
HAL Id: hal-01213420
https://hal.science/hal-01213420

Submitted on 8 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Compositional Verification of Parameterised Timed
Systems

Lacramioara Astefanoaiei, Souha Ben Rayana, Saddek Bensalem, Marius
Bozga, Jacques Combaz

To cite this version:
Lacramioara Astefanoaiei, Souha Ben Rayana, Saddek Bensalem, Marius Bozga, Jacques Combaz.
Compositional Verification of Parameterised Timed Systems. NASA Formal Methods - 7th Interna-
tional Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015, Apr 2015, Pasadena, United
States. pp.66-81, �10.1007/978-3-319-17524-9_6�. �hal-01213420�

https://hal.science/hal-01213420
https://hal.archives-ouvertes.fr

Compositional Verification of Parameterised
Timed Systems

L. Aştefănoaei, S. Ben Rayana, S. Bensalem, M. Bozga, J. Combaz

Univ. Grenoble Alpes, VERIMAG, F-38000 Grenoble, France
CNRS, VERIMAG, F-38000 Grenoble, France ??

Abstract. In this paper we address the problem of uniform verification
of parameterised timed systems (PTS): “does a given safety state prop-
erty hold for a system containing n identical timed components regardless
of the value of n?”. Our approach is compositional and consequently it
suits quite well such systems in that it presents the advantage of reusing
existing local characterisations at the global level of system characteri-
sation. Additionally, we show how a direct consequence of the modelling
choices adopted in our framework leads to an elegant application of the
presented method to topologies such as stars and rings.

1 Introduction

Swarm robots, satellite systems, multithreaded programs, ad-hoc networks, de-
vice drivers, all these applications have in common a structural characteristic:
they rely on multiple copies of the same program interacting between each other,
that is, they constitute systems parameterised by some components which are
being replicated. Though the individual “replicas” may not involve a too compli-
cated code in itself, the systems containing them are quite complex. The inherent
complexity has several sources: it may come from that the systems are consid-
erably large, as it is the case for swarm robots, or from that, effectively, their
size cannot be a priori known, as it is the case for satellites. Yet another delicate
matter is that these systems are highly dynamic and adaptable as their topology
may change depending on initial goals, component failures, etc. All in all, the
verification of such parameterised systems reveals real challenges.

There is an extensive amount of work on the verification of untimed parame-
terised systems. Some [22, 17, 32, 31, 14, 26] focus on particular classes for which
the problem of uniform verification is decidable. Among these classes, we name
well-structured transition systems [20, 1, 21] for which decidability follows from
the existence of a so-called well-quasi ordering between states. Two examples
that fit this class are Petri nets, and lossy channel systems. Most notably, the
work in [32] shows that, for bounded-data parameterised systems and for a re-
stricted fragment of properties there is always a small number n (the so-called
?? Work partially supported by the European Projects 257414 ASCENS, STREP

318772 D-MILS, French BGLE Manycorelabs, and Artemis AIPP Arrowhead.

cutoff, later leading to small model theorems) such that if one can show correct-
ness for the systems with less than n replicas then the system itself is correct.
Others focus on incomplete but general methods: semi-automatic approaches
based upon explicit induction [18] and upon network invariants [34, 4, 29, 30] or
automatic ones based upon abstraction [11, 12], upon regular model-checking
(for a survey [6]), or upon symmetry reduction [19].

In this paper we address the problem of uniform verification of parameterised
timed systems (PTS). The existing approaches are less numerous than for un-
timed systems. The work in [5, 3] concentrates on decidability: the authors show
the decidability of the reachability of PTSs where processes are timed automata
with either only one clock or otherwise time is discrete. These results have been
later generalised to timed ad hoc networks in [2] where it is shown that even
for processes as timed automata with one clock, for star topologies where the
diameter between nodes is of length 5, the reachability problem is undecidable.
It is also the case for processes with 2 clocks and clique topologies. Decidability
holds for special topologies as stars with diameter 3 and cliques of arbitrary or-
der for processes as timed automata with 1 clock. For discrete time, reachability
is decidable for any number of clocks and topologies as graphs with bounded
paths. As a side remark, all the positive results above rely on the technique of
well-quasi-orderings mentioned above. The approaches in [27, 16, 15] are closer
in spirit to ours. The work in [16, 15] shows how reachability of parameterised
systems where processes are timed automata can be encoded as a formula in a de-
cidable fragment of the theory of arrays [23]. The work in [27] concentrates upon
parameterised rectangular hybrid automata nets. They show a small model theo-
rem for such systems. The proof typically follows the lines from the one showing
the existence of cutoffs in [32].

Our approach borrows from [27] and builds upon the methodology described
in [10]. There, a compositional method is introduced for the verification of fixed
size timed systems. It did so by locally computing invariants for each compo-
nent and for their interactions and checking with an SMT solver, Z31, if their
conjunction implies the validity of a given safety property. The method being
compositional suits quite well parameterised systems in that it presents the ad-
vantage of reusing existing local characterisations at the global level of system
characterisation. Applying the method in the context of PTSs boils down to
giving an effective method of checking the validity of quantified formulae. This
is not obvious because, for instance, Z3 fails while trying to instantiate it to dis-
prove it. At a first thought, one could apply some tactics which make extensive
use of transitivity and practically reduce the formula to a tautology. However,
to do this, one would need to transform the initial formula into disjunctive nor-
mal form, which is costly. At a second thought, following the reasoning from
[15], we could show that the formula we feed to Z3 fits well in the theory of
arrays. However, a simpler and more inspired solution is to make use of the
small model theorem from [27]. The advantage of combining such result with
the compositional method from [10] is twofold. On the one hand it can be the

1 rise4fun.com/Z3

2

case that the system without replicas is big enough to make the construction of
the product infeasible. On the other hand, a direct consequence of the modelling
choices adopted in our framework leads to an elegant application of the presented
method to parameterised timed systems where interactions are given by various
types of topologies which extend the standard binary synchronous communica-
tion from [27]. With respect to the work in [15], our formulae are quite small
while there the resulting formulae have a number of quantifiers proportional to
the length of the fixpoint computation of the reachability set.

Organisation of the paper. Section 2 recalls the needed existing results. Sec-
tion 3 introduces the semantics of PTSs while Section 4 shows how to effectively
verify PTSs compositionally. Section 5 describes two applications on classical
examples and Section 6 concludes.

2 Preliminaries

Following [10], our method builds upon the verification rule (VR) from [13]. As-
sume that a system consists of n components Bi interacting by means of an in-
teraction set γ, and that the property that the system should satisfy is Ψ . If com-
ponents Bi and interactions γ can be locally characterised by means of invariants
(here denoted CI (Bi), resp. II (γ)), and if Ψ can be proved to be a logical con-
sequence of the conjunction of the local invariants, then Ψ is a global invariant.

`
∧
i

CI (Bi) ∧ II (γ)→ Ψ

‖γBi |= � Ψ
(VR)

Fig. 1. Compositional Verification

In the rule (VR) depicted in Figure 1 the
symbol “ ` ” is used to underline that
the logical implication can be effectively
proved (for instance with an SMT solver)
and the notation “B |= � Ψ” is to be read
as “Ψ holds in every reachable state of B”.

The method in [10] extends, in a modular manner, the above rule with the
purpose of applying it to the verification of timed systems. The framework in
this paper is that of parameterised timed systems. We show how compositional
verification along the lines of the methodology of [10] works for parameterised
timed systems. Before, we recall the standard concepts we make use of.

Timed automata. We use timed automata (TA) to represent the behaviour
of components. Timed automata have control locations and transitions between
these locations. Transitions may have timing constraints, which are defined on
clocks. Clocks can be reset and/or tested along with transition execution. For-
mally, a timed automaton is a tuple (L,Σ, T,X, tpc, s0) where L is a finite
set of control locations, Σ a finite set of actions, X is a finite set of clocks,
T ⊆ L×(Σ×C×2X)×L is finite set of transitions labelled with actions, guards,
and a subset of clocks to be reset, and tpc : L→ C assigns a time progress con-
dition to each location. C is the set of clock constraints and s0 ∈ L×C provides
the initial configuration. Clock constraints are conjunctions of (in)equalities of
the form x#ct or x−y#ct with x, y ∈ X , # ∈ {<,≤,=,≥, >} and ct ∈ Z. Time
progress conditions are restricted to conjunctions of constraints as x ≤ ct.

3

A timed automaton is a syntactic structure whose semantics is based on
continuous and synchronous time progress. A state of a timed automaton is
given by a control location paired with real-valued assignments of the clocks.
From a given state, a timed automaton can let time progress when permitted
by the time progress condition of the corresponding location, or can execute a
(discrete) transition if its guard evaluates to true. The effect of time progress of
δ ∈ R+ units of time is to increase synchronously all clocks by δ. Executions of
transitions are instantaneous: they keep values of clocks unchanged except the
ones that are reset (i.e., assigned 0). Because of their continuous semantics, most
timed automata have infinite state spaces. However, they admit finite symbolic
representations of their state spaces as the so-called zone graphs [8, 7, 25, 35].

T-assertions. We use T-assertions to express local and system properties. This
choice is motivated by the fact that, following a result from [27], the validity of
T-assertions is decidable. T-assertions are a particular2 case of LH-assertions.
The signature of T-assertions consists of the constants 1 and n of type N, and
of a finite number of variables: (a) index variables: i1, . . . , ia ∈ N; (b) discrete
variables: l1, . . . , lb ∈ L; (c) real variables: x1, . . . , xc ∈ R; (d) discrete array
variables: l̄1, . . . , l̄d : [n] → L; (e) real array variables: x̄1, . . . , x̄e : [n] → R+

where by [n] we denote the set {1, . . . , n}. Terms are given by the BNF grammar:

ITerm ::= 1 | n | ij DTerm ::= Lj | lk | l̄j [ITerm] RTerm ::= xj | x̄k[ITerm]

and the formulae are structurally defined as:

Atom ::= ITerm < ITerm | DTerm = Lk | a · RTerm + b · RTerm + c < 0
Formula ::= Atom | ¬Formula | Formula ∧ Formula

with a, b, c ∈ R. T-assertions are of the form ∀i1, . . . , ik ∈ [n] ∃j1, . . . , jm ∈ [n].F
where F is of type Formula. We note that equality and non strict comparisons
between indices and real variables can be expressed by means of ∧,¬, <. For
example, i = j is written as ¬(i < j)∧¬(j < i). It is also the case that addition
with constants can be expressed by means of extra quantifiers. For example,
j = i+ 1 is written as i < j ∧∀k.i < k → j ≤ k. This construction generalises to
j = i + o for o an integer constant. To restrict indices within bounds, we make
the convention that addition is understood modulo n. For succinctness, in the
rest of the paper we adopt the notation x[i+ o] to stand for ∃j.j = i+ o ∧ x[j].

Example 1. The following T-assertions express safety properties:

1. ∀i 6= j.¬(l̄[i] = C ∧ l̄[j] = C) expresses mutual exclusion for C denoting that
a process is in the critical location;

2. ∀i, j.(l̄[i] = l̄[j] →| x̄[i] − x̄[j] |< 6) expresses a “maximum delay” between
the timings of any two processes which are in the same location.

2 To be specific, by “particular” we mean that we do not need the so called “index-
valued array variables” which in [27] model pointer variables.

4

As in [27], the semantics of a T-assertion Φ is given by n-models, denoted as
M(n, Φ), which interpret the index, the discrete and resp. the real variables in
Φ as taking values in [n], L, and resp. R+.

Example 2. A 2-model for the mutual exclusion in Example 1 is l̄ = [C, I] where
say I denotes idle locations. A 4-model for the maximum delay property is
l̄ = [L1, L2, L1, L2], x̄ = [10, 8, 6, 3].

T-assertions have a small model theorem. This is a key fact that can be
exploited for automatic verification in general.

Proposition 1 (Simplified from [27]) Let Φ be a T-assertion given in the
form ∀i1, . . . , ik ∈ [n] ∃j1, . . . , jm ∈ [n].φ where φ is a quantifier-free formula
involving the index variables i1, . . . , ik, j1, . . . , jm and array variables. We have
that Φ is valid iff, for all n ≤ k + 2, Φ is satisfied by all n-models.

Next, we introduce our formalisation of PTSs and show how we can take
advantage of the small model result to compositionally verify PTSs.

3 PTSs and their Semantics

In our framework, PTSs are understood as consisting of possibly (but not also
necessarily) a fixed number of components and an arbitrary number n of isomor-
phic processes P i all given as TAs and interacting by means of an interaction set
γ. In what follows, we adopt the notations C for the non parameterised part of a
PTS, C‖nγP i for a PTS itself. For ease of reference, we use ΣC , Σ, Σi to denote
the actions of C, of a generic process P and of a process i, P i. Σi is obtained
from Σ by attaching i to each action in Σ. An example of a PTS is depicted in
Figure 2a. C interacts with some processes P i by synchronising actions a and
ai while resetting clocks xc and xi. As Figure 2b illustrates, components P i are
obtained from the same generic timed automaton P consisting of two control
locations l0 and l1 and one transition3 from l0 to l1 labelled by action a and
resetting clock x. The construction of P i from a generic P is straightforward:
each location l, clock x, and action a are mapped into li, xi, ai respectively.

Components interact by means of strong synchronisation between their ac-
tions. The synchronisations are specified in the so called interactions as sets of
actions. An interaction can involve at most one action of each component. For
the ease of reference, the whole set of interactions is denoted by γ. In a param-
eterised setting, we define γ as a set of interaction patterns instead. An interac-
tion pattern α is a tuple

(
ac, (a1, o1), . . . , (am, om)

)
∈ Σc × (Σ ×N)m such that

0 = o1 < o2 < · · · < om. An interaction pattern describes at an abstract level a
family of interactions between C and m processes4:

(
ac, (a1, o1), . . . , (am, om)

)
generates n interactions αi =

(
ac, ai+o1

1 , . . . , ai+om
m

)
∈ Σc×Σi+o1 × · · · ×Σi+om

3 Non displayed guards and time progress conditions of locations are by default true.
4 The case of PTSs without C is similar and we illustrate it only by means of examples.

5

lc0 lc1
ac

x := 0ac

C

...

l10 l11
a1

x1 := 0

a1

P 1

l20 l21
a2

x2 := 0

a2

P 2

l30 l31
a3

x3 := 0

a3

P 3

(a) C‖nγP i

l0 l1
a

x := 0

a

li0 li1
ai

xi := 0

ai

(b) P and P i

Fig. 2. An Example of a PTS and the construction of P i

where all sums are understood modulo n. We use gen(α) to denote the interac-
tions generated by α, that is, ∪i∈[n]α

i. By abuse of notation, we refer to γ as
either the set of interaction patterns or as ∪α∈γ gen(α), the set of all interactions
generated by the patterns. The distinction should be clear from the context.

Example 3. The family of interactions {(ac, a1), (ac, a2), . . . , (ac, an)} in Fig-
ure 2a is given by the interaction pattern α =

(
ac, (a, 0)

)
.

For C as (Lc, Σc, T c,X c, tpcc, sc0), and P i as (Li, Σi, T i,X i, tpci, si0), the se-
mantics of C‖nγP i is given by that of the timed automaton (L, γ, Tγ ,X , tpc, s0)
where L = Lc ×i Li, X = X c ∪i X i and:

– for sc0 = (lc, C0), si0 = (li0, Ci0), s0 is a pair of a global location l0 =
(lc0, l10, . . . , ln0) and the initial clock constraints given by C0 ∧i Ci0,

– tpc
(
(lc, l1, . . . , ln)

)
= tpc(lc) ∧i tpc(li),

– for any α =
(
ac, (a1, o1), . . . , (am, om)

)
with αi =

(
ac, ai+o1

1 , . . . , ai+om
m

)
and

O = {i+ o1, . . . , i+ om}, we have that:
• if lc ac,gc,rc

−−−−−→ l′c ∈ T c and li
ai,gi,ri

−−−−−→ l′i ∈ T i for any i ∈ O, ai ∈ Σi ∩ αi

• then (lc, l1, . . . , ln) αi,g,r−−−−→ (l′c, l′1, . . . , l′n) ∈ Tγ with l′j = lj for any
j ∈ [n] \ O and g = gc ∧i∈O gi, respectively r = rc ∪i∈O ri.

Interaction patterns have a considerable expressiveness power to the extent
that they can encode regular topologies. Usually topologies are given by a graph
where the vertices represent the indices of the processes and the edges give the
communication between processes [2]. In our framework, the communication is
given/induced by the set of interactions. There is a close correspondence be-
tween topologies and sets of interactions. This comes from the observation that
topologies represented as graphs have a straightforward encoding as interaction
sets. As an illustration, we consider the classical topology of a ring5. Given n
nodes, a ring topology naturally links a send from node i to a receive at node
i + 1, that is, it is generated by the pattern ((s, 0), (r, 1)) where s, r stand for
“send”, “receive”. A graphical interpretation is given in Figure 3b.
5 Rings are typically for binary communication, however broadcasts can be just as

well encoded by means of interaction patterns.

6

Example 4. The interaction set in Figure 2a is generated by one pattern, namely
(ac, (a, 0)). The corresponding topology it describes is that of a star, another
classical topology. The corresponding graphical depiction is in Figure 3a.

c 1
ac |a1c

2

a
c |a

2

c

3

a
c

|a
3

c

4

ac
|a4

c5 a
c

|a5 c

6

a
c|a

6

c

7

a
c|a

7

c

8

a c
|a 8

(a) Star. γ = {(ac, (a, 0))}

1

s1 |r2

2
s2 |r3

3

s3 |r4

4

s4 |r5

5
s5 |r6

6

s6 |r1

(b) Ring. γ = {((s, 0), (r, 1))}

Fig. 3. Topologies & Interaction Sets

Remark 1. Thanks to the definition of γ as a set, thus implicitly nondeterminis-
tic, with our method we cover any topology which may be enforced or hard-wired
in the system at a later moment of time, or stage of design. To take a concrete
example, the interaction set for the star topology does not oblige all components
to participate, so any star “subset” (corresponding for instance to the situation
when some components are turned off) is considered. This has the implication
that, with respect to deadlock freedom, if our method yields true, the system is
safe, then this is the case irrespectively of how many components are interacting.

4 Compositional Verification of PTSs

To compositionally verify PTSs, our method consists of automatically generating
invariants characterising components, interactions and inter-component timings.
These invariants are assembled in the (VR) rule recalled in the introduction. To
apply the small model result from Proposition 1, the provided invariants need
to be T-assertions. Next, we take them one by one and show how they can be
effectively computed and shaped into the form of T -assertions.

4.1 Component Invariants
Component invariants characterise the reachable states of components when con-
sidered alone. Such invariants can be computed from the zones of the corre-
sponding timed automata [8, 7, 25, 35]. More precisely, given that the set of the
reachable symbolic states (lj , ζj) of an arbitrary process P is finite, its invariant
is defined by the disjunction ∨j(lj ∧ ζj), where by abuse of notation lj is used
to denote the predicate that holds whenever P is at location lj .

We recall that, for a process P i, we identify locations and clocks as li, xi, for
locations l and clocks x in the generic process P . To fit the formulae character-
ising the reachable set of states of P i in the class of T-assertions, we indiscrimi-
nately view li as the ith element in the array l̄ and similarly, xi is equally viewed
as the ith element in the array x̄, that is, semantically we make no difference
between li and l[i], respectively xi and x[i].

7

Example 5. As an illustration, the component invariants for C, P and P i (where
C, P i, P are the ones depicted in Figures 2a,2b) are as follows:

CI (C) = (lc0 ∧ xc ≥ 0) ∨ (lc1 ∧ xc ≥ 0) (1)
CI (P) = (l0 ∧ x ≥ 0) ∨ (l1 ∧ x ≥ 0)

CI (P i) = (l0[i] ∧ x[i] ≥ 0) ∨ (l1[i] ∧ x[i] ≥ 0) (2)
We use CI to denote the conjunction of CI (C) and of all CI (P i). Extending

the argument that the conjunction of invariants is an invariant itself, it can be
shown that CI is an invariant characterising all components.

Proposition 2 CI 4=
(
CI (C) ∧ ∀i.CI (P i)

)
is an invariant of C‖nγP i.

4.2 History Clocks & Auxiliary Constraints
A direct application of the rule (VR) on PTSs may be too weak in the sense that
the component and the interaction invariants alone are usually not enough to
prove global properties, especially when such properties involve relations between
clocks in different components. Though component invariants encode timings of
local clocks, because the interaction invariant is orthogonal on timing aspects,
there is no direct way to constrain the bounds on the differences between clocks
in different components. History clocks allow to decouple the analysis for compo-
nents and for their composition. They make it possible to derive new global con-
straints from the simultaneity of interactions and the synchrony of time progress.

Adding History Clocks. History clocks are associated with actions and inter-
actions. For a process P we use Ph to denote its extension with history clocks.
The extension Ch‖nγP i

h of C‖nγP i is obtained from the extensions of the compo-
nents alone together with the history clocks for interactions. As an illustration,
Figure 4 shows the extension of the PTS in Figure 2a.

lc0 lc1
ac

x := 0, hac := 0ac

Ch

...

l10 l11
a1

x1 := 0, ha1 := 0

a1

P 1h

hac|a1
l20 l21

a2

x2 := 0, ha2 := 0

a2

P 2h

hac|a2

l30 l31
a3

x3 := 0, ha3 := 0

a3

P 3h
hac|a3

Fig. 4. Illustrating Components with History Clocks for (Inter)Actions

The mechanism of history clocks is as follows. When an interaction α takes place,
the history clocks hα and ha associated to α and to any action a ∈ α are reset.
Thus they measure the time passed from the last occurrence of α, respectively
of a. Since there is no timing constraint involving history clocks, the behaviour
of the components is not changed by the addition of history clocks, a fact which
is shown by a similar argument as in [10].

Proposition 3 C‖nγP i and Ch‖nγP i
h are bisimilar.

8

Generating Interaction Equalities from History Clocks. History clocks
are introduced with the purpose of obtaining stronger invariants. Intuitively, the
strengthening comes from the following observation. Each time an interaction α
is executed, hα and all the history clocks corresponding to the actions partici-
pating in α are reset synchronously, and then remain unchanged and equal until
the next interaction is executed. Moreover, a history clock ha for an action a
from a last executed interaction α is necessarily less than any hβ with β another
interaction containing a. This is because the clocks of the actions in α are the
last ones being reset. Consequently, given a common action a of α1, α2, . . . , αp,
ha is the minimum of hαi , ha = min

i∈[p]
hαi .

In the parameterised case, the above observation is captured as follows. Each
interaction pattern α and each a ∈ α are associated to the arrays hα, respectively
ha. Let α be of the form (. . . , (a, o), . . .). For a given index i, ai appears in αi−o.
Consequently, ha[i] is the minimum among hα[i− o]:

E(ai) =

 ∨
(a,o)∈α

ha[i] = hα[i− o]

 ∧
 ∧

(a,o)∈α

ha[i] ≤ hα[i− o]


By switching perspective from that of P i to that of C, we obtain, for an action
ac in Σc, the following quantified formula:

E(ac) = ∃j.
(∨
ac∈α

hac = hα[j]
)
∧ ∀i.

(∧
ac∈α

hac ≤ hα[i]
)
.

The existential quantifier is needed to express that hac is the minimum among
an unbounded number of history clocks associated to interactions containing ac.

To combine both perspectives, we define E(γ) = ∀i∧a E(ai)∧ac E(ac). By an
inductive argument, it can be shown that these constraints are an invariant.

Proposition 4 E(γ) is an invariant of Ch‖nγP i
h.

Example 6. For the star topology γ = {α} with α =
(
ac, (a, 0)

)
we have that:

E(γ) = ∀i.(ha[i] = hα[i] ∧ ha[i] ≤ hα[i])∧
∃j.(hac = hα[j]) ∧ ∀i.(hac ≤ hα[i])

As for the ring topology γ = {α} with α =
(
(s, 0), (r, 1)

)
we have:

E(γ) = ∀i.
(
hs[i] = hα[i] ∧ hs[i] ≤ hα[i]

)
∧
(
hr[i] = hα[i− 1] ∧ hr[i] ≤ hα[i− 1]

)
.

Generating Inequalities from Conflicting Interactions. The equality con-
straints shown previously allow to relate local constraints obtained separately
from the component invariants. Without conflicts, that is, when interactions
do not share any action, the generated invariants are quite tight in the sense
that E(γ) is essentially a conjunction of equalities. However, E(γ) is weaker in

9

the presence of conflicts because any action in conflict can be used in different
interactions. The disjunctions in E(γ) reflect precisely this uncertainty. History
clocks on interactions are introduced to capture the time lapses between conflict-
ing interactions. The basic information we exploit is that when two conflicting
interactions compete for the same action a, no matter which one is first, the
other one must wait until the component which owns a is again able to execute
a. This is referred to as a “separation constraint” for conflicting interactions.
Since we make the distinction between the actions in C and P , the reasoning
goes as for E , by a case distinction:

S(ac) = ∀i1, i2.
∧
α3ac

β3ac

i1 6=i2∨α 6=β

∣∣hα[i1]− hβ [i2]
∣∣ ≥ kac

S(ai) =
∧

(a,o1)∈α
(a,o2)∈β

o1 6=o2∨α 6=β

∣∣hα[i− o1]− hβ [i− o2]
∣∣ ≥ ka

where kac , ka are lower bounds of the time elapsed between two consecutive
executions of ac in C, respectively of a in P , bounds which can be statically
computed from the timed automata of C, respectively of P . Similarly to E(γ),
S(γ) is defined by combining S(ac) and S(ai): S(γ) = ∀i ∧a S(ai) ∧ac S(ac).
Furthermore, S(γ) can be shown to be an invariant.

Proposition 5 S(γ) is an invariant of Ch‖nγP i
h.

Example 7. For the star topology γ = {α} with α =
(
ac, (a, 0)

)
we have that:

S(γ) = ∀i1, i2.
∣∣hα[i1]− hα[i2]

∣∣ ≥ kac (3)

As the ring topology γ = {α} with α =
(
(s, 0), (r, 1)

)
does not have con-

flicts, for illustration purposes, we consider the following slight variation α =(
(r, 0), (s, 1), (r, 2)

)
corresponding to sends being forwarded to the left and to

the right. In this case, we have that:

S(γ) = ∀i.
∣∣hα[i]− hα[i− 2]

∣∣ ≥ kr (4)

with kr being the lower bound of the time elapsed between two consecutive r.

4.3 Interaction Invariants

Interaction invariants II (γ) are induced by the synchronisations and have the
form of global conditions involving control locations of components. Previous
work considered boolean conditions [13] as well as linear constraints [28] as meth-
ods for generating II (γ). These approaches do not easily generalise to the param-
eterised case: applying the method of [13] boils down to transforming to conjunc-
tive normal forms quantified formulae while the one in [28] boils down to solving

10

an unbounded number of equations. Our solution is to adopt a k-window abstrac-
tion instead. To obtain such an abstraction, the main step is to generate interac-
tions involving only actions from Σi with i ≤ k. Let α be an interaction pattern(
ac, (a1, o1), . . . , (am, om)

)
. Recall that the offsets oi are in ascending order. We

define gen(α, k) as ∪i∈[k]proj(αi) where proj(αi) =
(
ac, ai1, a

i+o2
2 , . . . , a

i+oj

j

)
and

j is the last index for which i+ oj ≤ k. We recall that addition is taken modulo
n. We denote ∪α∈γgen(α, k) by γk. Given this construction, the remaining steps
for computing a k-window abstraction are:
1. use the above mentioned methods or simply compute the set of the reachable

states of C interacting with k processes P i to generate II k
4= II (γk);

2. reindex II k by renaming all indices j ∈ [k] to j + i to obtain II ∗k of the form
∀i.II k[j ← j + i].
We note that k-window is an abstraction of the original system C‖nγP i. Con-

sequently, each invariant computed with respect to the k-window is also an
invariant of C‖nγP i.

Proposition 6 The formula (k < n ∨ II ∗k) is an invariant of C‖nγP i.
Example 8. We consider the star topology present in the toy example shown in
Figure 2a. If we abstract to a window of size 1, the first step consists in the
computation of the interaction invariant for C interacting with P 1, where the
interaction set after projection is γ1 = {(ac, a1), ac}. Using the reachable set of
C‖γ1P

1, the interaction invariant for this abstraction is II 1 = l0[1] = 1∨ lc1 = 1.
By Step 2, the interaction invariant for C‖nγP i is II ∗ = ∀i.l0[i] = 1 ∨ lc1 = 1.

4.4 Parameterised (VR)
Taking into account the clock constraints E and S, the generalisation of the
rule (VR) recalled in the introduction to the parameterised case boils down to
checking the validity of the following formula:

CI ∧ (k < n ∨ II ∗k) ∧ E(γ) ∧ S(γ)︸ ︷︷ ︸
GI

→ Ψ (5)

or equally the unsatisfiability of GI ∧¬Ψ . These formulae are T-assertions when-
ever Ψ is a T-assertion itself.
Proposition 7 For Ψ a T-assertion, GI → Ψ is a T-assertion itself.
Proof (sketch). In prenex normal form, each invariant is a T-assertion. We only
detail the more interesting cases of E and S:
E(γ) = ∀i ∧a E(ai) ∧ac E(ac)

≡ ∀i1, i2.∃jΣc .

 ∨
(a,o)∈α

ha[i1] = hα[i1 − o]

 ∧
 ∧

(a,o)∈α

ha[i1] ≤ hα[i1 − o]

∧
∧ac

(∨
ac∈α

hac = hα[jac]
)
∧

(∧
ac∈α

hac ≤ hα[i2]
)

(6)

11

S(γ) = ∀i. ∧a S(ai) ∧ac S(ac)

≡ ∀i1, i2. ∧a
∧

(a,o1)∈α
(a,o2)∈β

o1 6=o2∨α 6=β

∣∣hα[i− o1]− hβ [i− o2]
∣∣ ≥ ka

∧ac

∧
α3ac

β3ac

∣∣hα[i1]− hβ [i2]
∣∣ ≥ kac

where a, ac are arbitrary actions inΣ, respectivelyΣc, ∃jΣc denotes ∃ja1ja2 . . . jam

for Σc = {a1, . . . , am} and jac stands for an arbitrary element in jΣc .
Observing that all quantified variables are not shared among invariants, we

can rename these such that there are no overlappings and use the following basic
equivalences where op denotes any logical connective and Q any quantifier:

QxQy.(P (x) op R(y)) ≡ QyQx.(P (x) op R(y))
P op Qy.R(y) ≡ Qy.(P op R(y))

to finally transform GI → Ψ itself into a T-assertion. ut
Proposition 7 allows us to apply the small model theorem from Section 2.

Corollary 1. For a PTS C‖nγP i and a global property Ψ 4= ∀s̄∃t̄.Ψ◦ it is enough
to check the validity of ¬GI ∨ Ψ for n ≤ #s̄ + #Σc + 2 in order to assert the
validity of Ψ for any n.
Proof. By Proposition 1, the bound depends on the number of universally quan-
tified variables in Ψ and on the size of Σc, by Equation (6). The latter is the
number of universal quantifiers in ¬GI.
Example 9. As an illustration, we work through the toy example from head to
tail. As a safety state property we take Ψ 4= ∃i.xc = x[i], that is, Ψ expresses that
one of the clocks in x̄ has the same value as xc. We have already gone through
the main ingredients with Equations (1)-(3) in Examples 5-8. What is left is to
combine them and rename the quantified variables to obtain:

∀i ∃j1, j2, j3, j4, j5.

(
¬
(

(lc0 ∧ hac ≥ 0 ∧ xc ≥ 0 ∨ lc1 ∧ xc = hac ≥ 0) ∧

(l0[j1] ∧ ha[j1] ≥ 0 ∧ x[j1] ≥ 0 ∨ l1[j1] ∧ x[j1] = ha[j1] ≥ 0) ∧

(ha[j2] = hα[j2] ≥ hac) ∧ (hac = hα[i]) ∧
∣∣hα[j3]− hα[j5]

∣∣ ≥ kac

)
∨

xc = x[j4]
)

(7)

Above, we have used the component invariants with respect to the extensions
with history clocks6. By applying Corollary 1, we can assert the correctness of
Ψ from the validity the formula in (7) for n ≤ 3 processes.
6 The computation is the same as the one in Example 5. For illustration, we only show

the component invariant for Ch: CI (Ch) = lc0 ∧hac ≥ 0∧xc ≥ 0∨ lc1 ∧xc = hac ≥ 0.

12

5 Experiments

To illustrate the star and the ring topologies, we take the following case studies.
Train gate controller: This is the parameterised version of the classical exam-
ple from [9]. The system is depicted in Figure 5. It is composed of a controller,
a gate and an arbitrary number of trains. The controller lowers (raises) the gate
when a train enters (exits). The property Ψ is that the gate enters g1 location
only if one of the trains left far location: ∃i.¬far[i] ∨ ¬g1. For this example,

fari neari

xi ≤ 5

ini

xi ≤ 5

Traini

ap
pr

oa
ch
i

ex
it
i

approachi

xi := 0

xi ≥ 3exiti

c0 c1

z ≤ 1

c2c3

Controller
z ≤ 1

exit
c

lo
we

rc

approach
c

ra
is

ec

approachc

z := 0

z = 1
lowerc

z := 0
exitc

raisec

g0 g1

y ≤ 1

g2g3

y ≤ 2

Gate

lower
g

raise
g

lowerg

y := 0

raiseg
y := 0

y ≥ 1

Fig. 5. A Controller Interacting with an Arbitrary Number of Trains and a Gate

II (γ) plays no role: E(γ) and S(γ) are enough to check the validity of ¬GI ∨ Ψ
for the bound of 3. The small model result justifies this check as sufficient. As a
side note, additionally, we proved deadlock-freedom (the bound was 5).
Token Ring: The protocol depicted in Figure 6 is an adaption from [33]. Every
process P i receives the token from P i−1 through the interaction (si−1, ri). It then
moves to ti1 location and after passing the token, it moves from ti2 to ai. Once
P i sends the token, it cannot have it again before 2 time units. This constraint
is expressed using clock xi. Initially, P 1 is in t11, meaning that it possesses the
token, while all other P i are at location ai, waiting for the reception of the
token. The property Ψ is that one and only one process possesses the token:
Ψ
4= ∃i.∀j 6= i.

(
¬a[i] ∧ a[j]

)
.

a1 t11

t12

P 1

r1

x1 > 2,
x1 := 0

τ1s1, x1 := 0

r1 s1

a2 t21

t22

P 2

r2

x2 > 2,
x2 := 0

τ2s2, x2 := 0

r2 s2

. . .

an tn1

tn2

Pn

rn

xn > 2,
xn := 0

τnsn, xn := 0

rn sn

Fig. 6. An Arbitrary Number of Processes in a Ring Topology

For this example, the number of universal quantifiers in ¬GI ∨ Ψ is 3. As a
more interesting observation from our experiments, we add that the interac-
tion invariant as computed automatically in [10] has the form of a T-assertion:
∃j. (t1[j]∨ t2[j]). What it expresses is that at least one P i is not at a[i] location,
or equally, that the token is not lost. This invariant is, along with clock con-
straints from CI (P i), and E(γ) as ∀i.hs[i] = hα[i] ∧ hr[i] = hα[i− 1], necessary
to show that exactly one P i is at a[i] at a given time.

13

6 Conclusion & Future Work

We have presented a compositional method for the verification of parameterised
timed systems. The key element we made use of is a typical small model theorem.
The small model theorem does not hold in the context of networks of parametric
timed automata in its most general case. If the particular case of timed automata
with parameter n can be handled by extending the fragment of T-assertions
with results from [24], this is no longer the case for timed automata parametric
in their indices. This is because the invariant of such timed automata would
involve constraints of type xi ≥ i · ct and such constraints are not allowed by the
grammar of T-assertions. It would be of interest to investigate in this direction if
possible extensions of T -assertions are foreseeable. Another possible alternative
is to exploit the inherent symmetry in such systems.

Besides showing how compositional verification can benefit from small model
theorems, we have also shown the close relation between interactions and topolo-
gies. In this respect, we note that tree-like topologies are more tricky to encode:
offsets as constants are too weak but we intuit that the offset would need to
contain offsets itself. To allow more sophisticated interaction patterns, we could
also borrow some of the constructions in [24] to express constraints like period-
icity on indices. That is, given an interaction pattern α, instead of generating αi
for i ∈ [n], it would be of interest to generate αi only for indices i satisfying a
constraint like parity, or boundedness.

A third possible extension we will consider is with respect to false positives: as
any incomplete method, (VR) may yield spurious counterexamples. We will look
into how counterexample-based refinement techniques can in turn be applied in
the context of (parameterised) timed systems. Given that the search space (of
reals) is infinite, the main difficulty we envisage is the generalisation of the con-
crete real values from a given counterexample to a more generic characterisation
which would guarantee convergence.

References
1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems

for infinite-state systems. In LICS, 1996.
2. P. A. Abdulla, G. Delzanno, O. Rezine, A. Sangnier, and R. Traverso. On the

verification of timed ad hoc networks. In FORMATS, 2011.
3. P. A. Abdulla, J. Deneux, and P. Mahata. Closed, open, and robust timed networks.

ENTCS, 138(3), 2005.
4. P. A. Abdulla and B. Jonsson. On the existence of network invariants for verifying

parameterized systems. In Correct System Design, 1999.
5. P. A. Abdulla and B. Jonsson. Model checking of systems with many identical

timed processes. Theor. Comput. Sci., 290(1), 2003.
6. P. A. Abdulla, B. Jonsson, M. Nilsson, and M. Saksena. A survey of regular model

checking. In CONCUR, 2004.
7. R. Alur. Timed automata. In CAV, 1999.
8. R. Alur, C. Courcoubetis, D. L. Dill, N. Halbwachs, and H. Wong-Toi. An imple-

mentation of three algorithms for timing verification based on automata emptiness.
In RTSS, 1992.

14

9. R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci., 1994.
10. L. Astefanoaei, S. B. Rayana, S. Bensalem, M. Bozga, and J. Combaz. Composi-

tional invariant generation for timed systems. In TACAS, 2014.
11. K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. Abstracting ws1s systems to

verify parameterized networks. In TACAS, 2000.
12. K. Baukus, K. Stahl, S. Bensalem, and Y. Lakhnech. Networks of processes with

parameterized state space. ENTCS, 50(4), 2001.
13. S. Bensalem, M. Bozga, J. Sifakis, and T.-H. Nguyen. Compositional verification

for component-based systems and application. In ATVA, 2008.
14. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning

about dynamic networks of infinite-state processes. In TACAS, 2007.
15. R. Bruttomesso, A. Carioni, S. Ghilardi, and S. Ranise. Automated analysis of

parametric timing-based mutual exclusion algorithms. In NFM, 2012.
16. A. Carioni, S. Ghilardi, and S. Ranise. Mcmt in the land of parametrized timed

automata. In VERIFY@IJCAR, 2010.
17. E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few.

In CADE, 2000.
18. E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, 1995.
19. E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal Methods

in System Design, 9(1/2), 1996.
20. A. Finkel. A generalization of the procedure of karp and miller to well structured

transition systems. In ICALP, 1987.
21. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere!

Theor. Comput. Sci., 256(1-2), 2001.
22. S. M. German and A. P. Sistla. Reasoning about systems with many processes. J.

ACM, 39(3), 1992.
23. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards smt model checking

of array-based systems. In IJCAR, 2008.
24. P. Habermehl, R. Iosif, and T. Vojnar. What else is decidable about integer arrays?

In FOSSACS, 2008.
25. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. Inf. Comput., 1994.
26. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in veri-

fication. In TACAS, 2008.
27. T. T. Johnson and S. Mitra. A small model theorem for rectangular hybrid au-

tomata networks. In FMOODS/FORTE, 2012.
28. A. Legay, S. Bensalem, B. Boyer, and M. Bozga. Incremental generation of linear

invariants for component-based systems. In ACSD, 2013.
29. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameter-

ized linear networks of processes. In POPL, 1997.
30. D. Lesens, N. Halbwachs, and P. Raymond. Automatic verification of parameter-

ized networks of processes. Theor. Comput. Sci., 256(1-2), 2001.
31. K. S. Namjoshi. Symmetry and completeness in the analysis of parameterized

systems. In VMCAI, 2007.
32. A. Pnueli, S. Ruah, and L. D. Zuck. Automatic deductive verification with invisible

invariants. In TACAS, 2001.
33. J. Reich. Processes, roles and their interactions. In Proceedings of IWIGP, 2012.
34. P. Wolper and V. Lovinfosse. Verifying properties of large sets of processes with

network invariants. In AVMFSS, 1989.
35. W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time commu-

nicating systems by constraint-solving. In FORTE, 1994.

15

