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ON THE HAUSDORFF DIMENSION OF MINIMAL

INTERVAL EXCHANGE TRANSFORMATIONS WITH

FLIPS

ALEXANDRA SKRIPCHENKO AND SERGE TROUBETZKOY

Abstract. We prove linear upper and lower bounds for the Hausdorff
dimension set of minimal interval exchange transformations with flips
(in particular without periodic points), and a linear lower bound for the
Hausdorff dimension of the set of non-uniquely ergodic minimal interval
exchange transformations with flips.

1. Introduction

1.1. The results. We study interval exchange transformations with flips
(fIET). An fIET is an piecewise isometry of an interval to itself with a finite
number of jump discontinuities, reversing the orientation of at least one of
the intervals of continuity. Interval exchanges with flips appear naturally
as the first return map to a transversal for vector fields on non-orientable
surfaces. Interval exchange transformations without flips (IET) also appear
in naturally, each IET is the first return map to a transversal for a measured
foliation on surface.

The set of fIETs and of IETs on n intervals are naturally parametrized by a
subset of Rn−1 and some discrete parameters.The ergodic properties of IETs
are well known: almost all irreducible IETs are minimal (Keane [Ke]) and
almost all IETs are uniquely ergodic (Masur [Ma], Veech [Ve2]). Nogueira
has shown that that fIETs have completely different dynamics

Theorem ([No]). Lebesgue almost every interval exchange transformation
with flips has a periodic point.

The measure in question is the Lebesgue measure in R
n−1. In this article,

we evaluate the Hausdorff dimension of the set MFn of minimal fIETs on
n-interval, this set is subset of fIETs on n-intervals without periodic points.
We prove the following

Theorem 1. The Hausdorff dimension of the set MFn satisfies:

n− 3 ≤ Hdim(MFn) < n− 1.

We also prove a lower bound for the Hausdorff dimension of non-uniquely
ergodic minimal fIETs. Let us denote this set by NUEn ⊂ MFn.
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Theorem 2. The Hausdorff dimension of the set of non-uniquely ergodic
minimal n-fIETs satisfies:

[n

2

]

− 2 ≤ Hdim(NUEn).

In the case n = 6, using a result of Athreya and Chaika [AtCh] we have
much better lower bound:

Proposition 3. For n = 6

5

2
≤ Hdim(NUE6).

The paper is organized as follows. In Section 2 we give main definitions
and briefly discuss known results and compare to the case of interval ex-
change transformations without flips. In Section 3 we describe our main
tool - Rauzy induction for interval exchange transformations with flips, and
study its combinatorics. We also introduce the notion of the cocycle as-
sociated with the Rauzy induction. Section 4 is dedicated to the Markov
map associated with the Rauzy induction: we prove key features of this map
and of the corresponding Markov partition, in particular we show that this
map is uniform expanding in a sense of [AvGoYo]. In Section 5 we prove
some distortion estimations for the cocycle based on the so called Kerckhoff
lemma (see [Ker]). We mainly follow the approach suggested in [AvGoYo]
for interval exchange transformations and applied in [AvRe] for linear invo-
lutions and in [AvHuSkr] for systems of isometries. Section 6 is about the
roof function: using the estimations from the previous section show that
the roof function has exponential tails. The proof is also inspired by the
similar result in [AvGoYo]. In Section 7 we prove the upper bound for the
Hausdorff dimension announced in Theorem 1. The proof is based on the
argument presented in [AvDe]: first, we show that the exponential tail of the
roof function implies that the corresponding Markov map is fast decaying in
a sense of [AvDe] and then using [AvDe] check that this property implies the
estimation we are interested in. Section 8 completes the proof of Theorem 1:
we show the lower bound applying the construction described by Nogueira
in [No]. Using the same idea, we prove Theorem 2 and Proposition 3.

1.2. Acknowledgements. We thank Pascal Hubert for very useful discus-
sion.

AS was supported by RSF grant, project 14-21-00053 dated 11.08.14.
ST graciously acknowledge the support of Région Provence-Alpes-Côtes

d’Azur; project APEX “Systèmes dynamiques : Probabilités et Approxima-
tion Diophantienne PAD”.

2. Definitions and known results

2.1. Interval exchange transformations. Let I ⊂ R be an interval (say,
I = [0, 1)) and {Iα : α ∈ A} be a partition of I into subintervals, of the form
[a, b), indexed by some alphabet A on n ≥ 2 symbols. An interval exchange
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transformation (IET) is a bijective map from I to I which is a translation
on each subinterval Iα.

Such a map f is determined by the following collection of combinatorial
and metric data:

• a vector λ = (λ1, · · · , λn) of lengths of the subintervals. Each com-
ponent λα is positive.

• a permutation π = (π0, π1) which is a pair of bijections πi : A →
{1, · · · , n} describing the ordering of the subintervals Iα before and
after the map is iterated;

Each IET preserves the measure and the orientation on I.

Definition. Let f : X → X be an invertible map. The orbit of x ∈ X is
the subset {fk(x) ; k ∈ Z}.

Definition. A map f : X → X is called minimal if all orbits are dense in
X.

In [Ke] M. Keane proved that almost all IETs for which π is irreducible
are minimal. In this article we are only interested in transitive (minimal)
IETs, so we assume that π is always irreducible.

Definition. A measure preserving map f : (X,µ) → (X,µ) is called uniquely

ergodic if it admits which is necessarily ergodic.

H. Masur in [Ma] and W. Veech in [Ve2] proved that in case of irreducible
permutations almost all IET are uniquely ergodic (and so, every invariant
measure is a multiple of Lebesgue measure).

2.2. Interval exchange transformations with flips. fIETs are a gener-
alization of IETs. Informally, a fIET f is a piecewise linear map from I to
I such that f acts an isometry on each Iα, so that the images of interiors of
partition elements do not overlap, which does not preserve the orientation:
on some subintervals f inverses it.

We proceed with the precise definition. Consider the interval I = [0, 1),
and the partition Iα such that Ik = [βk−1(λ), βk(λ)], where βi(λ) = λ1 +
· · · + λi for i = 1, · · · , n. We also fix a permutation π and a subset F ⊂ A.
We denote by λπ the vector (λπ−1(1), · · · , (λπ−1(n)) and set βπ(λ) = βi(λ

π).

Definition. The fIET with flip set F is the following map:

f(x) =

{

x− βi−1 + βπ
π(i)−1 if x ∈ Ii, i /∈ F,

βi − (x− βi−1)− βi−1 + βπ
π(i)−1, if x ∈ Ii, i ∈ F.

One can see that an n-fIET is determined by the following data:

• a vector λ = (λ1, · · · , λn) of lengths of the subintervals. Each com-
ponent λα is positive;

• a signed permutation θπ, where π is as above and θ ∈ {−1, 1}n. The
signed permutation describes the order of the subintervals Iα before
and after the map is iterated as well as the subset of flips (that is
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marked by θi = −1). We sometimes denote the signed permutation
corresponding to π by π̂.

Throughout the article we will reserve the notation fIET to the case when
the flip set is non-empty, and use the notation IET when the flip set is empty.

As mentioned above, the dynamics of fIETs is diametrically opposite to
the dynamics of classical IETs: typical map has a periodic points ([No]).
The first example of a minimal fIET was constructed in [No] (we refer to
it as the Nogueira construction). Some examples of minimal and uniquely
ergodic fIETs can be also found in [GLMPZh], and a analyse of the number
of periodic and minimal components of fIETs can be found in [NoPiTr].

3. Rauzy induction

A detailed description of Rauzy induction for fIETs can be found in [No]
and [GLMPZh]. Here we present a brief scheme of the induction algorithm.
In this chapter we will neglect all fIET such that λn = λπ−1(n) that form a
set of zero measure.

The term Rauzy induction refers to the operator R on the space of fIETs
that associates to each fIET f = (λ, π̂) with irreducible π̂ another fIET f ′ =
R(f) = R(λ, π̂) which is the first return map induced by f on a subinterval
[0, ν] where ν is as follows:

ν =

{

βn(λ)− λπ−1(n) if λπ−1(n) < λn

βn(λ)− λn, if λπ−1(n) > λn.

Rauzy induction is not defined in the case that λπ−1(n) = λn, the set of
fIETs satisfying this equality is of Hausdorff dimension n− 1 and thus does
not interest us.

One can check that

(1) f ′ = (λ′, π̂′) =

{

((Ia(π̂))
−1λ, a(π̂)) if λπ−1(n) < λn

((Ib(π̂))
−1λ, b(π̂)), if λπ−1(n) > λn,

where the transition matrices Ia(π̂), Ib(π̂) ∈ SL(n,Z) and transition maps
a(π̂), b(π̂) are defined below.

Ia(π̂) = E + En,π−1(n),

where E is an identity matrix and Ei,j is the elementary matrix containing
1 as (i, j)-th element;

Ib(π̂) =

π−1(n)
∑

i=1

Ei,i +En,s(π̂) +
n−1
∑

i=π−1(n)

Ei,i+1,

where s(π̂) = π−1(n) +
1+θ

π−1(n)

2 .
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The transition maps are defined as follows: if θn = 1, then

a(θπ) =











θiπi if πi ≤ πn

θi(πn + 1) if πi = n

θi(πi + 1) otherwise,

b(θπ) =











θiπi if i ≤ π−1
n

θnπn if i = π−1(n) + 1

θi−1(πi−1) otherwise,

while if θn = −1, then

a(θπ) =











θiπi if πi ≤ πn − 1

−θiπn if πi = n

θi(πi + 1) otherwise,

b(θπ) =











θiπi if i ≤ π−1
n − 1

−θnπn if i = π−1(n)

θi−1(πi−1) otherwise.

In case that the operation a was used, we say that the element n was the
winner and the element π−1(n) was the loser ; in case that the operation b
was applied, the terminology is the opposite.

More generally, if the alphabet A has n letters and if α and β were the last
elements of non-signed permutation π, then, depending on the inequalities
written above, we say that α is a winner and β is a loser (or vice versa).
Sometimes, since we also work with the signed permutation π̂, we can specify
that α or −α was the winner or the loser.

Remark. We will iterated the Rauzy induction map, however Rauzy induc-
tion is not defined everywhere, thus the iteration stops if we arrive to a point
outside its domain of definition (see [No] for an example when it stops). In
case of an IET (without flips) which satisfies Keane’s condition this never
happens.

3.1. The Rauzy graph in the case of fIETs. As in case of IETs, one
can define Rauzy classes for fIETs. Given pairs π̂ and π̂

′

, we say that π̂
′

is a
successor of π if there exist λ, λ

′

such that R(π̂, λ) = (π̂
′

, λ
′

). In the case of
IETs, every permutation has exactly two successors; while for fIETs it has
four successors.

However, the property that the successors of every irreducible permuta-
tions are also irreducible does not hold for fIETs. So, this relation defines
a partial order on a set of irreducible permutations, plus a so called hole,
the set of all (π̂, λ̂) without successors, the hole contains all (π̂, λ̂) with π̂
reducible; this order can be represented by a direct graph G that is called the
Rauzy graph. As in case of IETs the connected components of this graph are
called Rauzy diagram or the Rauzy class. Each Rauzy class R(A) contains
a vertex that corresponds to the hole; there are no paths that start in the
hole.

A path of length m ≥ 0 in the diagram is a sequence (finite or infi-
nite) v0, . . . , vm, of vertices (signed permutations) and a sequence of arrows
a1, . . . am such that ai starts at vi−1 and ends in vi. The following obvious
lemma holds:

Lemma 4. If π̂ and π̂
′

are in the same Rauzy class then there exists an
oriented path in G starting at π̂ and ending at π̂

′

.
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As it was mentioned above, the Rauzy induction data contains two parts:
metrical (lengths of the intervals) and combinatorial (vertices of the Rauzy
diagram). In [No] Nogueira introduced a notion of expansion as a way to
describe the metrical part of the Rauzy induction. The expansion that can
be infinite (if the Rauzy induction can be iterated infinite number of times)
and finite (that correspond to the case when the path in the Rauzy graph
contains a hole and therefore the induction stops). Using this terminology,
we call the path that corresponds to the infinite expansion also infinite. The
following obvious lemma holds:

Lemma 5. Each infinite path in the Rauzy diagram corresponds to a min-
imal fIET.

Proof. Infiniteness of the path means the infiniteness of the expansion, so
the Rauzy induction can be applied infinite number of times and then the
support interval becomes arbitrarily small. This implies that the original
fIET was minimal. The proof of the same statement in oriented case can
be found in [Vi] (Lemma 4.4 and Corollaries 5.2 and 5.4 imply it); see also
Chapter 4.3 in [Yo]. �

For each Rauzy class R we denote the set of paths on it by Π(R) (and refer
to this set of paths as the Rauzy class); for each path γ (finite of infinite)
there is the Rauzy operator Rγ that corresponds to it. The matrix of the
Rauzy induction, that is the product of Ia and Ib, is also denoted by Rγ .

We denote by the matrix Bγ = RT
γ sometimes will be referred as matrix of

the cocycle (the same construction is used in the case of IETs in connection
with zippered rectangles as a suspension model, see [Ve2] and [Vi]).

Definition. Let R be a Rauzy class. A path γ ∈ Π(R) is called complete if
every letter α of the alphabet A is the winner of some arrow composing γ.

Definition. We say that γ ∈ Π(R) is positive if all entries of the matrix
corresponding to Rγ are positive.

As in case of IETs, the following holds (see [AvGoYo]):

Lemma 6. Every path that is long enough in terms of Rauzy induction is
complete and, moreover, positive.

A more precise description of the positive paths in case of fIETs can be
found in [No] (Lemma 2.1).

3.2. Acceleration. Rauzy induction has fixed neutral points which means
that any absolutely continiuous invariant measure is necessarily infinite. In
the case of IETs A. Zorich introduced an accelerated algorithm of Rauzy
induction ([Zo]). It is an analogue of the acceleration of the Euclid algo-
rithm. This idea can be used directly in case of fIETs without any significant
changes.

As it was mentioned above, the matrix of Rauzy induction is a product
of matrices Ia and Ib for different a and b. Let us for each stage j of Rauzy
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induction define the indicator ǫ ∈ {−1, 1} such that ǫ = 1 if one applied
matrix Ia and ǫ = −1 if Ib was the matrix of the corresponding stage of the
Rauzy induction. Then, Zorich induction is given by the following operator:

(λ′, π′) = Z(π, λ) = Rn(π, λ),

where n is the smallest j ≥ 1 one such that ǫ(j) = −ǫ(0).
One can associate Rauzy graphs with the accelerated induction in the

same way as for the usual induction. In this paper we work with minimal
fIETs. We exclude the hole vertex from the Rauzy graphs (we call this
exclusion an “adjustment”).

4. Markov map: definitions and properties

4.1. Definition. The Markov map T is the projectivization of the induction
map described above: T (λ, π̂) :=

(

λ′

|λ|′ , π̂
′
)

, where |λ| := βn(λ) = λ1 + · · · +

λn and λ′, π̂′ are defined by the accelerated Rauzy induction: T (λ, π̂) =
(

R−1
γ λ

||R−1
γ λ||

, π̂′,
)

(if the acceleration Rauzy induction is not defined at a point

then we define its image by the last possible application of (1)).

4.2. Markov partition. One can check that the map T determines Markov
partition ∆(l) of the parameter space like in case of orientation-preserving
IETs (see [Vi]). The only difference is that the induction stops in some
Markov cells; we are interested in the set of points where induction can be
applied for an infinite time.

4.3. Markov shift. One can also consider the action of the non-accelerated
Rauzy induction on the accelerated adjusted Rauzy graph. Then, each vertex
of the adjusted Rauzy graph will split into countable number of vertices,
and the same happens to the corresponding Markov cell. Then the Rauzy
induction corresponds to a Markov shift σ in this coding on a countable
alphabet. One can associate in a natural way a graph Γ with such a Markov
shift. Γ can be obtained from the Rauzy graph by dividing every vertex into
a countable number of vertices and adding a required arrows between these
new vertices.

Definition. A countable Markov shift Θ with transition matrix U and set
of states S satisfies the big images and pre-images property (BIP) if there
exist a finite subset of the states of the Markov shift such that the image
under the action of the Markov shift of any state contains some element of
this finite set, and furthermore the image of this finite subset contains the
whole set of states.

As in case of IETs, the following obvious lemma holds for fIETs:

Lemma 7. The Markov shift σ satisfies the BIP property.
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Proof. One can check that it is enough to choose ij such that each belongs
to a different vertex of the accelerated Rauzy graph (for each Rauzy class);
note that the number of classes is finite and depends on n (this determines
the parameter m in the definition). �

4.4. The Markov map is uniformly expanding. As it was mentioned
above, we use so called Manhattan norm for vectors: ||v|| =

∑n
i=1 vi, note

that all the vectors we work with are positive. We will also need operator
norm |A| = sup||v||=1Av and the norm on continuous functions on compact:

||f ||C0(∆) = supx∈∆ |f(x)|.

Definition. Let L be a finite or countable set, let ∆ be a parameter space,
and let {∆(l)}(l∈L) be a partition into open sets of a full measure subset of

∆. A map Q : ∪l∆
(l) → ∆ is a uniformly expanding map if:

• there exist a constant k > 1 such that for each l, Q is a C1 diffeomor-
phism between ∆(l) and ∆, and there exist constant C(l) such that

for all x ∈ ∆(l) and all v ∈ Qx∆, k||v|| ≤ ||DQ(x)v|| ≤ C(l)||v||.
• Let J(x) be the inverse of the Jacobian of Q with respect to Lebesgue

measure. Denote by H the set of inverse branches of Q. The function
logJ is C1 on each set ∆(l) and there exists C > 0 such that, for all
h ∈ H,

||D((logJ) ◦ h)||C0(∆) ≤ C.

We need also one more technical definition (see [AvGoYo]):

Definition. The positive path γ on the Rauzy graph is called a neat if starts
and ends in the same vertex of the graph and the following condition holds:
if γ = γsγ0 = γ0γe for some γs and γe, then either γ = γ0 or γ0 is trivial.

Remark. The definition of a neat guarantees that the associated induction
matrix is strictly positive.

Starting from this moment we consider a special precompact section: we
deal only with paths that contain a neat, i.e. γ = γsγneatγe for some (ar-
bitrary) γs, γe. Equivalently, we can say that we additionally accelerate the
induction. See section 6.2 for a proof of the correctness of the model.

Lemma 8. The map T is uniformly expanding with respect to the Markov
partition (∆(l)).

Proof. The same lemma was proved for IET in [AvGoYo] (Lemma 4.3) and
for linear involutions in [AvRe] (Lemma 6.1). The main idea of the proof
remains the same for our case and is briefly described below.

The first part of the definition of uniformly expanding comes from the
zippered rectangle suspension model. More precisely, as mentioned above
we consider a long enough path γ such that it contains some positive neat.
Then the induction matrix R−1

γ is a product of two matrices such that one
of them is weakly contracting and another one is strongly contracting with
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respect to Hilbert metric. The strong contraction comes from the positivity
of the neat.

The second part of the definition of uniformly expanding can be verified as
follows. First, we notice that an inverse branch of the map T can be written

as h(λ, π̂) = (
Rγλ

||Rγλ||
, π̂). Veech showed that is J ◦ h = 1

||Rγλ||n
where n is

the number of intervals of the IET [Ve1], Proposition 5.3; the proof holds
verbatum for fIETs. So we have:

J ◦ h(λ, π)

J ◦ h(λ′, π)
=

(

||Rγλ||

||Rγλ′||

)n

≤ sup
α∈1,··· ,n

(

λα

λ′
α

)n

≤ en·dist(λ,λ
′).

and thus, logJ ◦ h is Lipshitz with respect to the Hilbert metric (which is
denoted by dist). �

5. The distortion estimates

5.1. Conditional probabilities. The distortion argument will involve the
study of the forward images of the Lebesgue measure under the renormal-
ization map. Following the strategy from [AvGoYo] and [AvRe], we first
construct a class of measures which is invariant as a class.

Let us consider the accelarated Rauzy graph and some path γ in it. Let
us fix the vertex π̂ of this graph and the corresponding Rauzy class R.

As in Section 3.2, Bγ is the matrix of the cocycle corresponding to γ, and
BT

γ denotes its transpose. Let R
n
+ denote the positive cone and 〈·, ·〉 denote

the inner product, then define

Λq := {λ ∈ R
n
+ : 〈λ, q〉 < 1},

and

∆′
γ := BT

γ R
n
+.

For q = (q1, · · · , qn) ∈ R
n
+ we define a measure νq on the σ-algebra A ⊂ R

n
+

of Borel sets which are positively invariant (i.e. R+A = A):

νq(A) := Leb(A ∩ Λq).

Equivalently, νq can be considered as a measure on the projective space

RPn−1
+ . Using Proposition 5.4 in [Ve1], one can check that

νq(R
n
+) =

1

n!q1 · · · qn
,

νq(∆
′
γ) =

1

n!(Bγq)1 · · · (Bγq)n
,

and

νq(B
T
γ A) = Leb(BT

γ A ∩ Λq) = Leb(A ∩ ΛBγq) = νBγq(A).

The measures νq are used to calculate the probabilities of realization of
different types of combinatorics related to the induction.



10 ALEXANDRA SKRIPCHENKO AND SERGE TROUBETZKOY

Let R be a Rauzy class and let γ ∈ Π(R). Let Λq,γ := ΛBγq. If Γ ∈ Π(R)
is a set of paths starting with the same π̂ ∈ R, let Λq,Γ = ∪γ∈ΓΛq,γ . We
define

Pq(Γ|γ) :=
Leb(Λq,Γγ )

Leb(Λq,γ)
=

νq(∪γ′∈Γγ
∆′

γ′)

νq(∆′
γ)

,

where Γγ ⊂ Γ is the set of paths starting by γ.
Suppose γ is a path of length one (an arrow), let π̂ ∈ R be the permutation

from which γ starts and denote by α ∈ A the winner and by β ∈ A the loser
of the first iteration of the Rauzy induction (without acceleration). Then,
the conditional probability related to the given combinatorics is defined by

Pq(γ|π̂) :=
qβ

(qα + qβ)
.

For a long path, for A′ ⊂ A and q ∈ R
A
+ = R

n
+, let NA′(q) :=

∏

α∈A′ qα
and, let N(q) := NA(q), and define

Pq(γ|π̂) :=
N(q)

N(Bγq)
.

Let us introduce a partial order on the set of paths: for two given path
γ, γ

′

we say that γ ≤ γ
′

if γ
′

= γγe for some γe. We say that the subset
Γ is disjoint if no two elements are comparable with respect to this order.
Now, for every family Γ ⊂ Π(R) such that any γ ∈ Γ start by some element
γs ∈ Γs, for every π̂ ∈ R we define

(2) Pq(Γ|π̂) :=
∑

γs∈Γs

Pq(Γ|γs)Pq(γs|π̂).

Note also that

(3) Pq(Γ|π̂) ≤ Pq(Γs|π̂) sup
γs∈Γs

Pq(Γ|γs).

5.2. Kerckhoff lemma. In this section we prove the key estimate neces-
sary for the estimation of the distortion properties of the cocycle matrix.
The idea that was used for the first time in [Ker] for IETs is the following:
in order to control how the induction distorts a vector which was originally
was balanced, one has to check that the ratio between the norms of rows
(or equivalently, columns) of the matrix of the cocycle (equivalently, of the
induction matrix) can rarely be very high. More formally, we have the fol-
lowing:

Lemma 9. Let π̂ ∈ R be irreducible. For any T > 0, q ∈ R
A
+, α ∈ A

Pq

(

{

γ ∈ Γα(π) : (Bγq)α > Tqα
}∣

∣π̂
)

< T−1,

where Γα(π) denotes the set of paths starting at π̂ with no winner equal to
α.

Proof. The proof coincides with the proof of the same statement for IETs,
see [Ker][Proposition 1.3] or [No][Proposition 3.5]. �
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Now we apply the Kerckhoff lemma to obtain some more subtle estima-
tions on the distortion. The main idea is as follows: we want to define the
first return time to the small subsimplex of the original parameter space;
however, some (minimal) orbits that start in the fixed subsimplex will not
go back since they stick somewhere close to the boundary; our purpose is to
check that the probability of this event is in some sense low.

We mainly follow the strategy suggested in Appendix A of [AvGoYo].
Before we actually state the theorem, let us introduce some useful notation:

A
′ ⊂ A;

mA′(q) = min
α∈A′

qα;

m(q) = mA(q)

mk(q) = max
{A′⊂A:|A′|=k}

mA′(q);

MA′(q) = max
α∈A′

qα;

M(q) = max
α∈A

qα.

The principal result of this section is the following

Theorem 10. Let π̂ ∈ R be irreducible. There exists C > 1 such that for
all q ∈ R

A
+

Pq

(

{

γ : M(Bγq) < Cmin{m(Bγq),M(q)}
}

|π̂
)

> C−1.

Proof. The main idea of the proof comes from [AvGoYo]: one should consider
all the subsets A′ ⊂ A of fixed cardinality k and prove that for each 1 ≤ k ≤ n
there exists C > 1 (depending on k) such that

(4) Pq

(

{

γ : M(Bγq) < Cmin{mk(Bγq),M(q)}
}

|π̂
)

> C−1.

The case k = n implies the desired statement. The proof is by induction on
k.

For k = 1 we have M(Bγq) = m1(Bγq) ≥ M(q) and so one has to estimate
the probability of the following event E1 = {γ : M(Bγq) < CM(q)}. Let Ec

denote the complement of the event E; then

Ec
1 = {γ : M(Bγq) ≥ CM(q)} =

⋂

i

{γ : M(Bγq) ≥ Cqi}, i = 1, · · · , n.

But M(Bγq) = (Bγq)j for some j, so Ec
1 ⊂ ∪n

j=1Ej where Ej = {γ :

(Bγq)j ≥ Cqj}. Then Lemma 9 implies that for any C > 0 we have

Pq(E
c
1) <

∑

j Pq(Ej) < nC−1, and thus Pq(E1) ≥ 1 − n
C

> 1
C

for any
C > n+ 1.

Now, we make the induction step. Let us assume that Equation (4) holds
for some 1 ≤ k < n with some constant C0. We denote by Γ the set of short-
est possible paths γ starting at π̂ with M(Bγq) < C0 min{mk(Bγq,M(q)}
(by the length of the path we mean the number of steps of the accelerated
induction). We will construct a family of paths such that the statement holds
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for all paths from this family for some subset A′′ of cardinality k + 1 (it is
enough because mk is a maximum taken over all subsets of fixed cardinality).

Recall that

mk(Bγq) = max
{A′⊂A:|A′|=k}

mA′(Bγq) = mA′(Bγq)

for some A′ with cardinality k; so there exists a non-empty set of paths
Γ1 ⊂ Γ such that if γ ∈ Γ1 then mk(Bγq) = mA′(Bγq). Since non-empty
sets of finite paths have positive probability we can find C1 > 1 such that
Pq(Γ1|π̂) > C−1

1 .
For each γs ∈ Γ1 consider all paths of γ := γsγe with minimal length such

that γ ends at a permutation π̂e, such that the top or the bottom row of π̂e
(possibly both) ends with some element that does not belong to A′ ∪ −A′.
Let Γ2 be the collection of paths γ obtained in this way. Since Γ2 is non-
empty and non-empty sets of finite paths have positive probability there
exists A2 > 1 such that Pq(Γ2|π̂) > A−1

2 .
On the other hand, Γ2 is the set of shortest paths with the described

combinatorics which implies that all paths containing loops can be excluded
from the set of possible γe, and so the length of γe is naturally bounded
(because we always choose such a path that two consequent steps of the
Rauzy induction have different winners, and the set A′ has bounded cardi-
nality). The last argument implies that there exists a constant B2 such that
M(Bγq) < B2M(Bγsq) for γ = γsγe. Let C2 := max(A2, B2). Then, both

inequalities are satisfied: Pq(Γ2|π) > C−1
2 and M(Bγq) < C2M(Bγsq).

Let Γ3 be a set of paths γ := γsγe, where γs ∈ Γ2, (Bγq)α ≤ 2n · (Bγsq)α
for all α ∈ A′ and also several combinatorial conditions hold:

• the winner of the last arrow of γe belongs either to A′ or to −A′;
• the winners of other arrows does not belong to A′ and to −A′.

This set of paths is essentially the set described in Lemma 9 (the winners
of arrows should not belong to A′) with exactly one difference: one has to
consider a conditional probability Pq(Γ3|γs) with respect to γs, not some
fixed permutation π̂. More precisely, for fixed γs let Γγs

3 := {γe : γsγe ∈ Γ3}.
Suppose that γs ends at the permutation π̂, then Pq(Γ3|γs) = PBγs q(Γ

γs |π̂).

So, we apply Lemma 9 with T = 1
2n and see that Pq((Γ3|γs)

c) ≤ 1
2n and so

Pq(Γ3|γs) ≥ 1− 1
2n = 2n−1

2n > 1
2 .

This implies that Pq(Γ3|π̂) = Pq(Γ3|γs)Pq(γs|π̂) > (2C2)
−1.

Let γ := γsγe ∈ Γ3. If M(Bγq) > 2n ·M(Bγsq) we consider γ′ = γsγe the
minimal length prefix of γ for which the same inequality holds: M(Bγ′q) >
2n ·M(Bγsq). Then, there exists α 6∈ ±A′ such that M(Bγ′q) = (Bγ′q)α ≤
4n ·M(Bγsq) (it follows from the fact that γ1 is of minimal length and that
the Mq can at most double after one step of the non-accelerated Rauzy
induction). Together with the assumption that the statement holds for k it
implies that

mA′(Bγ1q) > (C0C24n)
−1M(Bγ1q).
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If M(Bγq) ≤ 2nM(Bγsq) the loser α of the last arrow of γ satisfies the
following inequality:

(Bγ1q)α ≥ (C0C24n)
−1M(Bγ1q)

(by the same calculation as above). Our α did not belong to A′.
In any case, we construct the family Γ4 (it contains γ′ presented above)

and A′ of cardinality k + 1 for which the Inequality (4) holds. �

Now we prove some more subtle distortion estimate.

Theorem 11. For every γ̂ ∈ Π(R) there exist δ > 0, C > 0 such that for
every π̂ ∈ R, q ∈ R

A
+ and for every T > 1

Pq

(

γ cannot be written as γsγ̂γe and M(Bγq) > TM(q)|π̂
)

≤ CT−δ.

Remark. The restriction on the paths means that we only consider paths
that do not contain γ̂ as a proper part.

The most important point of the argument we use is that the estimates
that we prove in Theorem 11 are uniform with respect to q.

The proof of the theorem is based on the following two lemmas that can
be considered as the corollaries of Theorem 10.

Lemma 12. There exists C ′ > 1 such that for any permutation π̂

Pq

(

{γ : M(Bγq) > C ′M(q),m(Bγq) < M(q)}|π̂
)

< 1−
1

C ′
.

Proof. From Theorem 10 we know the lower bound of the probability of the
following event:

Pq(X ∪ Y |π̂) >
1

C
,

where X := X1 ∩X2 is defined by

X1 := {γ : M(Bγq) < Cm(Bγq)}

X2 := {γ : m(Bγq) < M(q)}

and Y := Y1 ∩ Y2 is given by

Y1 := {γ : M(Bγq) < CM(q)}

Y2 := {γ : M(q) ≤ m(Bγq)}.

Suppose x ∈ Xc
1 ∩X2, then x 6∈ X1 and thus x 6∈ X. Furthermore x 6∈ Y2

since X2 ∩ Y2 = ∅, and thus x 6∈ Y . Thus

Pq(X
c
1 ∩X2|π̂) < 1−

1

C
.

Then the lemma follows for any C ′ > C since

{γ : M(Bγq) > C ′M(q),m(Bγq) < M(q)} ⊂ Xc
1 ∩X2.

�
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We write γ̂ ⊏ γ if there exist non-empty γs and γe such that γ = γsγ̂γe,
otherwise we write γ̂ 6⊏ γ. The next lemma follows from the previous one
and is also important for the proof of Theorem 11.

Lemma 13. For any γ̂ ∈ Π(R) there exist M ≥ 0, ρ < 1 such that for any
π̂ ∈ R, q ∈ R

A
+

Pq(γ : γ̂ 6⊏ γ and M(Bγq) > 2MM(q)|π̂) ≤ ρ.

Proof. Fix M0 large enough (we will choose it precisely later) and let M :=
2M0. We consider the set

Γ := {γ : γ of minimal length satisfying γ̂ 6⊏ γ and M(Bγq) > 2MM(q)}.

As mentioned above, M(Bγq) can not increase more than twice for a path
of the length one. So any path in Γ can be written as γ = γ1γ2 where γ1 is
the shortest path such that

M(Bγ1q) > 2M0M(q),

and neither γ1 nor γ2 coincide with γ.
Let us denote the set of such γ1 by Γ1. It follows directly from minimality

that Γ1 is disjoint in terms of [AvGoYo] which means that any path is not a
part of some other path from the same set.

Now consider the subset Γ̃1 of Γ1 consisting of all γ1 such that m(Bγ1q) ≥
M(q) (or, equivalently, MA′(Bγ1q) ≥ M(q), for all non-empty A′).

By Lemma 12 choosing M0 large enough we have that

Pq(Γ1 \ Γ̃1|π̂) < 1−
1

C

with some constant C > 1.
Now we use the strategy from [AvRe]. We fix some permutation π̂e and

consider the shortest path γπ̂e
starting at π̂e and containing γ̂ (if there are

several such paths choose one). We define γs by γπ̂e
= γsγ̂. Then, if M0 is

large enough, we can assume that

(5) |Bγπ̂e
| < 2M0−1.

If π̂e is the end of some γ1 ∈ Γ1, then Pq(Γ|γ1) = PBγ1 q
(Γγ1 |π̂e), where

Γγ1 := {γe : γ = γ1γe ∈ Γ}. So, since γ does not contain γ̂ as a proper part
it follows that

(6) Pq(Γ|γ1) ≤ 1− PBγ1 q
(γπ̂e

|π̂e)

because Γγ1 and the set of γπ̂e
do not intersect and together they fill not

more than the set of possible continuations of γ1.
If γ1 ∈ Γ̃1, Pq(Γ|γ1) can be estimated directly in terms of the measures of

subsimplices of the original simplex: if N(q) = q1 · · · qn, then

PBγ1 q
(γπ̂e

|π̂e) =
N(Bγ1q)

N(Bγπ̂e
Bγ1q)

.
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We need to make several estimates, first all by the definition of Γ̃1 we have
m(Bγ1q) ≥ M(q) and thus N(Bγ1q) ≥ (M(q))n. Next Inequality (5) implies
that

N(Bγπ̂e
Bγ1q) < (2M0−12MM(q))n,

because it follows from the definition of Γ1 that M(Bγ1q) < 2MMq. So, it is
easy to see now that

(7) PBγ1 q
(γπ̂e

|π̂e) ≥ 2−3nM0 .

We start with the case Pq(Γ̃1|π̂) ≥
1
2C . Starting with the definition of Pq

(Equation (2)) we have

Pq(Γ|π̂) =
∑

γ1∈Γ1

Pq(Γ|γ1)Pq(γ1|π̂)

=
∑

γ1∈Γ̃1

Pq(Γ|γ1)Pq(γ1|π̂) +
∑

γ1∈Γ1\Γ̃1

Pq(Γ|γ1)Pq(γ1|π̂)

≤
(

sup
γ1∈Γ̃1

Pq(Γ|γ1)
)

·
∑

γ1∈Γ̃1

Pq(γ1|π̂) +
(

sup
γ1∈Γ1\Γ̃1

Pq(Γ|γ1)
)

·
∑

γ1∈Γ̃1\Γ̃1

Pq(γ1|π̂)

=
(

sup
γ1∈Γ̃1

Pq(Γ|γ1)
)

· Pq(Γ̃1|π̂) +
(

sup
γ1∈Γ1\Γ̃1

Pq(Γ|γ1)
)

· Pq(Γ1 \ Γ̃1|π̂).

In the last line we used the fact that Γ1 is disjoint.
Inequalities (6), (7) imply that supγ1∈Γ̃1

Pq(Γ|γ1) < 1−2−3nM0 , using this

and the facts that supγ1∈Γ1\Γ̃1
Pq(Γ|γ1) ≤ 1 and Pq(Γ1 \ Γ̃1|π̂) ≤ 1−Pq(Γ̃1|π̂)

along with the assumption Pq(Γ̃1|π̂) ≥
1
2C yields

Pq(Γ|π̂) ≤ Pq(Γ̃1|π̂) · (1− 2−3nM0) + 1− Pq(Γ̃1|π̂)

= 1− Pq(Γ̃1) · 2
−3nM0

≤ 1−
2−3nM0

2C
.

Now consider the case Pq(Γ̃1|π̂) <
1
2C , then by Inequality (3) Pq(Γ1|π̂) <

1− 1
C
+ 1

2C = 1− 1
2C . So, Lemma 13 holds with ρ = 1− 2−3nM0

2C . �

Now we turn to the proof of the theorem.
Proof of Theorem 11. Let M and ρ be as in the Lemma 13. For a given
T > 1 let k be the maximal integer such that such that T ≥ 2k(M+1). Let
γ be the shortest path that does not include γ̂ as a proper part and such
that M(Bγq) > 2k(M+1)M(q). Then γ can be written in the following way:
γ = γ1 · · · γi · · · γk, where for each i γ(i) = γ1 · · · γi is the shortest path such
that

(8) M(Bγiq) > 2i(M+1)M(q).

Then all such γ(i) comprise a set Γ(i) for each i, and these sets are disjoint
because each path has to be the shortest one satisfying (8). Now, Lemma
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13 and (8) imply that for all γ(i) ∈ Γ(i)

Pq(Γ(i+1)|γ(i)) ≤ ρ.

So Pq(Γ|π̂) < ρk. The result follows from the definition of k. �

6. The roof function

6.1. Definition. The construction of the roof function that we present in
this section is based on the idea of renormalization provided by Veech in
[Ve2]. Fix some positive complete path γ∗ starting and ending at the same
permutation π̂, and the subsimplex of the parameter space that corresponds
to this path ∆γ∗ . We are interested in the first return map to the subsimplex
∆γ∗ . The connected components of the domain of this first return map are
given by the ∆γγ∗ where γ is a path that contains γ∗ as a part, but does not
start with γ∗γ∗. Thus the first return map T restricted to such a component
satisfies

(9) T (λ, π̂) =
( R−1

γ λ

||R−1
γ λ||

, π̂
)

,

where R is the matrix of the Rauzy induction.

Definition. The roof function is the return time to the connected component
described above:

r(λ, π̂) := − log ||R−1
γ λ||.

Remark. As it was mentioned in [AvGoYo] and [AvRe], with such a defini-
tion one works with the precompact sections because the path γ∗ is positive.

6.2. Correctness of the model. In this subsection we follow the strategy
from [AvHuSkr].

In the suspension model we work with, the orbits that do not come back to
the fixed precompact section are not considered. We need to show that they
to not contribute to the Hausdorff dimension of the fractal we are studying.
To see this note that the following properties of the Markov map hold:

(1) the BIP property implies that each small simplex of the Markov
partition (let’s say that it ∆γ where γ is a corresponding complete
path in the Rauzy graph) is mapped on the whole parameter space
X, and the map is surjective;

(2) the Markov map T is uniformly expanding and so the Jacobian of
the map from ∆γ to X is bounded.

Let us recall that for each Rauzy class the subset of the parameter space
that gave rise to minimal interval exchange transformations with flips MFn

has a fractal structure for the following reason: the point belongs to MFn iff
the Rauzy induction can be applied infinitely many times to the correspond-
ing nIET and never arrives to the hole. So, now we denote by MFn(∆γ) =
∆γ ∩MFn. It is a standard calculation in Hausdorff dimension to show that



MINIMAL INTERVAL EXCHANGE TRANSFORMATIONS WITH FLIPS 17

the properties mentioned above imply that Hdim(MFn(∆γ∗)) = Hdim(MFn),
where Hdim is the Hausdorff dimension (see also [AvHuSkr] where the same
statement was proved for minimal systems of isometries).

The same argument can be used for ∆γ and ∆γ′ , where γ′ = γγ̂γ for some
suitable γ̂. Therefore, the orbits that escape the control do not contribute to
the Hausdorff dimension of the fractal we study, and our suspension model
is correct.

6.3. Exponential tails. In this section we prove that the roof function con-
structed above has exponential tails. We follow the strategy from [AvGoYo].

Definition. A function f has exponential tails if there exists σ > 0 such
that

∫

∆ eσfdLeb < ∞.

Theorem 14. The roof function r defined above has exponential tails.

Proof. This theorem is a direct corollary of Theorem 11. The main idea is
the same as was used in the case of IETs (see [AvGoYo]): − log ||(BT

γ∗)
−1λ||

is the “Teichmüller” time needed to renormalize the support interval to unit
length. Then time is divided into pieces of exponential size. For each piece,
we apply Theorem 11.

Indeed, in the previous section we constructed the set of Lebesgue mea-
sures νq on Λq that depended on vector q. Let us consider q0 = (1, . . . , 1)
and the corresponding measure νq0 . Let us recall that our parameter space

for a given Rauzy class R can be viewed as R
A
+ × R with the renormaliza-

tion condition
∑n

i=1 λi = 1. In particular for a given permutation we define

∆π̂ = R
A
+ × π̂ with the same renormalization condition. Fix π̂ and consider

the natural projection of Λq to the set ∆π̂. The pushforward ν of the mea-
sure νq0 under this projection is a smooth function on the parameter space of
the Markov map T (λ, π̂) (see [AvRe] or [AvGoYo]). Thus, in order to prove
the theorem, it is enough to show that

(10) ν{x ∈ ∆γ∗ : r(x) ≥ logT} ≤ CT−δ

for some C and some δ.
The connected component of the domain of the Markov map T (λ, π̂) that

intersects the set W = {x : {x ∈ ∆γ∗ : r(x) ≥ logT} ≤ CT−δ} is of the form
∆γ for some γ. such that γ can not be a concatenation of more than three
copies of γ∗ and

M(Bγq0) > C−1T,

for some constant C that depends on γ∗. This first requirement on γ follows
from the fact that we work with the first return maps while if γ is a concate-
nation of four copies of γ∗, one can take γ∗γ∗ as a path of the first return
(and all other properties will be the same); the second statement follows
from the definition of the roof function and the definition of the set W .

Now we estimate the measure of the interesting set in terms of probabilities
of corresponding events: ν{x ∈ δγ∗ : r(x) ≥ logT} ≤ Pq0(γ does not contain
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some γ̂ as a proper set and M(Bγq0) > C−1T |π̂) < CT−δ. The statement of
the theorem follows now from Theorem 11. �

7. The upper bound proof

7.1. Fast decaying Markov maps. Let ∆ be a measurable space and
T : ∆ → ∆ be a Markov map. We will denote the corresponding Markov
partition by ∆(l), l ∈ Z.

Definition. We say that T is fast decaying if there exists C1 > 0, α1 > 0
such that

(11)
∑

µ(∆(l))≤ε

µ(∆(l)) ≤ C1ε
α1

for all 0 < ε < 1.

Lemma 15. Exponential tails of the roof function implies fast decaying
property of the Markov map.

Proof. First, one can check directly that JT (λ, π̂) = en·r(λ,π̂). We claim that
the lemma follows from this formula and the fact that the measure of subsim-
plices (Markov cylinders) are proportional to |DT |. The scheme of the proof
is as follows: the measure of a subsimplex is proportional to the inverse of the
Jacobian, thus one begins by replacing the measures of subsimplices in the
sum of Equation (11) by the corresponding jacobians; using the above for-
mula the jacobians are then replaced by the exponential of the roof function;
so we only need to evaluate the following sum:

∑

a : r(a)≥N

e−nr(a),

where by a we denoted a point of ∆(l) since the roof function is locally
constant. The last sum can be evaluated using the exponential tails of the
roof function (namely, the convergence of the corresponding integral): first,

the exponential tail implies that Card(Y (N)) ≤ Ce(n−σ)N , where Y (N) is
the set of partition subsets for which r(a) is between N and N + 1 (see
[AvHuSkr2], Lemma 17); then the sum we are interested in it can be esti-
mated from above by a geometric series with ratio e−σ. �

7.2. The proof of the upper bound in Theorem 1. We need first to
fix some notations. Fix m ≥ 1 and consider l = (l1, l2, . . . , lm) where all li
are positive integers; by ∆l we denote x ∈ ∆ such that T j−1(x) ∈ ∆lj for all

1 ≤ j ≤ m. The collection of such ∆l is a partition, we call m the depth of
this partition. Avila and Delecroix in [AvDe] proved the following

Theorem 16 (AD,2013). Assume that T is fast decaying. For m ≥ 1, let
Xm ⊂ ∆ be a union of some subsimplices (∆l) of depth m. Let

X := lim inf
m→∞

Xm and δ := − lim
m→∞

1

m
lnµ(Xm).



MINIMAL INTERVAL EXCHANGE TRANSFORMATIONS WITH FLIPS 19

Then HD(X) ≤ p− 1−min(δ, α1), where α1 is the fast decay constant.

Let us consider the Markov map T and the corresponding Markov parti-
tion. Fix the total number of the steps of Rauzy induction to be m. Let
Xm be the union of all the Markov cells of the partition of depth m that
do not correspond to the hole (by hole here we mean the set of parameters
for which periodic orbits already appeared before step n and the induction
stopped). Then, one can see that the set X = lim infm→∞Xm is exactly the
set MFn(∆γ∗) of parameters that give rise to minimal fIETs.

Now, in order to deduce the upper bound of Theorem 1 from Theorem
16 we only have to check that δ > 0. It follows directly from the fact that
the size of simplices of the partition decreases exponentially fast because the
map T is uniformly expanding (see [MeNo] for details). This completes the
proof of the upper bound.

Remark. Our proof implies that the obtained estimation holds for MFn

restricted to any Rauzy class.

8. Lower bounds

In this section we show the lower bound in Theorem 1 and prove Theorem
2 and Proposition 3.

8.1. Nogueira construction. Let us recall the construction of minimal fI-
ETs suggested in [No]. We take arbitrary m-IET (without flips) S :

[

0, 13
]

→
[

0, 13
]

and construct a fIET T in the following way:

Tx =











Sx+ 1
3 , if x ∈

[

0, 13
]

,
4
3 − x, if x ∈

[

1
3 ,

2
3

]

,

1− x, if x ∈
[

2
3 , 1

]

.

One can easily check that T 3 = S and therefore T 3 is minimal if S is. Since
all but countably many IETs (without flips) are minimal the lower bound of
Theorem 1 follows.

8.2. Non-uniquely ergodic case. The idea is the same as above but we fix
S with the maximal possible number of invariant ergodic measures (we de-
note this number by k). Let us denote these ergodic measures by µ1, · · · , µk.
Consider a probability vector ~ε = (ε1, . . . , εk) and the corresponding measure
µ~ε =

∑

εiµi. Using Lemma 1 from [Ka], we have the following:

Lemma 17. There exists an m-IET S~ε such that (S, µ~ε) is metrically iso-
morphic to (S~ε, Leb).

We need to to check is that the map ~ε → S~ε is almost surely invertible.

Lemma 18. For a set of full measure of ~ε the length vectors (λ~ε1, . . . , λ
~ε
n)

are distinct.
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Proof. Assume that for two vectors ~ε 6= ~ε′ the lengths coincide. Let µi denote
the µi measure of the interval [0, λ1+ · · ·+λi]. Then the assumption implies
that for each i = 1, . . . , n

ε1µ
i
1 + · · ·+ εkµ

i
k = ε′1µ

i
1 + · · ·+ ε′kµ

i
k

and thus

(12)

k
∑

j=1

(εj − ε′j)µ
i
j = 0.

But
k

∑

j=1

εj =
k

∑

j=1

ε′j

and so Equation (12) is equivalent to

(13)

k−1
∑

j=1

(εj − ε′j)Cj = 0,

where Cj := µi
j − µi

n. Since the Cj are constants (S is fixed) the set of ~ε for

which (12) holds is a subspace of codimension 1 in the parameter space, and
therefore the statement of the lemma holds. �

Now, one can apply Nogueira’s construction to get a family of non-uniquely
ergodic fIETs. The Hausdorff dimension of this subset is not smaller than
k − 1 where k is the number of invariant measures of IET S′ constructed
above. S′ is (n− 2)-IET. It was proven by Sataev in [Sa] that k = g where g
is the genus of a translation surface associated with IET (see, for example,
[Vi]). Therefore, 2g = n − 2 − r + 1 where r is the number of singularities
of the translation surface; on the other hand, r can be estimated using the
Euler characteristics of the surface and, in particular, the minimal value of
r is 1 (and this value is always obtained). So it implies that 2g ≤ n− 2 and
so

Hdim(NUEn) ≥

[

n− 2

2

]

− 1.

Remark. If one is interested in lower bound of Hdim(NUEn) for a partic-
ular combinatorics determined by the Rauzy class of IET S′, it is easy to
see that for any integer i between

[

n+1
4

]

and
[

n−2
2

]

one can find a Rauzy
class of IET S′ constructed above such that the lower bound of the Hausdorff
dimension of non-uniquely ergodic minimal fIETs is i− 1.

8.3. Non-uniquely ergodic fIETs on 6 intervals. One can also com-
bine Nogueira construction presented above with the following result by J.
Athreya and J. Chaika:

Theorem ([AtCh]). The Hausdorff dimension of the set of non-uniquely
ergodic 4-IET on [0, 1) with the permutation π0 = (4, 3, 2, 1) is 5

2 .
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Proposition 3 follows since the Nogueira construction increases the number
of intervals by 2.
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