∈ Evi | e′ ≤i e}, where ≤i denotes the reflexive closure of <i,
is always a local state. Moreover, if ξ is non-empty, then last(ξ)↓i = ξ.

A branching distributed life-cycle is a family of local life-cycles

λ = {λi = 〈Evi, <i〉}i∈Id

such that:

(i) ≤ = (
⋃

i∈Id ≤i)∗ defines a partial order of global causality on the set of events
Ev =

⋃
i∈Id Evi;

(ii) if e, e′ ∈ Evi and e ≤ e′ then e ≤i e′.

Condition (i) ensures that a distributed life-cycle respects global compatibility, i.e.,
there is no e ∈ Evi ∩ Ev j such that e <i e′ but e′ < j e, while condition (ii) ensures
that synchronization ≤-relates two events of an agent i only if there exists a 0i-branch
in which both the events occur.

Definition 4. An S5 Kripke frame is a pair 〈Q,U〉, where Q is a non-empty set of
qubit states andU is a binary equivalence relation on Q, i.e.,U : Q → Q is reflexive,
symmetric and transitive.

An S5 Kripke model is a triple M = 〈Q,U,V〉, where 〈Q,U〉 is an S5 Kripke
frame andV : Q → P(Prop) is a valuation function assigning to each qubit state in Q
a set of atomic propositions.

A QBDTL model is a triple µ = 〈λ,M, π〉, where λ = {λi}i∈Id is a distributed life-
cycle, M = 〈Q,U,V〉 is an S5 Kripke model and π = {πi}i∈Id is a family of local
functions associating to each local state a qubit state in Q; for each i ∈ Id and set Ξi of
local states of i, the function πi : Ξi → Q is such that:

(i) if ξ, ξ′ ∈ Ξi, last(ξ)→i last(ξ′), π(ξ) = q and π(ξ′) = q′, then qUq′;
(ii) if q, q′ ∈ Q, qUq′ and π(ξ) = q, then there exists ξ′ ∈ Ξi such that last(ξ) →i

last(ξ′) and π(ξ′) = q′.
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We denote 〈λi,M, πi〉 by µi.
The global satisfaction relation is defined by:

|=µ @i A iff |=µi
i A iff |=µi,ξ

i A for every ξ ∈ Ξi ,

where the local satisfaction relation at a local state ξ of i is defined by:

6|=
µi,ξ
i ⊥

|=
µi,ξ
i p iff p ∈ V(πi(ξ)), for p ∈ Prop
|=
µi,ξ
i A ⊃ B iff |=

µi,ξ
i A implies |=µi,ξ

i B
|=
µi,ξ
i ∀�A iff for all ξ′, last(ξ) ≤i last(ξ′) implies |=µi,ξ

′

i A
|=
µi,ξ
i ∃�A iff there exists a last(ξ)-branch b such that for all ξ′,

last(ξ)→b∗
i last(ξ′) implies |=µi,ξ

′

i A
|=
µi,ξ
i ∃�A iff there exists ξ′ such that last(ξ)→i last(ξ′) and |=µi,ξ

′

i A
|=
µi,ξ
i c© jA iff last(ξ) ∈ Ev j and |=µ j,last(ξ)↓ j

j A

By extension, we define:

|=µ Γ iff |=µ A for all A ∈ Γ

Γ |=µ A iff |=µ Γ implies |=µ A
Γ |= A iff Γ |=µ A for each QBDTL model µ

4.3. An example of QBDTL “in action”

Now that we have introduced the syntax and semantics of QBDTL, we can give a
first example of QBDTL in action, i.e., how it can be used to formalize reasoning about
quantum computations in a qualitative way. As pointed out in [6], one of the main
features of distributed temporal logics is their versatility: their abstract and parametric
formulation permits a number of heterogeneous “specializations” to capture different
agent-oriented systems and applications. As a first concrete example, we follow the
ideas sketched in Section 3 and propose a concrete instance of the set Prop of propo-
sitional symbols in order to provide a description of the behavior of a simple quantum
circuit.

We begin by introducing some notation and assumptions about quantum computa-
tions that our examples in this paper rely on. We focus on a universal class of quantum
gates: we take into consideration all the unary gates plus the cnot. We call G this class
of unitary operators. Given an instance C of the cnot gate, we write C〈i〉 to denote the
restriction of the “action” (in terms of transformations) of C on the qubit i. Note that
we are not affirming that the transformations of the two agents (by means of the cnot)
are independent of each other (indeed, this would negate the definition of the cnot, at
least from the point of view of the target qubit). Rather, we are only observing that,
after the control, two distinct unary transformations occur: the identity transformation
leaves unchanged the control agent, whereas, the induced operation (eventually) com-
plements the target agent. Following this perspective and assuming (as we do in this
paper) that no entanglement phenomena occur, we can then “factorize” global transfor-
mations into local transformations and, as a consequence, we can plainly reason about
global events in terms of local events of the local life-cycles of the agents.
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Example 3 (QBDTL “in action” — I). The first step of any concrete example aiming
at showing QBDTL in action is to fix the set Prop. Let us consider the standard al-
gebraic axiomatization of quantum mechanics and the Hilbert space formalism [30].
As we remarked above, the mathematical state of a single qubit is represented by an
element (a normalized vector) of C2, the 1-dimensional complex space. Let us call Q
the set of all the normalized vectors in C2. We assume that each propositional symbol
p ∈ Prop is the encoding of a normalized vector in Q: given |φ〉 ∈ Q, we write p|φ〉q to
denote its encoding into the QBDTL syntax. More formally, for this example, we can
define the set Prop of propositional symbols to contain:

• the set of strings of the shape pα1|0〉 + α2|1〉q, where α1|0〉 + α2|1〉 is the repre-
sentation of an element of Q with respect to the standard computational basis,
and

• the set of string of the shape pU1(U2(· · · (Un(α1|0〉 + α2|1〉)) · · ·))q, where each
U j is either a unary unitary transformation or the restriction of a cnot operator
and α1|0〉 + α2|1〉 is defined as above.

Note that, as discussed in [24], different propositional symbols can describe equiv-
alent quantum states. For example, pH(|0〉)q (where H is the Hadamard gate) and
p 1

2 (|0〉+ |1〉)q represent the same quantum state. For simplicity, but without loss of gen-
erality, in this paper whenever we consider one propositional symbol we actually take
it as representative for its equivalence class. Extending our logic to explicitly consider
these equivalences would be quite straightforward but fairly tedious and notationally
cumbersome.

Note also that, as we remarked above, our central idea is to see event sharing as
synchronization points between different agent life cycles, i.e., as controlled gate oc-
currences. We thus use the operator c© to syntactically model synchronization/control.
This interpretation has an evidence both in QDTL derivations and at the semantical
level. In particular, we will get the evidence that: if no non-unary gate occurs in
a computation involving different agents, no synchronizations (and, syntactically, no
calling operator c©k) happen.

The simplest quantum circuit (generated by G) acting on two agents is the one built
upon a single occurrence of the cnot gate. Consider the following figure

C
i

t1
•

t2j

_ _�

�

�

�_ _

and suppose that C is an instance of the cnot gate, and that the control input i and
the target input j are set to |1〉 and |0〉, respectively. By definition, the negation of the
target qubit is performed. For the sake of illustration, but of course with a slight abuse
of notation, the figure shows also two time instants t1 and t2. This allows us to consider
a significative set of formulas that are built from the propositional symbols p|1〉q and
p|0〉q, and that describe the behavior of C on inputs |1〉 and |0〉 during their temporal
evolution.

at time t1 : @i (p|1〉q) and @ j (p|0〉q) (1)
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at time t1 : @i (p|1〉q ∧ ∃�p|1〉q) (2)
at time t1 : @ j ((p|0〉q ∧ c©i (p|1〉q)) ⊃ ∃�p|1〉q) (3)
at time t2 : @i (p|1〉q) and @ j (p|1〉q) (4)

The intuitive meaning of these formulas is as follows. Formulas (1) and (4) describe
the input and output states, respectively. Formula (2) says that the first agent (corre-
sponding in our interpretation to the control qubit) has input value |0〉 and moreover
there exists a successor (temporal) state (along the branch belonging to the computa-
tion captured by the circuit among all the possible computations) in which the state re-
mains unchanged (remember that the cnot operator does not act on the control qubit).
Formula (3) describes the control/synchronization between agents, corresponding to
the occurrence of the binary gate; it is syntactically significative to model synchro-
nization from the target agent’s perspective, i.e., by means of a formula of the local
language L j where, by means of the calling operator, we can express the mathemat-
ical state of the control agent through the suitable propositional symbols). In other
words, the formula expresses the fact that a control (a QBDTL calling) and the related
operation occur as a consequence of agent synchronization.

In Examples 4 and 5, we will continue this discussion and, moreover, consider a
more complex quantum circuit, explaining also how the semantical notions introduced
above can be concretely interpreted in quantum computation modeling.

5. A deduction system for QBDTL

5.1. Syntax of the labeled logic
In order to formalize our labeled natural deduction system N(QBDTL), we extend

the syntax and semantics of QBDTL by introducing four kinds of labels (that represent
agents, states, quantum information and paths in the underlying semantics) and by
defining labeled and relational formulas.

First of all, we use the agent identifiers in Id as labels. Further, we assume given
two fixed denumerable sets of labels LabS and LabQ. Intuitively, the labels x, y, z, . . .
in LabS refer to local states of an agent, whereas the labels q, q′, q1, . . . in LabQ refer
to the quantum information concerning an agent.

Definition 5. A labeled formula is a formula of the form

(i, x, q) : A ,

where (i, x, q) is a composed label with i ∈ Id, x ∈ LabS and q ∈ LabQ, and A is a
formula in the local language Li of the agent i.

Note that we do not use the operator @ inside labeled formulas as it is implicitly
expressed by the first element of the composed label. For instance, in order to show
that a global formula @i A is valid, we will prove that the labeled formula (i, x, q) : A,
for arbitrary x and q, is derivable in our system.

In N(QBDTL), we also need formulas modeling the relation between the states
referred by the labels. We thus assume given a further set of labels LabB, whose ele-
ments will be denoted by C,C1,C2, . . ., which intuitively refer to the successor relation
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between local states in the local life-cycle of an agent i along a given branch. We then
define:

Definition 6. Lab+
B = LabB ∪ {r(i, x,FA) | i ∈ Id, x ∈ LabS ,F ∈ {�,�}, A ∈ Li}.

The labels in Lab+
B \ LabB are used to refer to successor relations between local

states along distinct branches. For instance, the label r(i, x,�A) is used to denote a
particular branch, in the local life-cycle of i, which starts in the node denoted by x
and along which A always holds (provided that such a branch exists). We write R, R1,
R2, . . . to denote generic elements of Lab+

B and we use R∗ to refer to the reflexive and
transitive closure of R. Finally, we use the symbol U to refer to the relation modeling
unary quantum transformations and the symbol Z to denote that the local states of two
agents are synchronized on a given event. Then, we can define relational formulas as
follows:

Definition 7. A relational formula is a formula of the form

• (i, x, q) R (i, y, q′), or

• (i, x, q) R∗ (i, y, q′), or

• (i, x, q) Z ( j, y, q′), or

• q U q′,

where i, j ∈ Id, x, y ∈ LabS , R ∈ Lab+
B, q, q′ ∈ LabQ.

In the following, for simplicity, we sometimes use metavariables of the form si,
possibly superscripted, to refer to composed labels of the form (i, x, q).

Example 4 (QBDTL “in action” — II). To illustrate further the power of QBDTL to
formalize quantum computations, we consider a more complex quantum circuit Circ

C
i

t1
V

t2
•

t3 t4
j W

_ _�

�

�

�

�

�
_ _

where V and W are quantum gates and C is a cnot. We can interpret Circ as a finite
set of paths belonging to a distributed life-cycle for agents i and j; in some sense, Circ
can be viewed as a sub-computation of a (potentially) infinite quantum computation
involving i and j.

Recall, from Definition 3, the notion of e-branch b of an agent i. We write →↓Circ
i

to denote the finite restriction of the particular e-branch corresponding to the trans-
formation occurring to i by means of the computation Circ. We write Ev↓Circ

i to denote
the (possibly finite) set of events “concerning” the Circ computation. In other words,
we focus on the dynamical evolution of the qubit i by means of the transformations
corresponding to the quantum gates of Circ. To this end, we interpret each local event
either as a pair 〈input, gate〉 where input ∈ C2 and gate ∈ G, or as an input value (i.e.,
the quantum state of the agents before the circuit evaluation) that we call |φ〉in. Note
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that, in the former case, we describe the outcome of a gate (the current state) by the
pair 〈input, gate〉, whereas in the latter we are fixing the circuit’s input value.

Suppose now that, at the time t1, the agents i and j are in the states |c〉 and |d〉
(for c, d ∈ {0, 1}), respectively. We can describe the “progress” of the two agents in
terms of increasing sets of collected events (which “keeps track” of the subcomputation
occurred up to the current time) as follows. For i, we have

∅ → {|c〉in} → {|c〉in, 〈 |c〉in,V 〉} → {|c〉in, 〈 |c〉in,V 〉, 〈V(|c〉in),C〈i〉 〉}...

and for agent j, we have

∅ → {|d〉in})→ {|d〉in, 〈 |d〉in,C
〈 j〉 〉} → {|d〉in, 〈 |d〉in,C

〈 j〉 〉, 〈C〈 j〉(|d〉in),W 〉}...

We can now consider the set of propositional symbols

{p|c〉q, p|d〉q, pV(|c〉)q, pC〈i〉(V(|c〉))q, pC〈 j〉(|d〉)q, pW(C〈 j〉(|d〉))q}

to build the following labeled formulas to describe the circuit Circ:

at time t1 : (i, x1, q1) : p|c〉q and ( j, y1, q′1) : p|d〉q (5)
at time t1 : (i, x1, q1) : p|c〉q ∧ ∃�pV(|c〉)q (6)
at time t2 : (i, x2, q2) : pV(|c〉)q ∧ ∃�pV(|c〉)q (7)
at time t2 : (i, x2, q2) : pV(|c〉)q ∧ ∃�[ c© j(pdq)] (8)
at time t2 : ( j, y2, q′2) : p|d〉q ∧ ∃�[ c©i(V(|c〉))] (9)
at time t3 : (i, x3, q3) : pV(|c〉)q (10)
at time t4 : (i, x3, q3) : pV(|c〉)q and ( j, y3, q′3) : pW(C〈 j〉(|d〉))q (11)

We describe the intuitive meaning of some of these formulas. Formulas (5) and (11)
describe the input and output states, respectively. Formula (6) says that the first agent
has input value |c〉 (i.e., the propositional symbol p|c〉q holds) and moreover there exists
a successor temporal state (along the branch belonging to the computation captured
by the circuit among all the possible computations) in which pV(|c〉)q holds. Formula
(7) says that this successor temporal state has a successor in which pV(|c〉)q still holds,
i.e., the quantum state remains unchanged (remember that the cnot operator does not
act on the control qubit). Formulas (8) and (9) say that for the agents i and j, for
which pV(|c〉)q and p|d〉q respectively hold, there exists a successor state in which a
synchronization with the other agent occurs.

The sub-circuit corresponding to the cnot instance C can be described again in
terms of synchronization (from the viewpoint of the target qubit/agent) as done in Ex-
ample 3. By the definition of the cnot operator there are two cases. First, suppose that
V(|c〉) = |0〉, which means that no complementation of the target qubit state occurs.
Then, we have ( j, y2, q′2) : (p|d〉q ∧ c©i(pV(|c〉q))) ⊃ ∃�p|d〉q. Second, suppose that
V(|c〉) , |0〉 (and remember that we are not dealing with entangled states). Then, we
have ( j, y2, q′2) : (p|d〉q ∧ c©i(pV(|c〉q))) ⊃ ∃�p |d〉 q, where |d〉 denotes the complemen-
tation of the state |d〉.
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5.2. Semantics of the labeled logic

In order to give a semantics for our labeled system, we need to define explicitly an
interpretation of the labels.

Definition 8. Given a QBDTL model µ, an interpretation function is a triple I =

〈IS ,IQ,IB〉, where:

• IS = {Ii
S }i∈Id is a set of functions such that Ii

S : LabS → Ξi for each i ∈ Id;

• IQ : LabQ → Q;

• IB = {Ii
B}i∈Id is a set of functions such that Ii

B : Lab+
B → Bi for each i ∈ Id, and

if r(i, x,FA) ∈ Lab+
B \ LabB, then:

– Ii
B(r(i, x,FA)) =→b

i for some Ii
S (x)-branch b;

– if |=µ,Ii
S (x) ∃FA, then for all ξ ∈ Ξi:

∗ ifF = �, then last(Ii
S(x)) Ii

B(r(i, x,FA)) last(ξ) implies |=µ,ξ A;
∗ ifF = �, then last(Ii

S(x))Ii
B(r(i, x,FA))∗ last(ξ) implies |=µ,ξ A.

The notion of interpretation allows us to extend the truth relation to labeled formu-
las, as well as define truth of relational formulas.

Definition 9. Given a QBDTL model µ and an interpretation functionI = 〈IS ,IQ,IB〉

on it, truth for a labeled or relational formula γ is defined as follows:

|=µ,I (i, x, q) : A iff µi,I
i
S (x) |=i A and πi(Ii

S (x)) = IQ(q)
|=µ,I (i, x, q) R (i, y, q′) iff last(Ii

S(x)) Ii
B(R) last(Ii

S(y)), πi(Ii
S (x)) = IQ(q) and

πi(Ii
S (y)) = IQ(q′)

|=µ,I (i, x, q) R∗ (i, y, q′) iff last(Ii
S(x)) Ii

B(R)∗ last(Ii
S(y)), πi(Ii

S (x)) = IQ(q) and

πi(Ii
S (y)) = IQ(q′)

|=µ,I (i, x, q) Z ( j, y, q′) iff last(Ii
S(x)) = last(Ij

S(y)), πi(Ii
S (x)) = IQ(q) and

π j(I
j
S (y)) = IQ(q′)

|=µ,I q U q′ iff IQ(q)UIQ(q′)

When |=µ,I γ, for γ a labeled or relational formula, we say that γ is true in µ according
to I. By extension:

|=µ,I Γ iff |=µ,I γ for all γ ∈ Γ

Γ |=µ,I γ iff |=µ,I Γ implies |=µ,I γ
|=µ γ iff for every interpretation function I, |=µ,I γ
|=µ Γ iff for every interpretation function I, |=µ,I Γ

Γ |= γ iff for every QBDTL modelM and interpretation function I, Γ |=µ,I γ
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[si : A ⊃⊥]....
s j :⊥

si : A ⊥E

[si : A]....
si : B

si : A ⊃ B ⊃I
si : A ⊃ B si : A

si : B ⊃E

[si C
∗ s′i ]....

s′i : A

si : ∀�A ∀�I
s′i : ∀�A s′i R

∗si

si : A ∀�E

[siR∗s′i ]....
s′i : A siRs′′i

si : ∃�A ∃�I
(i, x, q) : ∃�A (i, x, q) r(i, x,�A)∗ si

si : A ∃�E

[siRs′i ]....
s′i : A siRs′′i

si : ∃�A
∃�I

(i, x, q) : ∃�A (i, x, q) r(i, x,�A) si

si : A ∃�E

[s j C s′j]....
si : A
si : A

serC

[( j, x, q) r( j, x,FB) s j]....
si : A
si : A

sersk
s jRs′j

[s jR∗s′j]....
si : A

si : A
baseR

si C s′i si C s′′i s′i : α

s′′i : α
linC

s jRs′j

[s jR∗s j]....
si : A

si : A
reflR

s jR∗s′j s′jR
∗s′′j

[s jR∗s′′j ]
....

si : A

si : A
transR

s jR∗1 s′j s′jR
∗
2 s′′j

[s j C
∗ s′′j ]
....

si : A

si : A
compR

s jR∗s′′j s j : B

[s′′j : B]
....

si : A

[s jRs′j] [s′jR
∗s′′j ]

....
si : A

si : A
splitR

s′i : A s′i R
∗si

[s′i C
∗
1 s′′′i ] [s′′′i C2 s′′i ] [s′′′i : A]

....
s′′i : A

si : A ind∀

(i, x, q) : A (i, x, q) r(i, x,�A)∗ si

[(i, x, q) C∗ (i, y, q′)] [(i, y, q′) r(i, y,�A) s′i ] [(i, y, q′) : A]
....

s′i : A

si : A ind∃

In ∀�I, ∃�I and ∃�I, where s′i ≡ (i, x, q), the labels x and q are fresh. Moreover, in
∀�I, C is fresh.
In serC, where s′j ≡ ( j, x, q), the labels x, q and C are fresh.
In sersk, where s j ≡ ( j, y, q′), the labels y and q′ are fresh.
In compR, C is fresh.
In ind∀, where s′′i ≡ (i, x, q) and s′′′i ≡ (i, y, q′), the labels x, y, q, q′, C1 and C2 are
fresh.
In ind∃, where s′i ≡ (i, z, q′′), the labels y, z, q′, q′′ and C are fresh.

Figure 1: The rules of N(QBDTL): local life-cycle rules
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s j : A si Z s j

si : c© j A
c© I

si : c© jA

[si Z s j][s j : A]....
sk : A

sk : A
c© E

s j Z sk

[sk Z s j]....
si : A

si : A
symmZ

s j Z sk sk Z sl

[s j Z sl]....
si : A

si : A
transZ

si Z s j1 s j1 Rs′j1 s′j1 R∗s′′j1 s′′j1 Z s j2 . . . s′′jn Z s′′i

[si C s′i][s′i C
∗ s′′i ]

....
sk : A

sk : A
compZ

In c© I and c© E, i , j. In c© E, where s j ≡ ( j, x, q), the labels x and q are fresh.
In compZ, C is fresh.

Figure 2: The rules of N(QBDTL): distributed life-cycle rules

[q U q]....
si : A
si : A

reflU
q U q′

[q′ U q]....
si : A

si : A
symmU

q U q′ q′ U q′′

[q U q′′]....
si : A

si : A
transU

(i, x, q) : p γ( j, y, q)
( j, y, q) : p

prop

In prop, γ( j, y, q) is a (labeled or relational) formula where ( j, y, q) occurs and p ∈ Prop
is an atomic proposition.

Figure 3: The rules of N(QBDTL): quantum transformation rules

5.3. The rules of N(QBDTL)
The rules of N(QBDTL) are given in Figures 1–4. We can classify them into four

categories: (i) local life-cycle rules (inspired to the deduction system for the logic
UB given in [11]), (ii) distributed life-cycle rules (reminiscent of the global labeled
tableaux developed for DTL in [5]), (iii) quantum transformations rules (actually a
fragment of the deduction systems studied in [24]) and (iv) interaction rules.
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q U q′ γ(i, x, q)

[(i, x, q) / (i, y, q′)]....
s j : A

s j : A U⇒R
(i, x, q) /∗ (i, y, q′)

[q U q′]....
s j : A

s j : A R⇒U

In U⇒R, γ(i, x, q) is a (labeled or relational) formula where (i, x, q) occurs. Moreover,
y is fresh.

Figure 4: The rules of N(QBDTL): interaction rules

Local life-cycle rules (Figure 1)
These rules all infer formulas “local” to an agent i, i.e., labeled with si. We can

divide them further into rules for classical connectives (⊥E, ⊃ I and ⊃E), rules for
temporal operators (∀�I, ∀�E, ∃�I, ∃�E, ∃�I and ∃�E), relational rules (serC, sersk,
baseR, linC, reflR, transR and compR) and induction rules (ind∀ and ind∃).

Rules for classical connectives. The rule ⊥E is a labeled version of reductio ad ab-
surdum, where we do not enforce Prawitz’s side condition that A ,⊥ and we do not
constrain the “world” in which we derive a contradiction to be the same as in the as-
sumption. The rules ⊃ I and ⊃E are the labeled version of the standard [29] natural
deduction rules for implication introduction and elimination.

Rules for temporal operators. The rules for the introduction and the elimination of ∀�,
∃� and ∃� follow the same structure as the rules for introduction and elimination of �
in labeled systems for modal logics. Let us consider ∀�I; the idea is that the meaning
of si : ∀�A is given by the metalevel implication siC

∗ s′i =⇒ s′i : A for an arbitrary path
denoted by the relation C and an arbitrary s′i C

∗-accessible from si. The arbitrariness,
i.e., the freshness, of both the path denoted by C and s′i is ensured by the side-conditions
of the rule, e.g., si must be different from si and not occur in any assumption on which
s′i : A depends other than the discharged assumption si C

∗ s′i .
Introductions of ∃� and ∃� follow the same principle, but relax the freshness con-

dition on the label denoting the relation, thus allowing us to reason on a single specific
path. Note that in this case a further premise (siRs′′i ) is required: such a premise works
as a “witness”, in the sense that it ensures that the relation R considered is indeed a
relation passing through the state si.

For what concerns the elimination rules, the intuition behind ∀�E is that if ∀�A
holds in a state s′i and si is accessible from s′i (along some path), then it is possible to
conclude that A holds in si. The case of ∃�E and ∃�E is similar but complicated by the
fact that the universal linear-time operator (� or �) is preceded by an existential path
quantifier (∃), which prevents us from inferring the conclusion for a successor along
an arbitrary relation. Our solution is based on the idea (originally proposed in [11])
of using Skolem functions as names for particular relations, e.g., r(i, x,�A) denotes a
relation passing at x and such that if ∃�A holds in x, then A holds at each successor of
x along r(x,�A).
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Relational rules. Relational rules allow for modeling properties of the accessibility
relations.3 The rule baseR expresses the fact that for each relation R, R∗ contains R;
i.e., baseR says that if (i) s j is such that there is some R-accessible s′j and (ii) from the
assumption that s′j is also R∗-accessible from s j we can infer some labeled formula si :
A (where si might be different from s j and s′j), then we can discharge the assumption
s jR∗s′j and conclude that indeed si : A holds. reflR and transR model reflexivity and
transitivity of each relation, respectively, whereas compR states that it is possible to
compose two relations, i.e., if s jR∗1s′j and s′jR

∗
2s′′j , then there exists a third relation C∗

such that s jC
∗ s′′j . We also have two rules capturing two different aspects of the seriality

of the relations. serC captures the fact that, given a state s j, there is at least a relation
passing through s j and a successor along that relation. sersk says that, given a state s j

and a Skolem function r( j, x,FB), there exists a successor of s j along that relation.
Finally, splitR states that if siR∗s′i holds, then either si and s′i coincide or s′i is a proper
successor of si.

Induction rules. Finally, we have two rules that model the induction principle underly-
ing the relation between R and R∗. This modeling of the induction principle is inspired
to the one proposed in [11] and it is reminiscent of deduction systems for Peano Arith-
metic. An example of use of the rule ind∃ can be found in Figure 5, as we discuss
below.

Distributed life-cycle rules (Figure 2)
The rules for communication ( c© I and c© E) follow quite closely the semantics.

Consider, e.g., c© I: if agent i in state si synchronizes with agent j in state s j, and A
holds for j in that state, then i just communicated with agent j. The rules for syn-
chronization are also quite intuitive, except maybe compZ. Intuitively, compZ models
a notion of compatibility between different synchronizations that involves the same
agents and reflects condition (ii) in the definition of branching distributed life-cycle. It
is a rule schema that can be applied for any finite n.

Quantum transformations rules (Figure 3)
The rules reflU , symmU , transU formalize, quite straightforwardly, the reflexivity,

symmetry and transitivity of the U relation, in order to uniformly model the class of
algebraic unitary operators as an equivalence relation. This captures, in an abstract
way, key properties of quantum operators. Roughly speaking: reflexivity says that the
class of the unitary operators includes the identity transformation; symmetry captures
reversibility (it is always possible to reverse a quantum transformation, since the inverse
operator is easily definable and is unitary [27]); finally, transitivity models algebraic
compositionality, i.e., the composition of two or more unitary operators is always a
unitary operator.

The rule prop says that the third element in a composed label fully captures the
quantum information contained in a state; thus, if two composed labels (i, x, q) and

3Note that in these rules we use relational formulas as auxiliary formulas in order to derive labeled
formulas. Rules treating relational formulas as full-fledged first class formulas, which can be assumed and
derived in the rules, could also be defined in the style of [33].
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[si : p]1 [si r(i, x,�p)∗ sa
i ]3

[q′Uq′]5 [(i, y, q′) : p]4

[(i, y, q′) C (i, z, q′)]6 [(i, y, q′) C sd
i ]7

[(i, y, q′) : p]4 [(i, y, q′) C (i, z, q′)]6

(i, z, q′) : p
prop

sd
i : p

linC
[(i, y, q′) C (i, z, q′)]6

(i, y, q′) : ∃�p ∃�I7

(i, y, q′) : ∃�p U⇒R6

(i, y, q′) : ∃�p
refl5

U [(i, y, q′) r(i, y,�p)sc
i ]4

sc
i : p

∃�E

sa
i : p ind∃4

[si r(i, x,�p)sb
i ]2

si : ∃�p ∃�I3

si : ∃�p
sersk

2

si : p ⊃ ∃�p ⊃I1

[si : c© j >]2

[s′j : c©i >]5

[si Z s j]3 [s j C
∗ s′j]

4 [s′j Z s′i ]
6

[si : ∀�p]1 [si C
∗
1 s′i ]

7

s′i : p
∀�E

s′i : p
comp7

Z [s′j Z s′i ]
6

s′j : c©i p
c© I

s′j : c©i p
c© E6

s′j : c©i > ⊃ c©i p ⊃I5

s j : ∀�( c©i > ⊃ c©i p) ∀�I4
[si Z s j]3

si : c© j ∀�( c©i > ⊃ c©i p)
c© I

si : c© j ∀�( c©i > ⊃ c©i p)
c© E3

si : c© j > ⊃ c© j ∀�( c©i > ⊃ c©i p) ⊃I2

si : ∀�p ⊃ ( c© j > ⊃ c© j ∀�( c©i > ⊃ c©i p)) ⊃I1

Figure 5: Example derivations

( j, y, q) share the same q, each atomic proposition holding in (i, x, q) must also hold in
( j, y, q).

Interaction rules (Figure 4)
The rules U⇒R and R⇒U model the interaction between U and R and express

respectively the conditions (i) and (ii) in the definition of function πi of QBDTL models.
More specifically, U⇒R says that if qUq′ and the label (i, x, q) occurs in the labeled
or relational formula γ( j, x, q), then (i, x, q) has a /-successor (i, y, q′); this means that
the local state labeled by y is an immediate successor of the state labeled by x in local
life-cycle of the agent i, along a given branch. The rule R⇒U captures the fact that if
(i, y, q′) is a /∗-successor of (i, x, q) then also the quantum labels q and q′ have to be
related by U.

5.4. Derivations

Given the rules in Figure 1–4, the notions of derivation, conclusion, open and dis-
charged assumption are the standard ones for natural deduction systems (see, e.g., [21],
pp. 127-129).
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Definition 10. We write
Γ `N(QBDTL) (i, x, q) : A

to say that there exists a derivation of (i, x, q) : A in the system N(QBDTL) whose
open assumptions are all contained in the set of (labeled and relational) formulas Γ.
A derivation of (i, x, q) : A in N(QBDTL) where all the assumptions are discharged is
a proof of (i, x, q) : A in N(QBDTL) and we then say that (i, x, q) : A is a theorem of
N(QBDTL) and write `N(QBDTL) (i, x, q) : A.

Figure 5 contains two examples of derivations (actually, proofs). The first is based
on the fact that it is always possible to apply the identity transformation to a qubit. It
follows that if a qubit is in a state where an atomic proposition p holds, then there exists
a path along which p always holds.

The formula derived in the second example describes a property of the synchroniza-
tion between qubits and can be read as a consequence of condition (ii) in the definition
of a distributed life-cycle. If the qubit i is in a state from which a proposition p always
holds in the future, then if i synchronizes with j, i.e., the two qubits are combined by
means of some n-ary quantum operator, and after that, j synchronizes with i again, we
end up in a state of i where p still holds. Note that in this derivation we use the verum
> as an abbreviation for ⊥⊃⊥.

Example 5 (QBDTL “in action” — III). We now give a derivation that describes the
circuit of Example 3. The aim of this example is to show that our interpretation of
synchronizations as controlled operations is significative also at level of deduction.
Let us consider the following formula, which describes the circuit’s behavior from the
perspective of agent j:

( j, x, q) : ∀�((p|0〉q ∧ c©ip|1〉q) ⊃ ∃�(p|1〉q ∧ ( c©ip|1〉q))) (12)

where we suppose that x is the starting temporal state that belongs to the path corre-
sponding to the circuit. Intuitively, the antecedent and the consequent of the implication
describe the input-output behavior of the circuit; the “action” of the controlled gate
can be read as the sharing of a time instant by the agents involved in the calling.

We need also to specify a further set of assumptions, in order to model the required
input conditions. This will be explicitly done by the following labelled and relational
formulas:

( j, x, q) C∗ ( j, x1
j , q

1
j ) (13)

( j, x1
j , q

1
j ) : p|0〉q (14)

( j, x1
j , q

1
j ) Z (i, x1

i , q
1
i ) (15)

(i, x1
i , q

1
i ) : p|1〉q (16)

Informally, we are expressing the following notions: starting from the current state x,
we focus on a state in the future (13) in which p|0〉q holds for j (14); moreover, at the
same instant, j is synchronized with the agent i (15) and p|1〉q holds for i (16).
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Starting from these assumptions, we are able to derive the labeled formula ( j, x, q) :
∃�p|1〉q, which actually says that there exists a successor temporal state (among all the
possible immediate successors) that corresponds to evaluation by means of cnot:

s j : ∀�((p|0〉q ∧ c©ip|1〉q) ⊃ ∃�(p|1〉q ∧ ( c©ip|1〉q))) s j C
∗ s1

j

s1
j : (p|0〉q ∧ c©ip|1〉q) ⊃ ∃�(p|1〉q ∧ ( c©ip|1〉q))

∀�E
s1

j : p|0〉q

s1
i : p|1〉q s1

j Z s1
i

s1
j : c©ip|1〉q

c© I

s1
j : p|0〉q ∧ c©ip|1〉q

∧I

s1
j : ∃�(p|1〉q ∧ c©ip|1〉q)

⊃E
[s1

j r( j, x1
j ,�A)s2

j ]
2

s2
j : p|1〉q ∧ c©ip|1〉q

∃�E

s2
j : p|1〉q

∧E
[s1

j r( j, x1
j ,�A)sn

j ]
1

s1
j : ∃�p|1〉q

∃�I2

s1
j : ∃�p|1〉q

sersk
1

where s j ≡ ( j, x, q), s1
j ≡ ( j, x1

j , q
1
j ), s2

j ≡ ( j, x2
j , q

2
j ), s1

i ≡ (i, x1
i , q

1
i ) and A ≡ (p|1〉q ∧

c©ip|1〉q).
Note that it would not be possible to derive the conclusion s1

j : ∃�p|1〉q only by
means of the assumptions describing the input conditions (13), (14), (15) and (16), i.e.,
without a further premise specifying the behavior of cnot.

This example suggests a possible use of QBDTL and of the associated deduction
system. While some basic properties of quantum transformations, e.g., reversibility,
are embodied in the logic, it is also possible to use the formalism provided by QBDTL
in order to model the existence and the behavior of specific gates, as we did here in
the case of cnot. By adding the representation of such gates as assumptions, a modeler
is allowed to consider (and to use the deduction system to reason about) more specific
scenarios.

6. Soundness

The system N(QBDTL) is sound with respect to the given semantics, as can be
shown by adapting standard proof techniques for labeled natural deduction systems [7,
33].

Theorem 1 (Soundness). For every set Γ of labeled and relational formulas and every
labeled formula (i, x, q) : A, it holds that Γ `N(QBDTL) (i, x, q) : A ⇒ Γ |= (i, x, q) : A.

Proof. The proof proceeds by induction on the structure of the derivation of (i, x, q) :
A. The base case is when (i, x, q) : A ∈ Γ and is trivial. There is one step case for every
rule (where, for what concerns local life-cycle rules, we refer to [11], whose treatment
can be quite easily adapted to work here). We show a few representative step cases.

Consider the case when the last rule applied is prop:

Π1
(i, x, q) : p

Π2
γ( j, y, q)

( j, y, q) : p
prop

where Π1 is a proof of (i, x, q) : p from hypotheses in Γ1 and Π2 is a proof of γ( j, y, q)
from hypotheses in Γ2, for some sets Γ1, Γ2 of formulas. By the induction hypoth-
esis, for each model µ = 〈λ,M, π〉 and interpretation function I, if |=µ,I Γ1 then
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|=µ,I (i, x, q) : p and if |=µ,I Γ2 then |=µ,I γ( j, y, q). We consider an I and a µ
such that |=µ,I Γ = Γ1 ∪ Γ2, and show that |=µ,I ( j, y, q) : p. As a consequence
of the induction hypothesis, we get: (i) |=µi,I

i
S (x)

i p; (ii) πi(Ii
S (x)) = IQ(q); and (iii)

π j(I
j
S (y)) = IQ(q). It follows from (i) that p ∈ V(πi(Ii

S (x))), i.e., by (ii), p ∈ V(IQ(q))
and, by (iii), p ∈ V(π j(I

j
S (y))). By definition, we have |=µ,I

j
S (y) p, from which we infer

|=µ,I ( j, y, q) : p.
Now consider the case of an application of c© I:

Π
( j, y, q′) : A (i, x, q) Z ( j, y, q′)

(i, x, q) : c© j A
c© I

where Π is a proof of ( j, y, q′) : A from hypotheses in Γ1. By the induction hypothesis,
we have Γ1 |= ( j, y, q′) : A. We want to show that Γ = Γ1 ∪ {(i, x, q) Z ( j, y, q′)} |=
(i, x, q) : c© j A. Let us consider an arbitrary QBDTL model µ = 〈λ,M, π〉 and an
interpretation function I, and assume that |=µ,I Γ holds. This implies last(Ii

S(x)) =

last(Ij
S(y)) and πi(Ii

S (x)) = IQ(q). By the induction hypothesis, we also obtain |=µ,I

( j, y, q′) : A, which yields |=µ j,I
j
S (y)

j A. By the definition of local satisfaction relation,

we infer |=µi,I
i
S (x)

i c© j A and then |=µ,I (i, x, q) : c© j A. Since µ and I are arbitrary, we
can conclude Γ |= (i, x, q) : c© j A.

Finally, consider the case of an application of R⇒U:

(i, y, q′) C∗ (i, z, q′′)

[q′Uq′′]
Π

( j, x, q) : A
( j, x, q) : A R⇒U

where Π is a proof of ( j, x, q) : A from hypotheses in Γ1 ∪ {q′Uq′′} for some set Γ1 of
formulas. By the induction hypothesis, we have Γ1 ∪ {q′Uq′′} |= ( j, x, q) : A. We want
to show that Γ = Γ1 ∪ {(i, y, q′) C∗ (i, z, q′′)} |= ( j, x, q) : A. Let us consider arbitrary
µ = 〈λ,M, π〉 and I, and assume that |=µ,I Γ holds. This implies |=µ,I (i, y, q′) C∗

(i, z, q′′), from which we infer: last(Ii
S(y)) Ii

B(C)∗ last(Ii
S(z)); πi(Ii

S (y)) = IQ(q′);
and πi(Ii

S (z)) = IQ(q′′). By condition (i) in the definition of a QBDTL model and
the property of universality behind connected components of S5 models, this yields
IQ(q′)UIQ(q′′) and thus |=µ,I q′Uq′′. By the induction hypothesis, we obtain |=µ,I

( j, x, q) : A. Since µ and I are arbitrary, we can conclude Γ |= ( j, x, q) : A. 4

7. Completeness

Completeness of N(QBDTL) is proved (i) by defining a decision procedure based
on semantic tableaux and (ii) by showing a relation between the “closure” conditions
in the tableaux and derivability of formulas in N(QBDTL). The structure of the proof
is inspired mainly to the one given in [8] for an Hilbert-style axiomatization of the
logic UB. Similar proofs are presented in [16, 15] for the logic CTL. In our setting,
adaptations are required in order to deal with labeled formulas, with the synchroniza-
tion mechanisms and operators and with the S5-like modal logic that determines the
valuation of atomic propositions.
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7.1. A semantic tableau for QBDTL

Hintikka structures
We define a structure as a pair (S,ZS ), where S is a set of triples {〈Si,Ri,Pi〉}i∈Id

specifying for each agent i a set Si of states, an assignment Pi of formulas to states and
a binary relation Ri on Si, and ZS is a binary relation on {s ∈ Si | i ∈ Id}, used in the
construction to connect states of distinct agents. We require that there exists a subset
Prop′ of Prop such that each Pi is complete with respect to Prop′, i.e., for each atomic
proposition p ∈ Prop′ and state s ∈ Si, either p ∈ Pi(s) or ¬p ∈ Pi(s), and such that all
the formulas assigned to states by Pi are built over atoms in Prop′. Finally, we require
that a structure respects the following conditions:

• for each i and s ∈ Si, there exists a t ∈ Si such that sRit;

• there exists an S5 modelM = 〈Q,U,V〉, whereV is defined fromQ toP(Prop′),
such that for each i and each s ∈ Si, a world qs ∈ Q is assigned to s, and this
assignment is such that: (i) for each p ∈ Prop′, p ∈ Pi(s) iff p ∈ V(qs), and (ii)
sRit iff qsUqt.

We define R =
⋃

i∈Id Ri as the union of the Ri and, for simplicity, given s ∈ Si, we will
often write A ∈ s to denote A ∈ Pi(s) and s ∈ S if s ∈ Si for some i.

As in [8], we implicitly reduce possible double negations and replace negated
modalities by their duals. We define α-formulas and β-formulas as the following local
formulas:4

α α1 α2

A1 ∧ A2 A1 A2
∀�A A ∀�∀�A
∃�A A ∃�∃�A

β β1 β2

A1 ∨ A2 A1 A2
∀^A A ∀�∀^A
∃^A A ∃�∃^A

Given a local formula A, let At(A) = {p1, . . . , pn} be the set of atomic propositions
occurring in A (for simplicity, we can assume such a set to be ordered). We call an
atomic configuration for A any formula of the form p̂1 ∧ . . . ∧ p̂n, where each p̂i is
either pi or ¬pi. Let ∆A = {B | B is an atomic configuration for A}. Then, we define

InA = ∀�∃�> ∧ (∀�
∨
B∈∆A

B) ∧
∧
B∈∆A

(∃^B ⊃ ∀�(∃�B)) .

The formula InA will be used to ensure that: (first conjunct) the construction of a
tableau for A gives rise to models where seriality is satisfied; (second conjunct) the

4We are aware of the clash with the amplitudes, but we prefer to overload α and β in order to keep the
standard terminologies of both quantum computing and tableaux.
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set of atomic propositions in At(A) holding in each node is specified during the tableau
construction; and (third conjunct) the assignments of atomic propositions to worlds is
ruled by an underlying S5-model.

Definition 11. A Hintikka structure is a structure (S,ZS ) such that for each state s ∈ S
in it:

1. ¬A ∈ s⇒ A < s;
2. α ∈ s⇒ α1 ∈ s and α2 ∈ s;
3. β ∈ s⇒ β1 ∈ s or β2 ∈ s;
4. ∀�A ∈ s⇒ for all t such that sRt, A ∈ t;
5. ∃�A ∈ s⇒ for some t such that sRt, A ∈ t;
6. ∃^A ∈ s⇒ there exists an s-branch b and for some t ∈ b, A ∈ t;
7. ∀^A ∈ s⇒ for each s-branch b there exists t ∈ b such that A ∈ t;
8. c© jA ∈ s⇒ there exists t ∈ S j such that s ZS t and A ∈ t.

We say that (S,ZS ) is a Hintikka structure for a global formula @i A if (A∧ InA) ∈ s
for some s ∈ Si.

Theorem 2. A global formula @ j A is satisfiable iff there is a Hintikka structure for
@ j A.

Proof. (⇒) For each agent i, the branching distributed local life-cycle can be easily
turned into a local structure 〈Si,Ri,Pi〉 and the sharing of events between agents can
be used to define the relation ZS . For this direction, just observe that the conditions
defining a Hintikka structure are less restrictive than those defining a QBDTL model.

(⇐) Let (S,ZS ), where S is a set of triples {〈Si,Ri,Pi〉}i∈Id, be a Hintikka structure.
By definition, there is an associated S5 model M = 〈Q,U,V〉 defined over a subset
Prop′ of the set Prop of atomic propositions. We can extend M by defining p ∈
V(q) for each q ∈ Q and for each p ∈ Prop \ Prop′. Now we define a QBDTL
model µ = 〈λ,M, π〉, where λ = {λi}i∈Id and each λi is obtained by unwinding the
corresponding local structure 〈Si,Ri,Pi〉. π is simply defined by using the mapping
between states in S and worlds inM. Finally, the sharing of events in λ is induced by
the relation ZS . The proof that the model µ obtained is indeed a model for @ j A is
quite standard and proceeds by induction on the length of the formula. The only new
case is the one concerning communication formulas and is handled by using condition
8 of Definition 11. 4

Tableau construction
Here we will first describe a procedure for constructing a semantic tableau, and

then show how to obtain a Hintikka structure from the tableau.
Given i, j ∈ Id with i , j, an agent formula is a formula of the form i : A, where

A is a formula in the local language of i; a communication formula is a formula of the
form [i : A] j and a synchronization formula is a formula of the form i Z j. A tableau
formula is an agent formula, a communication formula or a synchronization formula.
We will sometimes refer to agent and communication formulas concerning an agent i
as i-formulas.
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The tableau consists of a set of nodes and oriented edges between nodes, where
each node is labelled with a set of tableau formulas. Given a node n, we will denote by
Ln the set of formulas labeling n, and, for simplicity, often write ϕ ∈ n for ϕ ∈ Ln. We
say that an agent i occurs in n if at least one tableau formula labeled with i occurs in n.
An agent i is blocked in n if there exists a synchronization formula [ j : A]i ∈ Ln. We
denote with ClZ(n) the symmetric and transitive closure of the relation induced by the
synchronization formulas in Ln, e.g., if (i Z j), ( j Z k) ∈ Ln, then (i Z k) ∈ ClZ(n).

The tableau T for a global formula @i A0 is constructed inductively by labeling a
root node n0 with i : A0 ∧ InA0 and by applying the following rules to nodes n that are
leaves of T :

• Rα: if i : α ∈ Ln, then create a son n1 of n and define Ln1 = Ln ∪ {i : α1, i : α2};

• Rβ: if i : β ∈ Ln, then create two sons n1 and n2 of n and define Lnl = Ln ∪ {i : βl}

for l ∈ {1, 2};

• RZ: if [i : ∃^A] j ∈ Ln, then:

– create a son n1 of n and define Ln1 = Ln ∪ {i : A, i Z j};

– if (i Z j) < ClZ(Ln), then also create a second son n2 of n and define
Ln2 = Ln ∪ {[i : ∃�∃^A] j}.

• R c©: if i : c© jA ∈ Ln, then create a son n1 of n and define:

– Ln1 = Ln ∪ { j : A ∧ InA0 , i Z j} if j does not occur in n;

– Ln1 = Ln ∪ { j : A} if (i Z j) ∈ ClZ(Ln);

– Ln1 = Ln ∪ {[ j : ∃^A]i} otherwise;

• R�: this rule is applied only when applications of Rα, Rβ and R c© would not
generate a new node. Let Γi be the set of formulas in Ln that do not involve i.
For each agent i occurring in n and not blocked, such that Vi = {i : ∃�A1, . . . , i :
∃�Ak, [i : ∃�B1] j1 , . . . , [i : ∃�Bh] jh , i : ∀�C1, . . . , i : ∀�Cm} is the set of i-
nexttime formulas in Ln, we create:

– k sons nl of n, for 1 ≤ l ≤ k, and define Lnl = {i : Al, i : C1, . . . , i : Cm} ∪ Γi;
and

– h sons nl of n, for 1 ≤ l ≤ h, and define Lnl = {[i : Bl] jl , i : C1, . . . , i :
Cm} ∪ Γi;

we will refer to the k + h nodes created in this step as i-sons of n.

With respect to the construction in [8], we note that here we need some further rules.
RZ can be seen as a special case of Rβ, where the creation of a witness for the formula
expressing an eventuality also adds to the node a synchronization formula stating that
the two agents have just communicated. R c© is a special case of Rα that forces a com-
munication to happen if the two agents are currently synchronized or postpones such
a synchronization to some future node otherwise. Finally, we note that in our case R�
embodies also a β-step that represents the choice of the agent to be reactivated next.

We have two termination rules in the construction of a tableau:
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• Cl1: if A ∈ Ln and ¬A ∈ Ln, then n is a closed node and no further rules are
applied to it;

• Cl2: if a node n1 is being created by an application of R� to n and there exists an
ancestor n′ (also generated by R�) of n such that Ln′ = Ln1 then do not create n1
but create an edge oriented from n to n′.

Lemma 1. The construction of a tableau T for a tableau formula ϕ terminates.

Proof. Just observe that the set of formulas that can occur in nodes of T is finite and
then the closure rule Cl2 will eventually prevent the creation of new nodes. In fact, each
logical formula is a subformula of ϕ, a negation of a subformula or a dual of a subfor-
mula (possibly prefixed by ∀� or ∃� and possibly in the form of a communication
formula). Since the set of agent labels occurring in ϕ is finite, the set of synchroniza-
tion formulas is also finite. 4

Marking algorithm
In the following, we will refer to a node n as an α/β/ c©/Z/�-node if a rule

Rα/Rβ/R c©/RZ/R� has been applied to such a node during the tableau construction.
In particular, in the case of a �-node n, we can be more specific and say that it is a
�i-node for any agent i that occurs in n and is not blocked. Moreover, we say that a
formula is a future formula if it has the form i : ∀^A, i : ∀�∀^A, i : ∃^A, i : ∃�∃^A,
[i : ∃^A] j or [i : ∃�∃^A] j.

The possible presence of cycles in a tableau T makes it not trivial to determine
whether it is closed or not. Here we will define a two-step algorithm for marking the
nodes of T . In the end of the process, we will have that it is possible to extract from T
a Hintikka structure for the root formula iff the root of T is not marked.

1. Apply iteratively the following rules as long as possible:

• MCl: Mark every closed leaf.

• Mα: If n is an α-node and its son is marked, then mark n.

• Mβ: If n is a β-node and both its sons are marked, then mark n.

• M c©: If n is a c©-node and its son is marked, then mark n.

• MZ: If n is a Z-node and all its sons are marked, then mark n.

• M�: If n is a �-node and for each agent i occurring in n and not blocked, at
least one of the i-sons of n is marked, then mark n.

We can define a structure (S,ZS ) as follows. For each i ∈ Id, S contains a triple
{Si,Ri,Pi} such that:

• for each unmarked �i-node n in T , there is a state ni in Si;

• given ni ∈ Si, A ∈ Pi(ni) iff A ∈ Ln;

• given ni
1, n

i
2 ∈ Si, ni

1Rini
2 if there is a path (n1,m0, . . . ,mk, n2) in T such that

m0, . . . ,mk are not �i-nodes.

Finally, given ni
1 ∈ Si and n j

2 ∈ S j, we say that (ni
1, n

j
2) ∈ZS iff n1 Z n2 ∈ ClZ(n1)

or n1 Z n2 ∈ ClZ(n2).
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2. Apply the ranking algorithm described below to the structure obtained and mark
each node containing an unranked occurrence of a future formula. If the resulting
structure is such that the rules in step 1 become applicable again, then go back
to step 1.

Ranking algorithm
The application of step 1 in the marking algorithm given above generates a structure

that does not necessarily satisfy conditions 6 and 7 of Definition 11. This is due to the
fact that, in the presence of cycles, the creation of a witness for a future eventuality
could be postponed indefinitely.

Here we define a ranking algorithm aimed at facing this issue. Let T be a tableau
obtained by applying step 1 of the marking algorithm above and let N be the set of
unmarked nodes in T . The following algorithm will assign a positive rank ρ(q, n) to
some of the occurrences q of future formulas in n. Intuitively, ρ(q, n) represents the
distance between n and the node where a witness for the future formula q occurs.

Let q ∈ Ln be a not ranked future formula. The ranking algorithm consists of the
following rules:

• R1: If n is a β-node or a Z-node for q and n1 ∈ N, then ρ(q, n) = 1;

• R2: If n is a β-node or a Z-node for q, q′ is the formula occurrence generated for
the node n2 and ρ(q′, n2) is defined, then ρ(q, n) = ρ(q, n2) + 1;

• R3: If n is a β-node or a Z-node not for q and ρ(q, nk) is defined for some k ∈
{1, 2}, then ρ(q, n) = ρ(q, nk) + 1;

• R4: If n is an α-node or a c©-node and ρ(q, n1) is defined, then ρ(q, n) = ρ(q, n1)+

1;

• R5: If n is a �-node and q = i : ∀�∀^A, then:

– if ρ(i : ∀^A, nk) is defined for all i-sons nk of n, then ρ(q, n) = max{ρ(i :
∀^A, nk)}k + 1;

– otherwise, if for some j occurring and not blocked in n, ρ(i : ∀�∀^A, nk)
is defined for all j-sons nk of n, then ρ(q, n) = max{ρ(i : ∀�∀^A, nk)}k + 1.

• R6: If n is a �-node and q = i : ∃�∃^A/[i : ∃�∃^A] j, then:

– if ρ(i : ∃^A/[i : ∃^A] j, nk) is defined for some i-son nk of n, then ρ(q, n) =

ρ(i : ∃^A/[i : ∃^A] j, nk) + 1;

– otherwise, if for some agent h occurring and not blocked in n, ρ(i : ∃�∃^A/[i :
∃�∃^A] j, nk) is defined for some h-son nk of n, then ρ(q, n) = ρ(i : ∃�∃^A/[i :
∃�∃^A] j, nk) + 1.

The ranking algorithm terminates since the set of future formulas in N is finite and
each formula is ranked at most once.
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From tableaux to Hintikka structures
Here we show how a tableau constructed as described above for a satisfiable for-

mula can be turned into a Hintikka structure.

Theorem 3. Let T be a tableau for @i A. If the root of T is not marked, then there
exists a Hintikka structure for @i A.

Proof. The proof of this theorem mirrors the one of the analogous theorem in [8]; here
we will just give a sketch of it and highlight some differences arising in our setting.
Given a tableau for @i A, a structure can be constructed as described in step 1 of the
marking algorithm. Some care needs to be taken in order to deal with β-nodes. It
may happen that, when unwinding a cycle of the tableau, some future formula is not
fulfilled. This can be avoided by adopting a “fair” policy, which in the presence of a
β-node alternates the choice between the two sons in such a way that if there is a branch
containing an infinite number of occurrences of a β-node, then each of its sons occurs
infinitely many times in the branch. Such a construction, the details of which can be
found in [8], guarantees that conditions 6 and 7 of Definition 11 are satisfied. Finally,
we note that the formula InA, added as a conjunct to the root of the tableau, ensures that
the valuation of atomic propositions meets the requirement of being determined by an
underlying S5 model. 4

7.2. Completeness of N(QBDTL) via tableaux

Here we will first prove a result concerning the relation between the formulas con-
tained in a marked node of a tableau, built according to the procedure described in
Section 7.1, and the formulas derivable in N(QBDTL). Then we will use such a result
in order to prove the weak completeness of N(QBDTL).

Given a tableau T and a node n of T , the N(QBDTL) translation L∗n of Ln is
obtained from Ln by replacing, for each agent i, each i-formula i : A or [i : A] j with the
formula (i, xi, qi) : A for some xi and qi. We say that a node n of T is inconsistent if
L∗n `N(QBDTL)⊥.

Lemma 2. If n is a marked node of a tableau, then n is inconsistent.

Proof. The structure of this proof also follows quite closely the one given in [8] with
respect to a Hilbert-style axiomatization for the logic UB. Here we recall the general
structure and add some remarks concerning our case. We notice that N(QBDTL) in-
cludes a subsystem that has been proved complete for UB [11]; thus for what concerns
branching-time reasoning in the proof, we can just rely on the fact that the axioms used
in [8] can be derived by using the rules of N(QBDTL).

The proof proceeds by showing that the marked leaves of the tableau are incon-
sistent nodes (this is trivial as a leaf must contain both A and ¬A for some A) and by
proving that the property of being inconsistent is propagated at each step when one
moves towards the root. In particular, this is easily shown for those nodes that are
marked through the step 1 of the marking algorithm. We just notice, as a peculiarity of
our setting, that in the case of a c©-node n, if the son is generated by adding a formula of
the form [ j : ∃^A]i, then for proving that n is inconsistent we need to refer to the node,
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possibly lower in the tableau than the son of n, where the synchronization between i
and j actually occurs.

When nodes are marked through step 2 of the marking algorithm, a more com-
plex construction is needed in order to show that there is a cycle that never fulfills an
eventuality. This requires the definition of an invariant formula as a disjunction of the
formulas characterizing each of the nodes in the cycle. In this case, inconsistency of
the nodes is proved by using the induction rules ind∀ and ind∃.

Finally, we note that formulas of the form (i, x, q) : InA for any A are derivable in
our system by using the rule serC for seriality, the quantum transformation rules reflU ,
symmU , transU and prop, together with the interaction rules U⇒R and R⇒U. This is
used for proving that the initial node is inconsistent as well as in the case of c©-nodes
that introduce new agents. 4

The following theorem states that the converse of Theorem 3 holds, thus establish-
ing the fact that the tableau procedure given in Section 7.1 is a decision procedure for
QBDTL.

Theorem 4. Let @i A be a satisfiable formula. Then the root n0 of the tableau for @i A
is not marked.

Proof. Assume @i A is satisfiable, i.e., @i ¬A is not valid. By the soundness of
N(QBDTL), it follows 6`N(QBDTL) (i, x, q) : A, for arbitrary x and q. Then, by Lemma 2,
the root of the tableau for @i A is not marked. 4

Theorem 5 (Weak completeness). For every QBDTL formula A and composed label
(i, x, q), if |= (i, x, q) : A, then `N(QBDTL) (i, x, q) : A.

Proof. Let |= (i, x, q) : A. Then (i, x, q) : ¬A is unsatisfiable. By Theorems 2 and 3, the
root of any tableau for @i ¬A is marked. By Lemma 2, we conclude `N(QBDTL) (i, x, q) :
A. 4

8. Concluding Remarks

We have given the syntax and semantics of our Quantum Branching Distributed
Temporal Logic QBDTL along with the deduction system N(QBDTL) and examples
of its application. Moreover, we have proved that N(QBDTL) is sound and complete
with respect to the given semantics. The proof of soundness is a standard induction,
whereas the proof of the completeness theorem required a non-trivial refinement and
extension of the complex proof, based on the definition of a tableau system, proposed
in [8] for the branching-time logic UB.

In this paper, we have modeled quantum state transformations from an abstract
perspective: in QBDTL, no reference to a specific quantum computation or to a notion
of input/output of values is required. This allowed us to design a manageable high-level
formalization oriented to modeling the behavior of quantum systems, but it is probably
not enough if one wants to capture more complex properties such as entanglement.
This does not mean that one has to completely convert the qualitative approach into
a quantitative one (following the “philosophy” of quantum logic, cf. the discussion
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in the introduction and the following sections). We believe that a distributed logic
is a promising tool not only for the simple description of quantum states, but also
to model the correct amount of quantitative information needed to capture properties
like entanglement. In some sense, we aim at integrating into the QBDTL high-level
perspective, able to model the “control” of quantum computation (which treats qubits
and quantum gates as black-boxes), more detailed information about quantum data, so
that it is possible to “look inside” the qubits and specifically model the quantitative
behavior of some interesting unitary operators.

In QBDTL, we are as general as possible with respect to the application of trans-
formations: in a local-life cycle the subtended temporal transition tree represents at
each step all the possible unary gates that can be applied to the current state, while the
synchronization mechanism between agents models all possible n-ary operators. It is
well known that one can fix a complete computational basis (finite or infinite) of uni-
tary operators and represent other operators in terms of the elements of such a basis.
An infinite complete basis can be defined by taking all unary operators and the binary
quantum gate cnot. As we remarked above, when the control qubit assumes some spe-
cific superpositional value (e.g., 1

√
2
|0〉 + 1

√
2
|1〉), the output of the cnot is an entangled

state. This suggests that restricting our perspective about arbitrary n-ary gates as syn-
chronization operators to a single binary gate, the cnot, and lifting syntax and semantics
to capture its behavior would provide us with all the ingredients needed to model en-
tanglement. Following this standpoint, one can now view synchronizations exactly as
control operators: a target qubit has to synchronize (by sharing an event) with the con-
trol qubit in order to perform its own, controlled evolution. Moreover, we observe that
the notion of synchronization, in presence of entanglement, assumes a non-local (with
respect to time) meaning: a synchronization that creates entanglement does not only
represent the sharing of local events, but it also influences the subsequent events in the
local life cycle of the involved agents. We thus aim to make the connection between
agent synchronization and (possible) entanglement of qubits explicit.

More specifically, if an agent/qubit belongs to an entangled state, it is not possible
to “keep out” its individual mathematical description, since the global mathematical
description of an entangled state cannot be expressed in terms of local descriptions.
Hence, in order to speak about entanglement, we need new syntactical constructs. A
side effect is that also the interpretation of propositional symbols provided in Section 3
and in the examples has to be lifted in order to deal with the impossibility to express a
local mathematical status. We are working at extending the logic with ad hoc proposi-
tional symbol of the shape entgi, which models exactly the information that the agent
i is momentarily entangled and no local information about its quantum states can be
provided. This is why we believe that this extension will have an interesting impact
also on the notion of synchronization.

Finally, we are considering the explicit modeling inside QBDTL of measurement
steps, which can be seen as a further class of transformations. We believe that these
extensions will also enable the use of our approach for the analysis of quantum security
protocols, which are based on entanglement phenomena [9], along the lines of what has
been done with respect to classical security protocols by using DTL [6].
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