L Aştefȃnoaei

S Ben Rayana

S Bensalem

M Bozga

J Combaz

Compositional Verification of Parameterised Timed Systems

In this paper we address the problem of uniform verification of parameterised timed systems (PTS): "does a given safety state property hold for a system containing n identical timed components regardless of the value of n?". Our approach is compositional and consequently it suits quite well such systems in that it presents the advantage of reusing existing local characterisations at the global level of system characterisation. Additionally, we show how a direct consequence of the modelling choices adopted in our framework leads to an elegant application of the presented method to topologies such as stars and rings.

Introduction

Swarm robots, satellite systems, multithreaded programs, ad-hoc networks, device drivers, all these applications have in common a structural characteristic: they rely on multiple copies of the same program interacting between each other, that is, they constitute systems parameterised by some components which are being replicated. Though the individual "replicas" may not involve a too complicated code in itself, the systems containing them are quite complex. The inherent complexity has several sources: it may come from that the systems are considerably large, as it is the case for swarm robots, or from that, effectively, their size cannot be a priori known, as it is the case for satellites. Yet another delicate matter is that these systems are highly dynamic and adaptable as their topology may change depending on initial goals, component failures, etc. All in all, the verification of such parameterised systems reveals real challenges.

There is an extensive amount of work on the verification of untimed parameterised systems. Some [START_REF] German | Reasoning about systems with many processes[END_REF][START_REF] Emerson | Reducing model checking of the many to the few[END_REF][START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF][START_REF] Namjoshi | Symmetry and completeness in the analysis of parameterized systems[END_REF][START_REF] Bouajjani | A generic framework for reasoning about dynamic networks of infinite-state processes[END_REF][START_REF] Ihlemann | On local reasoning in verification[END_REF] focus on particular classes for which the problem of uniform verification is decidable. Among these classes, we name well-structured transition systems [START_REF] Finkel | A generalization of the procedure of karp and miller to well structured transition systems[END_REF][START_REF] Abdulla | General decidability theorems for infinite-state systems[END_REF][START_REF] Finkel | Well-structured transition systems everywhere![END_REF] for which decidability follows from the existence of a so-called well-quasi ordering between states. Two examples that fit this class are Petri nets, and lossy channel systems. Most notably, the work in [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF] shows that, for bounded-data parameterised systems and for a restricted fragment of properties there is always a small number n (the so-called cutoff, later leading to small model theorems) such that if one can show correctness for the systems with less than n replicas then the system itself is correct. Others focus on incomplete but general methods: semi-automatic approaches based upon explicit induction [START_REF] Emerson | Reasoning about rings[END_REF] and upon network invariants [START_REF] Wolper | Verifying properties of large sets of processes with network invariants[END_REF][START_REF] Abdulla | On the existence of network invariants for verifying parameterized systems[END_REF][START_REF] Lesens | Automatic verification of parameterized linear networks of processes[END_REF][START_REF] Lesens | Automatic verification of parameterized networks of processes[END_REF] or automatic ones based upon abstraction [START_REF] Baukus | Abstracting ws1s systems to verify parameterized networks[END_REF][START_REF] Baukus | Networks of processes with parameterized state space[END_REF], upon regular model-checking (for a survey [START_REF] Abdulla | A survey of regular model checking[END_REF]), or upon symmetry reduction [START_REF] Emerson | Symmetry and model checking[END_REF].

In this paper we address the problem of uniform verification of parameterised timed systems (PTS). The existing approaches are less numerous than for untimed systems. The work in [START_REF] Abdulla | Model checking of systems with many identical timed processes[END_REF][START_REF] Abdulla | Closed, open, and robust timed networks[END_REF] concentrates on decidability: the authors show the decidability of the reachability of PTSs where processes are timed automata with either only one clock or otherwise time is discrete. These results have been later generalised to timed ad hoc networks in [START_REF] Abdulla | On the verification of timed ad hoc networks[END_REF] where it is shown that even for processes as timed automata with one clock, for star topologies where the diameter between nodes is of length 5, the reachability problem is undecidable. It is also the case for processes with 2 clocks and clique topologies. Decidability holds for special topologies as stars with diameter 3 and cliques of arbitrary order for processes as timed automata with 1 clock. For discrete time, reachability is decidable for any number of clocks and topologies as graphs with bounded paths. As a side remark, all the positive results above rely on the technique of well-quasi-orderings mentioned above. The approaches in [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF][START_REF] Carioni | Mcmt in the land of parametrized timed automata[END_REF][START_REF] Bruttomesso | Automated analysis of parametric timing-based mutual exclusion algorithms[END_REF] are closer in spirit to ours. The work in [START_REF] Carioni | Mcmt in the land of parametrized timed automata[END_REF][START_REF] Bruttomesso | Automated analysis of parametric timing-based mutual exclusion algorithms[END_REF] shows how reachability of parameterised systems where processes are timed automata can be encoded as a formula in a decidable fragment of the theory of arrays [START_REF] Ghilardi | Towards smt model checking of array-based systems[END_REF]. The work in [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF] concentrates upon parameterised rectangular hybrid automata nets. They show a small model theorem for such systems. The proof typically follows the lines from the one showing the existence of cutoffs in [START_REF] Pnueli | Automatic deductive verification with invisible invariants[END_REF].

Our approach borrows from [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF] and builds upon the methodology described in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF]. There, a compositional method is introduced for the verification of fixed size timed systems. It did so by locally computing invariants for each component and for their interactions and checking with an SMT solver, Z3 1 , if their conjunction implies the validity of a given safety property. The method being compositional suits quite well parameterised systems in that it presents the advantage of reusing existing local characterisations at the global level of system characterisation. Applying the method in the context of PTSs boils down to giving an effective method of checking the validity of quantified formulae. This is not obvious because, for instance, Z3 fails while trying to instantiate it to disprove it. At a first thought, one could apply some tactics which make extensive use of transitivity and practically reduce the formula to a tautology. However, to do this, one would need to transform the initial formula into disjunctive normal form, which is costly. At a second thought, following the reasoning from [START_REF] Bruttomesso | Automated analysis of parametric timing-based mutual exclusion algorithms[END_REF], we could show that the formula we feed to Z3 fits well in the theory of arrays. However, a simpler and more inspired solution is to make use of the small model theorem from [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF]. The advantage of combining such result with the compositional method from [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF] is twofold. On the one hand it can be the case that the system without replicas is big enough to make the construction of the product infeasible. On the other hand, a direct consequence of the modelling choices adopted in our framework leads to an elegant application of the presented method to parameterised timed systems where interactions are given by various types of topologies which extend the standard binary synchronous communication from [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF]. With respect to the work in [START_REF] Bruttomesso | Automated analysis of parametric timing-based mutual exclusion algorithms[END_REF], our formulae are quite small while there the resulting formulae have a number of quantifiers proportional to the length of the fixpoint computation of the reachability set.

Organisation of the paper. Section 2 recalls the needed existing results. Section 3 introduces the semantics of PTSs while Section 4 shows how to effectively verify PTSs compositionally. Section 5 describes two applications on classical examples and Section 6 concludes.

Preliminaries

Following [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF], our method builds upon the verification rule (VR) from [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF]. Assume that a system consists of n components B i interacting by means of an interaction set γ, and that the property that the system should satisfy is Ψ . If components B i and interactions γ can be locally characterised by means of invariants (here denoted CI (B i), resp. II (γ)), and if Ψ can be proved to be a logical consequence of the conjunction of the local invariants, then Ψ is a global invariant. In the rule (VR) depicted in Figure 1 the symbol "

i CI (B i) ∧ II (γ) → Ψ γ B i |= Ψ (VR)
" is used to underline that the logical implication can be effectively proved (for instance with an SMT solver) and the notation "B |= Ψ " is to be read as "Ψ holds in every reachable state of B".

The method in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF] extends, in a modular manner, the above rule with the purpose of applying it to the verification of timed systems. The framework in this paper is that of parameterised timed systems. We show how compositional verification along the lines of the methodology of [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF] works for parameterised timed systems. Before, we recall the standard concepts we make use of. Timed automata. We use timed automata (TA) to represent the behaviour of components. Timed automata have control locations and transitions between these locations. Transitions may have timing constraints, which are defined on clocks. Clocks can be reset and/or tested along with transition execution. Formally, a timed automaton is a tuple (L, Σ, T, X, tpc, s 0) where L is a finite set of control locations, Σ a finite set of actions, X is a finite set of clocks, T ⊆ L × (Σ × C × 2 X) × L is finite set of transitions labelled with actions, guards, and a subset of clocks to be reset, and tpc : L → C assigns a time progress condition to each location. C is the set of clock constraints and s 0 ∈ L × C provides the initial configuration. Clock constraints are conjunctions of (in)equalities of the form x#ct or x -y#ct with x, y ∈ X , # ∈ {<, ≤, =, ≥, >} and ct ∈ Z. Time progress conditions are restricted to conjunctions of constraints as x ≤ ct.

A timed automaton is a syntactic structure whose semantics is based on continuous and synchronous time progress. A state of a timed automaton is given by a control location paired with real-valued assignments of the clocks. From a given state, a timed automaton can let time progress when permitted by the time progress condition of the corresponding location, or can execute a (discrete) transition if its guard evaluates to true. The effect of time progress of δ ∈ R + units of time is to increase synchronously all clocks by δ. Executions of transitions are instantaneous: they keep values of clocks unchanged except the ones that are reset (i.e., assigned 0). Because of their continuous semantics, most timed automata have infinite state spaces. However, they admit finite symbolic representations of their state spaces as the so-called zone graphs [START_REF] Alur | An implementation of three algorithms for timing verification based on automata emptiness[END_REF][START_REF] Alur | Timed automata[END_REF][START_REF] Henzinger | Symbolic model checking for real-time systems[END_REF][START_REF] Yi | Automatic verification of real-time communicating systems by constraint-solving[END_REF].

T-assertions. We use T-assertions to express local and system properties. This choice is motivated by the fact that, following a result from [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF], the validity of T-assertions is decidable. T-assertions are a particular2 case of LH-assertions. The signature of T-assertions consists of the constants 1 and n of type N, and of a finite number of variables: (a) index variables:

i 1 , . . . , i a ∈ N; (b) discrete variables: l 1 , . . . , l b ∈ L; (c) real variables: x 1 , . . . , x c ∈ R; (d) discrete array variables: l1 , . . . , ld : [n] → L; (e) real array variables: x1 , . . . , xe : [n] → R +
where by [n] we denote the set {1, . . . , n}. Terms are given by the BNF grammar:

ITerm ::= 1 | n | i j DTerm ::= L j | l k | lj [ITerm] RTerm ::= x j | xk [ITerm]
and the formulae are structurally defined as:

Atom ::= ITerm < ITerm | DTerm = L k | a • RTerm + b • RTerm + c < 0 Formula ::= Atom | ¬Formula | Formula ∧ Formula with a, b, c ∈ R. T-assertions are of the form ∀i 1 , . . . , i k ∈ [n] ∃j 1 , . . . , j m ∈ [n].F
where F is of type Formula. We note that equality and non strict comparisons between indices and real variables can be expressed by means of ∧, ¬, <. For example, i = j is written as ¬(i < j) ∧ ¬(j < i). It is also the case that addition with constants can be expressed by means of extra quantifiers. For example, j = i + 1 is written as i < j ∧ ∀k.i < k → j ≤ k. This construction generalises to j = i + o for o an integer constant. To restrict indices within bounds, we make the convention that addition is understood modulo n. For succinctness, in the rest of the paper we adopt the notation

x[i + o] to stand for ∃j.j = i + o ∧ x[j].
Example 1. The following T-assertions express safety properties:

1. ∀i = j.¬(l[i] = C ∧ l[j] = C) expresses mutual exclusion for C denoting that a process is in the critical location; 2. ∀i, j.(l[i] = l[j] →| x[i] -x[j] |< 6
) expresses a "maximum delay" between the timings of any two processes which are in the same location.

As in [START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF], the semantics of a T-assertion Φ is given by n-models, denoted as M (n, Φ), which interpret the index, the discrete and resp. the real variables in Φ as taking values in [n], L, and resp. R + . [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF][START_REF] Alur | An implementation of three algorithms for timing verification based on automata emptiness[END_REF][START_REF] Abdulla | A survey of regular model checking[END_REF][START_REF] Abdulla | Closed, open, and robust timed networks[END_REF].

l = [L 1 , L 2 , L 1 , L 2], x =
T-assertions have a small model theorem. This is a key fact that can be exploited for automatic verification in general.

Proposition 1 (Simplified from [27]) Let Φ be a T-assertion given in the

form ∀i 1 , . . . , i k ∈ [n] ∃j 1 , . . . , j m ∈ [n]
.φ where φ is a quantifier-free formula involving the index variables i 1 , . . . , i k , j 1 , . . . , j m and array variables. We have that Φ is valid iff, for all n ≤ k + 2, Φ is satisfied by all n-models.

Next, we introduce our formalisation of PTSs and show how we can take advantage of the small model result to compositionally verify PTSs.

PTSs and their Semantics

In our framework, PTSs are understood as consisting of possibly (but not also necessarily) a fixed number of components and an arbitrary number n of isomorphic processes P i all given as TAs and interacting by means of an interaction set γ. In what follows, we adopt the notations C for the non parameterised part of a PTS, C n γ P i for a PTS itself. For ease of reference, we use Σ C , Σ, Σ i to denote the actions of C, of a generic process P and of a process i, P i . Σ i is obtained from Σ by attaching i to each action in Σ. An example of a PTS is depicted in Figure 2a. C interacts with some processes P i by synchronising actions a and a i while resetting clocks x c and x i . As Figure 2b illustrates, components P i are obtained from the same generic timed automaton P consisting of two control locations l 0 and l 1 and one transition 3 from l 0 to l 1 labelled by action a and resetting clock x. The construction of P i from a generic P is straightforward: each location l, clock x, and action a are mapped into l i , x i , a i respectively.

Components interact by means of strong synchronisation between their actions. The synchronisations are specified in the so called interactions as sets of actions. An interaction can involve at most one action of each component. For the ease of reference, the whole set of interactions is denoted by γ. In a parameterised setting, we define γ as a set of interaction patterns instead. An interaction pattern α is a tuple a c , (a

1 , o 1), . . . , (a m , o m) ∈ Σ c × (Σ × N) m such that 0 = o 1 < o 2 < • • • < o m .

An interaction pattern describes at an abstract level a family of interactions between C and m processes

4 : a c , (a 1 , o 1), . . . , (a m , o m) generates n interactions α i = a c , a i+o1 1 , . . . , a i+om m ∈ Σ c × Σ i+o1 × • • • × Σ i+om 3
Non displayed guards and time progress conditions of locations are by default true. 4 The case of PTSs without C is similar and we illustrate it only by means of examples.

l c 0 l c 1 a c x := 0 a c C . . . l 1 0 l 1 1 a 1 x 1 := 0 a 1 P 1 l 2 0 l 2 1 a 2 x 2 := 0 a 2 P 2 l 3 0 l 3 1 a 3
x 3 := 0 where all sums are understood modulo n. We use gen(α) to denote the interactions generated by α, that is, ∪ i∈[n] α i . By abuse of notation, we refer to γ as either the set of interaction patterns or as ∪ α∈γ gen(α), the set of all interactions generated by the patterns. The distinction should be clear from the context. Example 3. The family of interactions {(a c , a 1), (a c , a 2), . . . , (a c , a n)} in Figure 2a is given by the interaction pattern α = a c , (a, 0) .

a 3 P 3 (a) C n γ P i l0 l1 a x := 0 a l i 0 l i 1 a i x i := 0 a i (b) P and P i
For C as (L c , Σ c , T c , X c , tpc c , s c 0)
, and P i as (L i , Σ i , T i , X i , tpc i , s i 0), the semantics of C n γ P i is given by that of the timed automaton (L, γ, T γ , X , tpc, s 0) where

L = L c × i L i , X = X c ∪ i X i and: -for s c 0 = (l c , C 0), s i 0 = (l i 0 , C i 0)
, s 0 is a pair of a global location l 0 = (l c 0 , l 1 0 , . . . , l n 0) and the initial clock constraints given by C 0 ∧ i C i 0 , -tpc (l c , l 1 , . . . , l n) = tpc(l c) ∧ i tpc(l i), -for any α = a c , (a 1 , o 1), . . . , (a m , o m) with α i = a c , a i+o1

• if l c a c ,g c ,r c -----→ l c ∈ T c and l i a i ,g i ,r i -----→ l i ∈ T i for any i ∈ O, a i ∈ Σ i ∩ α i • then (l c , l 1 , . . . , l n) α i ,g,r ----→ (l c , l 1 , . . . , l n) ∈ T γ with l j = l j for any j ∈ [n] \ O and g = g c ∧ i∈O g i , respectively r = r c ∪ i∈O r i .
Interaction patterns have a considerable expressiveness power to the extent that they can encode regular topologies. Usually topologies are given by a graph where the vertices represent the indices of the processes and the edges give the communication between processes [START_REF] Abdulla | On the verification of timed ad hoc networks[END_REF]. In our framework, the communication is given/induced by the set of interactions. There is a close correspondence between topologies and sets of interactions. This comes from the observation that topologies represented as graphs have a straightforward encoding as interaction sets. As an illustration, we consider the classical topology of a ring5 . Given n nodes, a ring topology naturally links a send from node i to a receive at node i + 1, that is, it is generated by the pattern ((s, 0), (r, 1)) where s, r stand for "send", "receive". A graphical interpretation is given in Figure 3b.

Example 4. The interaction set in Figure 2a is generated by one pattern, namely (a c , (a, 0)). The corresponding topology it describes is that of a star, another classical topology. The corresponding graphical depiction is in Figure 3a. Remark 1. Thanks to the definition of γ as a set, thus implicitly nondeterministic, with our method we cover any topology which may be enforced or hard-wired in the system at a later moment of time, or stage of design. To take a concrete example, the interaction set for the star topology does not oblige all components to participate, so any star "subset" (corresponding for instance to the situation when some components are turned off) is considered. This has the implication that, with respect to deadlock freedom, if our method yields true, the system is safe, then this is the case irrespectively of how many components are interacting.

Compositional Verification of PTSs

To compositionally verify PTSs, our method consists of automatically generating invariants characterising components, interactions and inter-component timings. These invariants are assembled in the (VR) rule recalled in the introduction. To apply the small model result from Proposition 1, the provided invariants need to be T-assertions. Next, we take them one by one and show how they can be effectively computed and shaped into the form of T -assertions.

Component Invariants

Component invariants characterise the reachable states of components when considered alone. Such invariants can be computed from the zones of the corresponding timed automata [START_REF] Alur | An implementation of three algorithms for timing verification based on automata emptiness[END_REF][START_REF] Alur | Timed automata[END_REF][START_REF] Henzinger | Symbolic model checking for real-time systems[END_REF][START_REF] Yi | Automatic verification of real-time communicating systems by constraint-solving[END_REF]. More precisely, given that the set of the reachable symbolic states (l j , ζ j) of an arbitrary process P is finite, its invariant is defined by the disjunction ∨ j (l j ∧ ζ j), where by abuse of notation l j is used to denote the predicate that holds whenever P is at location l j .

We recall that, for a process P i , we identify locations and clocks as l i , x i , for locations l and clocks x in the generic process P . To fit the formulae characterising the reachable set of states of P i in the class of T-assertions, we indiscriminately view l i as the ith element in the array l and similarly, x i is equally viewed as the ith element in the array x, that is, semantically we make no difference between l i and l[i], respectively x i and x[i].

Example 5. As an illustration, the component invariants for C, P and P i (where C, P i , P are the ones depicted in Figures 2a,2b) are as follows:

CI (C) = (l c 0 ∧ x c ≥ 0) ∨ (l c 1 ∧ x c ≥ 0) (1)
CI (P) = (l 0 ∧ x ≥ 0) ∨ (l 1 ∧ x ≥ 0) CI (P i) = (l 0 [i] ∧ x[i] ≥ 0) ∨ (l 1 [i] ∧ x[i] ≥ 0) (2)
We use CI to denote the conjunction of CI (C) and of all CI (P i). Extending the argument that the conjunction of invariants is an invariant itself, it can be shown that CI is an invariant characterising all components.

Proposition 2 CI = CI (C) ∧ ∀i.CI (P i) is an invariant of C n γ P i .

History Clocks & Auxiliary Constraints

A direct application of the rule (VR) on PTSs may be too weak in the sense that the component and the interaction invariants alone are usually not enough to prove global properties, especially when such properties involve relations between clocks in different components. Though component invariants encode timings of local clocks, because the interaction invariant is orthogonal on timing aspects, there is no direct way to constrain the bounds on the differences between clocks in different components. History clocks allow to decouple the analysis for components and for their composition. They make it possible to derive new global constraints from the simultaneity of interactions and the synchrony of time progress.

Adding History Clocks. History clocks are associated with actions and interactions. For a process P we use P h to denote its extension with history clocks. The extension C h n γ P i h of C n γ P i is obtained from the extensions of the components alone together with the history clocks for interactions. As an illustration, Figure 4 shows the extension of the PTS in Figure 2a.

l c 0 l c 1 a c x := 0, hac := 0 a c C h . . . l 1 0 l 1 1 a 1
x 1 := 0, ha1 := 0

a 1 P 1h hac|a1 l 2 0 l 2 1 a 2
x 2 := 0, ha2 := 0

a 2 P 2h hac|a2 l 3 0 l 3 1 a 3
x 3 := 0, h a3 := 0

a 3 P 3h hac|a3

Fig. 4. Illustrating Components with History Clocks for (Inter)Actions

The mechanism of history clocks is as follows. When an interaction α takes place, the history clocks h α and h a associated to α and to any action a ∈ α are reset. Thus they measure the time passed from the last occurrence of α, respectively of a. Since there is no timing constraint involving history clocks, the behaviour of the components is not changed by the addition of history clocks, a fact which is shown by a similar argument as in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF].

Proposition 3 C n γ P i and C h n γ P i h are bisimilar.

Generating Interaction Equalities from History Clocks. History clocks are introduced with the purpose of obtaining stronger invariants. Intuitively, the strengthening comes from the following observation. Each time an interaction α is executed, h α and all the history clocks corresponding to the actions participating in α are reset synchronously, and then remain unchanged and equal until the next interaction is executed. Moreover, a history clock h a for an action a from a last executed interaction α is necessarily less than any h β with β another interaction containing a. This is because the clocks of the actions in α are the last ones being reset. Consequently, given a common action a of α 1 , α 2 , . . . , α p , h a is the minimum of h αi , h a = min

i∈[p]
h αi .

In the parameterised case, the above observation is captured as follows. Each interaction pattern α and each a ∈ α are associated to the arrays h α , respectively h a . Let α be of the form (. . . , (a, o), . . .). For a given index i, a i appears in α

i-o . Consequently, h a [i] is the minimum among h α [i -o]: E(a i) =   (a,o)∈α h a [i] = h α [i -o]   ∧   (a,o)∈α h a [i] ≤ h α [i -o]  
By switching perspective from that of P i to that of C, we obtain, for an action a c in Σ c , the following quantified formula:

E(a c) = ∃j. a c ∈α h a c = h α [j] ∧ ∀i. a c ∈α h a c ≤ h α [i] .
The existential quantifier is needed to express that h a c is the minimum among an unbounded number of history clocks associated to interactions containing a c .

To combine both perspectives, we define E(γ) = ∀i ∧ a E(a i) ∧ a c E(a c). By an inductive argument, it can be shown that these constraints are an invariant.

Proposition 4 E(γ) is an invariant of

C h n γ P i h .
Example 6. For the star topology γ = {α} with α = a c , (a, 0) we have that:

E(γ) = ∀i.(h a [i] = h α [i] ∧ h a [i] ≤ h α [i])∧ ∃j.(h a c = h α [j]) ∧ ∀i.(h a c ≤ h α [i])
As for the ring topology γ = {α} with α = (s, 0), (r, 1) we have:

E(γ) = ∀i. h s [i] = h α [i] ∧ h s [i] ≤ h α [i] ∧ h r [i] = h α [i -1] ∧ h r [i] ≤ h α [i -1] .
Generating Inequalities from Conflicting Interactions. The equality constraints shown previously allow to relate local constraints obtained separately from the component invariants. Without conflicts, that is, when interactions do not share any action, the generated invariants are quite tight in the sense that E(γ) is essentially a conjunction of equalities. However, E(γ) is weaker in the presence of conflicts because any action in conflict can be used in different interactions. The disjunctions in E(γ) reflect precisely this uncertainty. History clocks on interactions are introduced to capture the time lapses between conflicting interactions. The basic information we exploit is that when two conflicting interactions compete for the same action a, no matter which one is first, the other one must wait until the component which owns a is again able to execute a. This is referred to as a "separation constraint" for conflicting interactions.

Since we make the distinction between the actions in C and P , the reasoning goes as for E, by a case distinction:

S(a c) = ∀i 1 , i 2 . α a c β a c i1 =i2∨α =β h α [i 1] -h β [i 2] ≥ k a c S(a i) = (a,o1)∈α (a,o2)∈β o1 =o2∨α =β h α [i -o 1] -h β [i -o 2] ≥ k a
where k a c , k a are lower bounds of the time elapsed between two consecutive executions of a c in C, respectively of a in P , bounds which can be statically computed from the timed automata of C, respectively of P . Similarly to E(γ), S(γ) is defined by combining S(a c) and S(a i): S(γ) = ∀i ∧ a S(a i) ∧ a c S(a c). Furthermore, S(γ) can be shown to be an invariant.

Proposition 5 S(γ) is an invariant of

C h n γ P i h .
Example 7. For the star topology γ = {α} with α = a c , (a, 0) we have that:

S(γ) = ∀i 1 , i 2 . h α [i 1] -h α [i 2] ≥ k a c (3)
As the ring topology γ = {α} with α = (s, 0), (r, 1) does not have conflicts, for illustration purposes, we consider the following slight variation α = (r, 0), (s, 1), (r, 2) corresponding to sends being forwarded to the left and to the right. In this case, we have that:

S(γ) = ∀i. h α [i] -h α [i -2] ≥ k r (4)
with k r being the lower bound of the time elapsed between two consecutive r.

Interaction Invariants

Interaction invariants II (γ) are induced by the synchronisations and have the form of global conditions involving control locations of components. Previous work considered boolean conditions [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF] as well as linear constraints [START_REF] Legay | Incremental generation of linear invariants for component-based systems[END_REF] as methods for generating II (γ). These approaches do not easily generalise to the parameterised case: applying the method of [START_REF] Bensalem | Compositional verification for component-based systems and application[END_REF] boils down to transforming to conjunctive normal forms quantified formulae while the one in [START_REF] Legay | Incremental generation of linear invariants for component-based systems[END_REF] boils down to solving an unbounded number of equations. Our solution is to adopt a k-window abstraction instead. To obtain such an abstraction, the main step is to generate interactions involving only actions from Σ i with i ≤ k. Let α be an interaction pattern a c , (a 1 , o 1), . . . , (a m , o m) . Recall that the offsets o i are in ascending order. We define gen(α, k) as

∪ i∈[k] proj(α i) where proj(α i) = a c , a i 1 , a i+o2 2 , . . . , a i+oj j
and j is the last index for which i + o j ≤ k. We recall that addition is taken modulo n. We denote ∪ α∈γ gen(α, k) by γ k . Given this construction, the remaining steps for computing a k-window abstraction are:

1. use the above mentioned methods or simply compute the set of the reachable states of C interacting with k processes P i to generate

II k = II (γ k); 2. reindex II k by renaming all indices j ∈ [k] to j + i to obtain II * k of the form ∀i.II k [j ← j + i].
We note that k-window is an abstraction of the original system C n γ P i . Consequently, each invariant computed with respect to the k-window is also an invariant of C n γ P i . Proposition 6 The formula (k < n ∨ II * k) is an invariant of C n γ P i . Example 8. We consider the star topology present in the toy example shown in Figure 2a. If we abstract to a window of size 1, the first step consists in the computation of the interaction invariant for C interacting with P 1 , where the interaction set after projection is γ 1 = {(a c , a 1), a c }. Using the reachable set of C γ1 P 1 , the interaction invariant for this abstraction is

II 1 = l 0 [1] = 1 ∨ l c 1 = 1. By Step 2, the interaction invariant for C n γ P i is II * = ∀i.l 0 [i] = 1 ∨ l c 1 = 1.

Parameterised (VR)

Taking into account the clock constraints E and S, the generalisation of the rule (VR) recalled in the introduction to the parameterised case boils down to checking the validity of the following formula:

CI ∧ (k < n ∨ II * k) ∧ E(γ) ∧ S(γ) GI → Ψ (5)
or equally the unsatisfiability of GI ∧¬Ψ . These formulae are T-assertions whenever Ψ is a T-assertion itself.

Proposition 7

For Ψ a T-assertion, GI → Ψ is a T-assertion itself.

Proof (sketch). In prenex normal form, each invariant is a T-assertion. We only detail the more interesting cases of E and S:

E(γ) = ∀i ∧ a E(a i) ∧ a c E(a c) ≡ ∀i 1 , i 2 .∃j Σ c .   (a,o)∈α h a [i 1] = h α [i 1 -o]   ∧   (a,o)∈α h a [i 1] ≤ h α [i 1 -o]   ∧ ∧ a c a c ∈α h a c = h α [j a c] ∧ a c ∈α h a c ≤ h α [i 2] (6)
S(γ) = ∀i. ∧ a S(a i) ∧ a c S(a c) ≡ ∀i 1 , i 2 . ∧ a (a,o1)∈α (a,o2)∈β o1 =o2∨α =β h α [i -o 1] -h β [i -o 2] ≥ k a ∧ a c α a c β a c h α [i 1] -h β [i 2] ≥ k a c
where a, a c are arbitrary actions in Σ, respectively Σ c , ∃j Σ c denotes ∃j a1 j a2 . . . j am for Σ c = {a 1 , . . . , a m } and j a c stands for an arbitrary element in j Σ c .

Observing that all quantified variables are not shared among invariants, we can rename these such that there are no overlappings and use the following basic equivalences where op denotes any logical connective and Q any quantifier: Proof. By Proposition 1, the bound depends on the number of universally quantified variables in Ψ and on the size of Σ c , by Equation (6). The latter is the number of universal quantifiers in ¬GI.

Example 9. As an illustration, we work through the toy example from head to tail. As a safety state property we take Ψ = ∃i.x c = x[i], that is, Ψ expresses that one of the clocks in x has the same value as x c . We have already gone through the main ingredients with Equations (1)-(3) in Examples 5-8. What is left is to combine them and rename the quantified variables to obtain:

∀i ∃j 1 , j 2 , j 3 , j 4 , j 5 . ¬ (l c 0 ∧ h a c ≥ 0 ∧ x c ≥ 0 ∨ l c 1 ∧ x c = h a c ≥ 0) ∧ (l 0 [j 1] ∧ h a [j 1] ≥ 0 ∧ x[j 1] ≥ 0 ∨ l 1 [j 1] ∧ x[j 1] = h a [j 1] ≥ 0) ∧ (h a [j 2] = h α [j 2] ≥ h a c) ∧ (h a c = h α [i]) ∧ h α [j 3] -h α [j 5] ≥ k a c ∨ x c = x[j 4] (7)
Above, we have used the component invariants with respect to the extensions with history clocks6 . By applying Corollary 1, we can assert the correctness of Ψ from the validity the formula in [START_REF] Alur | Timed automata[END_REF] for n ≤ 3 processes.

Experiments

To illustrate the star and the ring topologies, we take the following case studies. Train gate controller: This is the parameterised version of the classical example from [START_REF] Alur | A theory of timed automata[END_REF]. The system is depicted in Figure 5. It is composed of a controller, a gate and an arbitrary number of trains. The controller lowers (raises) the gate when a train enters (exits). The property Ψ is that the gate enters g 1 location only if one of the trains left f ar location: ∃i.¬f ar[i] ∨ ¬g 1 . For this example,

f ar i near i x i ≤ 5 in i x i ≤ 5 Train i approach i exit i approach i
x i := 0 II (γ) plays no role: E(γ) and S(γ) are enough to check the validity of ¬GI ∨ Ψ for the bound of 3. The small model result justifies this check as sufficient. As a side note, additionally, we proved deadlock-freedom (the bound was 5). Token Ring: The protocol depicted in Figure 6 is an adaption from [START_REF] Reich | Processes, roles and their interactions[END_REF]. Every process P i receives the token from P i-1 through the interaction (s i-1 , r i). It then moves to t i 1 location and after passing the token, it moves from t i 2 to a i . Once P i sends the token, it cannot have it again before 2 time units. This constraint is expressed using clock x i . Initially, P 1 is in t 1 1 , meaning that it possesses the token, while all other P i are at location a i , waiting for the reception of the token. The property Ψ is that one and only one process possesses the token: For this example, the number of universal quantifiers in ¬GI ∨ Ψ is 3. As a more interesting observation from our experiments, we add that the interaction invariant as computed automatically in [START_REF] Astefanoaei | Compositional invariant generation for timed systems[END_REF] has the form of a T-assertion: ∃j. (t 1 [j] ∨ t 2 [j]). What it expresses is that at least one P i is not at a[i] location, or equally, that the token is not lost. This invariant is, along with clock constraints from CI (P i), and E(γ) as ∀i.h

x i ≥ 3 exit i c0 c1 z ≤ 1 c2 c3 Controller z ≤ 1 exit c lower c approach c raise c approach c z := 0 z = 1 lower c z := 0 exit c raise c g0 g1 y ≤ 1 g2
Ψ = ∃i.∀j = i. ¬a[i] ∧ a[j] .
s [i] = h α [i] ∧ h r [i] = h α [i -1]
, necessary to show that exactly one P i is at a[i] at a given time.

Conclusion & Future Work

We have presented a compositional method for the verification of parameterised timed systems. The key element we made use of is a typical small model theorem.

The small model theorem does not hold in the context of networks of parametric timed automata in its most general case. If the particular case of timed automata with parameter n can be handled by extending the fragment of T-assertions with results from [START_REF] Habermehl | What else is decidable about integer arrays?[END_REF], this is no longer the case for timed automata parametric in their indices. This is because the invariant of such timed automata would involve constraints of type x i ≥ i • ct and such constraints are not allowed by the grammar of T-assertions. It would be of interest to investigate in this direction if possible extensions of T -assertions are foreseeable. Another possible alternative is to exploit the inherent symmetry in such systems.

Besides showing how compositional verification can benefit from small model theorems, we have also shown the close relation between interactions and topologies. In this respect, we note that tree-like topologies are more tricky to encode: offsets as constants are too weak but we intuit that the offset would need to contain offsets itself. To allow more sophisticated interaction patterns, we could also borrow some of the constructions in [START_REF] Habermehl | What else is decidable about integer arrays?[END_REF] to express constraints like periodicity on indices. That is, given an interaction pattern α, instead of generating α i for i ∈ [n], it would be of interest to generate α i only for indices i satisfying a constraint like parity, or boundedness.

A third possible extension we will consider is with respect to false positives: as any incomplete method, (VR) may yield spurious counterexamples. We will look into how counterexample-based refinement techniques can in turn be applied in the context of (parameterised) timed systems. Given that the search space (of reals) is infinite, the main difficulty we envisage is the generalisation of the concrete real values from a given counterexample to a more generic characterisation which would guarantee convergence.

Fig. 1 .

 1 Fig. 1. Compositional Verification

Example 2 .

 2 A 2-model for the mutual exclusion in Example 1 is l = [C, I] where say I denotes idle locations. A 4-model for the maximum delay property is

Fig. 2 .

 2 Fig. 2. An Example of a PTS and the construction of P i

1 ,

 1 . . . , a i+om m and O = {i + o 1 , . . . , i + o m }, we have that:

Fig. 3 .

 3 Fig. 3. Topologies & Interaction Sets

Corollary 1 .

 1 QxQy.(P (x) op R(y)) ≡ QyQx.(P (x) op R(y)) P op Qy.R(y) ≡ Qy.(P op R(y)) to finally transform GI → Ψ itself into a T-assertion.Proposition 7 allows us to apply the small model theorem from Section 2. For a PTS C n γ P i and a global property Ψ = ∀s∃ t.Ψ • it is enough to check the validity of ¬GI ∨ Ψ for n ≤ #s + #Σ c + 2 in order to assert the validity of Ψ for any n.

1 Fig. 5 .

 15 Fig. 5. A Controller Interacting with an Arbitrary Number of Trains and a Gate

Fig. 6 .

 6 Fig. 6. An Arbitrary Number of Processes in a Ring Topology

To be specific, by "particular" we mean that we do not need the so called "indexvalued array variables" which in[START_REF] Johnson | A small model theorem for rectangular hybrid automata networks[END_REF] model pointer variables.

Rings are typically for binary communication, however broadcasts can be just as well encoded by means of interaction patterns.

The computation is the same as the one in Example 5. For illustration, we only show the component invariant forC h : CI (C h) = l c 0 ∧ hac ≥ 0 ∧ x c ≥ 0 ∨ l c 1 ∧ x c = hac ≥ 0.

Work partially supported by the European Projects 257414 ASCENS, STREP 318772 D-MILS, French BGLE Manycorelabs, and Artemis AIPP Arrowhead. 1 rise4fun.com/Z3