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CONVERGENCE TO EQUILIBRIUM FOR LINEAR SPATIALLY HOMOGENEOUS

BOLTZMANN EQUATION WITH HARD AND SOFT POTENTIALS: A SEMIGROUP

APPROACH IN L1-SPACES

B. LODS & M. MOKHTAR-KHARROUBI

ABSTRACT. We investigate the large time behavior of solutions to the spatially homogeneous linear
Boltzmann equation from a semigroup viewpoint. Our analysis is performed in some (weighted)
L

1-spaces. We deal with both the cases of hard and soft potentials (with angular cut-off). For
hard potentials, we provide a new proof of the fact that, in weighted L

1-spaces with exponential
or algebraic weights, the solutions converge exponentially fast towards equilibrium. Our approach
uses weak-compactness arguments combined with recent results of the second author on positive
semigroups in L

1-spaces. For soft potentials, in L
1-spaces, we exploits the convergence to ergodic

projection for perturbed substochastic semigroup [25] to show that, for very general initial datum,
solutions to the linear Boltzmann equation converges to equilibrium in large time. Moreover, for
a large class of initial data, we also prove that the convergence rate is at least algebraic. Notice
that, for soft potentials, no exponential rate of convergence is expected because of the absence of
spectral gap.

KEYWORDS. Linear Boltzmann equation, soft and hard potentials, positive semigroup, ergodic
projection.
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1. INTRODUCTION

We investigate in the present work the large time behavior of solutions to the linear Boltz-
mann equation for both hard and soft potentials, under some cut-off assumption. We consider
solutions in some weighted L1-spaces and our approach is based on functional analytic results
regarding positive semigroups in such spaces. To keep the presentation and results simple, we
investigate only here the spatially homogeneous Boltzmann equation which exhibits already a
quite rich behavior. Extension to spatially inhomogeneous problems is planned for future inves-
tigations.

1.1. The kinetic model. Before entering the details of our results, let us formulate the problem
we aim to address here: we shall consider the spatially homogeneous linear Boltzmann equation
(BE in the sequel)

∂tf(t, v) = Lf(t, v), f(0, v) = f0(v) > 0 (1.1)
in which L is the linear Boltzmann operator given by

Lf = Q(f,M) (1.2)

where Q(f, g) denotes the bilinear Boltzmann operator

Q(f, g) =

∫

Rd×Sd−1

B(v − v∗, σ)
(
f(v′)g(v′∗)− f(v)g(v∗)

)
dv∗dσ (1.3)

where v′ and v′∗ are the pre-collisional velocities which result, respectively, in v and v∗ after
elastic collision

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ. (1.4)

Here f and g are nonnegative functions of the velocity variable v ∈ R
d and B(q, n) is a nonnega-

tive function . We will assume throughout this paper that the distribution function M appearing
in (1.2) is a given Maxwellian function:

M(v) =
̺

(
2πΘ

)d/2 exp
{
−|v − u|2

2Θ

}
, v ∈ R

d, (1.5)

where u ∈ R
d is the given bulk velocity and Θ > 0 is the given effective temperature of the host

fluid. Notice that, by Galilean invariance, there is no loss of generality in assuming

̺ = Θ = 1, u = 0.

We shall investigate in this paper several collision operators L = LB corresponding to various
interactions collision kernels B = B(v − v∗, σ). Typically, we shall consider the case

B(v − v∗, σ) = Φ(|v − v∗|) b(cos θ), cos θ =

〈
v − v∗
|v − v∗|

, σ

〉

where b : [−1, 1] → R
+ and Φ : R

+ → R
+ are measurable. We shall consider models with

angular cut-off, i.e. we assume

ℓb :=

∫

Sd−1

b(cos θ)dσ < ∞ ∀v, v∗ ∈ R
d; (1.6)
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which, in turns, reads

ℓb = |Sd−2|
∫ 1

−1

(
1− s2

) d−3

2 b(s)ds < ∞.

Notice that, without loss of generality, we can assume that ℓb = 1. Typically, we shall consider
the case of power-like potentials Φ(·):

Φ(r) = rγ ∀r > 0

where we distinguish between two cases:
(1) Hard potentials for which γ > 0;
(2) Soft potentials for which −d < γ < 0.

A very peculiar model, particularly relevant for physical applications, is the one of hard-spheres
in dimension d = 3 for which

B(v − v∗, σ) = Bhs(v − v∗, σ) = b0|v − v∗|
i.e. Φ(r) = r and b(s) = b0 is constant.

Notice that, independently of the interaction kernel B, it is very easy to check that L(M) =
0 and that, in any reasonable spaces, the kernel of L is spanned by M, i.e. M is the only
equilibrium with unit density.

Notice that, thanks to the cut-off assumption (1.6), the Boltzmann operator L can be split
into a gain part and a loss part:

Lf = Kf − T f

where the gain part

Kf(v) = L+f(v) :=

∫

Rd×Sd−1

B(v − v∗, σ)f(v
′)M(v′∗)dv∗dσ v ∈ R

d (1.7)

while the loss part T = L− is a multiplication operator

Tf =

∫

Rd×Sd−1

B(v − v∗, σ)f(v)M(v∗)dv∗dσ = Σ(v) f(v)

where the collision frequency

Σ(v) =

∫

Rd×Sd−1

B(v − v∗, σ)M(v∗)dv∗dσ = ℓb (Φ ∗M) (v)

where ∗ denotes the convolution in R
d. For power-like potentials, i.e. whenever Φ(r) = rγ ,

there exist two positive constants σ1, σ2 > 0 such that

σ1 (1 + |v|)γ 6 Σ(v) 6 σ2 (1 + |v|)γ ∀v ∈ R
d. (1.8)

The non-local part K admits an integral form, based upon the Carleman representation of
Q+. Namely, there exists some measurable kernel k = kB(v,w) such that

Kf = L+
Bf(v) =

∫

Rd

kB(v,w)f(w)dw ∀f ∈ L1(Σ(v),dv) = L1 ((1 + |v|)γ ,dv) . (1.9)

The explicit form of the kernel kB(v,w) can be derived, following the lines of [10]. Details of
such computations are given in Appendix A.



4 B. LODS & M. MOKHTAR-KHARROUBI

1.2. Presentation of the results and strategy. We provide here an unified approach to the
problem of convergence towards equilibrium for solutions to (1.1). As already said, we will deal
with solutions to (1.1) in suitable weighted L1-spaces. Namely, we shall consider here functional
space of the type

X = L1(Rd , m−1(v)dv)

endowed with its natural norm where the weight function m = m(v) positive and such that
m−1(v) > 1 for any v ∈ R

d. We shall consider here two different types of weights:

(Exponential weights) m(v) = exp(−a|v|s) a > 0 , s ∈ (0, 1], (1.10)

or

(Algebraic weights) m(v) =
(
1 + |v|β

)−1
, β > 0. (1.11)

More precisely, for hard-potentials, our approach will require the weights m to be non trivial,
i.e a > 0 for exponential weights or β > 0 for algebraic weight where as, for soft potentials, we
will deal with “unweighted” spaces, i.e. m(v) = 1 for any v ∈ R

d which corresponds to a = 0 or
β = 0.

The approach we present here is, by some aspects, much simpler than the afore-mentioned
ones and relies only on very general results about positive semigroups in L1-spaces.

We wish in particular to emphasize that one of the main interesting features of our ap-
proach is that provides directly both the well-posedness (in the semigroup sense) of (1.1) and
the asymptotic behavior of the solutions. This is a major contrast with respect to the recent
quantitative approach [14] based upon space enlargement and factorisation for which the well-
posedness of the associated problem is always given as a first initial assumption. The strategy
we adopt is very natural from the viewpoint of classical perturbation theory of semigroups. It
consists, roughly speaking, in considering the non-local operator K as a perturbation of the
multiplication operator T associated to Σ and showing that K is weakly compact with respect
to T in X. Notice that, for hard-potentials, K is an unbounded operator and one has to invoke
perturbation theorem for semigroup which allows for unbounded perturbation. Such generation
result is recalled in the next section as well as the basic results concerning positive semigroup in
L1-spaces.

For hard potential, our main result is the following:

Theorem 1.1. If the weight function is given by (1.10) or (1.11), then, for any γ ∈ [0, d − 2] and

any b ∈ L1(Sd−1), the linear Boltzmann operator (L,D(L)) with

D(L) = Y =: L1(Rd, (1 + |v|)γ m−1(v)dv) ⊂ X

is the generator of a positive C0-semigroup (V (t))t>0 on X. Moreover, there exist C > 0 and λ⋆ > 0
such that the C0-semigroup (V (t))t>0 generated by (L,D(L)) in X satisfies

‖V (t)f0 − ̺0M‖X 6 C exp(−λ⋆t)‖f0‖X for all nonnegative f0 ∈ X, ∀t > 0

where ̺0 =

∫

Rd

f0(v)dv for any f0 ∈ X.



5

The above result asserts that (1.1) is well-posed in the semigroup sense and that the associ-
ated solutions converge exponentially fast towards the unique equilibrium with same mass as f0.
Notice that the convergence of V (t) as t → ∞ holds in operator norm. The proof of the Theorem
is perturbative in nature and consists in looking L and the associated semigroup (V (t))t>0 as
perturbations of the multiplication operator T and the associated semigroup (U(t))t>0. Notice
that the spectrum of T is given by

S(T ) = Range(−Σ) = (−∞,−η]

where η = infv∈Rd Σ(v) and Range(−Σ) denotes the closure (in C) of the range of −Σ(·). The
main steps to prove the above Theorem are the following:

i) The main tool in the proof is the fact that the collision operator K is positive and weakly
compact as an operator from Y → X. Since Y is also the domain of the multiplication
operator T , it shows that K is T -relatively weakly compact. In particular, this implies that
the spectrum of L = K + T consists in some essential spectrum which is included in the
spectrum of T and eigenvalues of finite algebraic multiplicities which can accumulate only
in −η.

In particular, this shows the existence of some spectral positive spectral gap λ ∈ (0, η) for
L. Remember that, in general and because of the absence of some spectral mapping theorem
for semigroups, this is not enough in general to obtain the decay prescribed by Theorem 1.1.
However, since we are dealing with positive semigroups in L1-spaces, the decay can be obtained
by the following arguments:

ii) From the above point and since we are dealing here with positive operators in L1-spaces,
Desch’s theorem directly ensures that L = T +K is the generator of a positive semigroup
(V (t))t>0 on X which is a perturbation of the C0-semigroup (U(t))t>0 generated by T .
Moreover, these two semigroups share the essential spectrum.

iiii) Finally, since 0 is an algebraically simple eigenvalue of L the decay estimate follows from
general results concerning positive semigroups in L1-spaces.

In the above steps, the most technical part of the proof consists in showing the weak-
compactness property of K : Y → X. To do so, we exploit the integral nature of K given
by (1.9) together with suitable comparison techniques that allow us to restrict ourselves to the
properties of K whenever γ = d − 2 (corresponding to hard-spheres interactions). Notice in
particular that, for such a technical step, the introduction of the weight m is definitely necessary
since it can be shown that, without weight, the operator K is not weakly-compact (see [20] and
Remark 3.4).

For soft potentials, our main contribution are the following two results. First, a non quanti-
tative convergence result is establish

Theorem 1.2. Assume now that X = L1(Rd,dv). If γ ∈ (−d, 0) and b(·) ∈ L1(Sd−1) then

X = Ker(L)⊕ Im(L)
and the C0-semigroup (V (t))t>0 generated by L in X satisfies

lim
t→∞

‖V (t)f − ̺fM‖X = 0 (1.12)



6 B. LODS & M. MOKHTAR-KHARROUBI

where ̺f =

∫

Rd

f(v)dv for any nonnegative f ∈ X.

Second, whenever f ∈ Ker(L)⊕ Im(L), we can explicit the rate of convergence:

Theorem 1.3. Under the assumptions of Theorem 1.2, given some nonnegative

f ∈ Ker(L)⊕ Im(L),

then for any c ∈ (0, 1),

‖V (t)f − ̺f M‖X = O
(
ϑ−1
log(ct)

)
as t → ∞

where ϑ−1
log is the inverse of the increasing mapping ϑlog : r > 0 7→ ϑ(r) log

(
1 + ϑ(r)

r

)
and

ϑ(r) =
1

r

1

1− Σmax√
r2+Σ2

max

, Σmax = sup
v∈Rd

Σ(v).

In particular, for any ε > 0, there exists C = C(f, ε) > 0 such that

‖V (t)f − ̺fM‖X 6 C (1 + t)−
1

3+ε ∀t > 0.

Again, the above result asserts that (1.1) is well-posed in the semigroup sense and that the
associated solutions converge towards the unique equilibrium with same mass as the initial
datum. The proof of the above result is a consequence of a general result concerning the strong
convergence to ergodic projection for perturbed substochastic semigroups [25]. Notice that such
a result relies on the so-called “0-2” law for C0-semigroups by G. Greiner [1, p. 346] for the non-
quantitative version (1.12). To get a quantitative convergence rate, we resort to recent results
about non-exponential convergence rate for semigroups [11] related to Ingham’s theorem (see
also [3, 4]). Notice that, because of the absence of a spectral gap for L, we do not expect any
exponential relaxation to equilibrium.

1.3. Related literature. As already mentioned, we investigate here both the cases of hard and
soft potentials. As well-documented, at least in an Hilbert setting, these two cases exhibit very
different behaviour and usually require different methods of investigation. Let us describe here
the known results regarding the large time behavior of solutions to (1.1). A first general com-
ment is that, due to its paramount importance for the study of close-to-equilibrium solutions
to the nonlinear Boltzmann equation, the linearized Boltzmann equation received much more
attention than the linear one. Let us recall here that the operator associated to the linearized
Boltzmann equation is given by

L f = Q(f,M) +Q(M, f)

whereas we recall that Lf = Q(f,M). One sees in particular that both the operators are ex-
pected to share many spectral properties. However, two very important differences have to be
emphasised:



7

(1) First, while the linear operator L admits a single equilibrium state with unit mass given
by M, the linearized operator L is such that

L (M) = L (vi M) = L (|v|2 M) = 0, ∀i = 1, . . . , d.

This means that, in any reasonable functional space, 0 is a simple eigenvalue of L with
Ker(L) = span(M) while the kernel of L is d+ 2-dimensional:

Ker(L ) = span{M vi M |v|2 M ; i = 1, . . . , d}.
(2) Second and more important for the analysis we shall perform here, the semigroup asso-

ciated to the linear Boltzmann operator L is positive whereas the one associated to L

is not. This is very natural from the physical point of view since equation (1.1) is aimed
to describe the evolution particles interacting with an host medium while the evolu-
tion equation associated to L aims to describe the fluctuation around the equilibrium of
the solution to the nonlinear Boltzmann equation. As already said, we will take much
benefit of the fact that the semigroup generated by L is positive.

Let us now describe in more details the existing results devoted to the large time behaviour
of solution to (1.1). We shall distinguish here the two cases of hard and soft potentials.

• As far as hard potentials are concerned, it is by now well understood that, in the Hibert
space

H = L2(Rd,M−1(v)dv) (1.13)
the linear Boltzmann operator (with its natural domain) is negative, self-adjoint. This means
that

E (f, f) := −
∫

Rd

f Lf M−1dv > 0 ∀f ∈ D(L) ⊂ H.

Moreover, 0 is a simple eigenvalue associated to the eigenfunction M and there exists λ2 > 0
such that

E (f, f) > λ2‖f‖H ∀f ∈ D(L), f⊥M
where of course the orthogonality is meant with respect to the natural inner product of H.

Clearly, this proves that L admits a spectral gap in H of size at least λ2. Since L is self-adjoint
in H, this spectral result for the generator L translates “for free” to the associated C0-semigroup
(exp(tL))t>0 yielding an exponential trend to equilibrium with rate exp(−λ2t). The first proof of
such a result can be traced back to D. Hilbert himself [15]. General proof of such an exponential
trend to equilibrium are available in the literature. Historically, the first proof is based upon
Weyl’s Theorem and consists in showing that the non-local operator K is a compact perturbation
of the multiplication operator T , ensuring that the essential spectrum of L coincide with that
of T (see [13, 15]). Only recently, such an approach has been made quantitative and explicit
estimate of the spectral gap λ2 have been provided [21] for hard-spheres interactions.

The above approach seems at first sight purely hilbertian and not well-adapted to the study
of (1.1) in spaces of physical interest like L1-spaces. In such spaces indeed, the problem has re-
ceived much less attention. We mention here the seminal work of Suhadolc [28] who introduced
the spectral study of L for hard-spheres interactions in weighted spaces like

L1(Rd, exp(α|v|2)dv).
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In particular, it can be proven then that, in such a space, L is the generator of a positive semi-
group. More recently, a careful study of the linearized Boltzmann operator has been performed in
weighted L1-spaces with stretched exponential weights [23]. Such an approach is based upon
the knowledge of the spectral properties of the linearized operator in the Hilbert space H com-
bined with recent results concerning the stability of the spectrum in enlarged functional spaces
[14]. This approach has been applied recently for the linear Boltzmann operator with hard-
spheres interactions in [6] and provides quantitative estimates of the spectral gap in weighted
L1-spaces. Such results are presented in the Appendix B of the paper for the sake of com-
pleteness. We also mention the recent result [7] in which the exponential convergence of the
solutions to (1.1) is measured in relative entropy and an explicit convergence rate is provided by
means of entropy/entropy production estimate.

• The linear Boltzmann equation associated to cut-off soft potentials received much less at-
tention. In the seminal paper [9], the linearized operator has been studied in the space H defined
by (1.13). Adapting the argument of [9] to the linear operator L, one checks easily that, in this
case, the linear operator L is still self-adjoint and negative in H but then its continuous spec-
trum extends to the origin so that L has no spectral gap in the space H. It is then clear that, at
the semigroup level, no exponential convergence towards equilibrium can occur. We mention
here that, in [9], almost exponential convergence to equlibrium is obtained for the linearized
Boltzmann for initial datum belonging to the subspace of H made of functions bounded above
by some suitable Maxwellian (see Remark 4.7 for more details). Let us mention here that, using
argument similar to those of Theorem 1.3, it is possible to obtain algebraic rate of convergence
(like t−1) for the linear Boltzmann operator in the space H (see Remark 4.7). To our knowledge,
the only convergence results available for the linear Boltzmann equation are all based upon en-
tropy inequalities [27] and consists in showing that, since the relative entropy (with respect to
the equilibrium solution M) is continuously decreasing along the solutions to (1.1) and since
M is the only equilibrium solution (with unit mass), a variant of classical LaSalle invariance
principle implies the convergence of f(t, v) towards M. Such an approach requires at least that
the initial state f0 is of finite relative entropy, i.e.

∫

Rd

f0(v) log

(
f0(v)

M(v)

)
dv < ∞ (1.14)

which, roughly speaking, would correspond to convergence of f(t, v) in some suitable Orlicz-
space L logL.

1.4. Organization of the paper. After this long introduction, the paper is organized as follows.
Section 2 contains all the material from semigroup theory and spectral analysis needed for the
rest of the paper. The results presented there are not new but maybe some of them are not
very well-known in the kinetic community. We emphasise in particular the crucial role played
by positivity in our analysis. Section 3 is devoted to the study of the linear BE in the case of
hard potentials and is culminating with the proof of Theorem 1.1 following the above steps
i)–iii) here above. Section 4 deals with the convergence result for soft potential interactions
and provides the proof of Theorem 1.2. In Appendix A, we derive the expression of the kernel
kB(v,w) for various type of interactions B as well as several of their important properties. The
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material of this Appendix is the basic toolbox for the proof of the weak compactness of K used
in the proof of Theorem 1.1. Finally, in Appendix B, we provide some quantitative estimates of
the spectral gap λ∗ appearing in Theorem 1.1 using some of the results established recently in
[6] which use the enlargement and factorisation techniques of [14].

2. REMINDER ABOUT POSITIVE SEMIGROUPS IN L1-SPACES

We review here some known result about the asymptotic properties of stochastic semigroups
as t → ∞ in L1-spaces. We will focus here only on the asymptotic stability of positive semi-
groups, i.e. the convergence towards equilibrium density. For such questions, one should distin-
guish between two important cases: a first one for which the existence of spectral gap implies
exponential convergence towards equilibrium; a second one in which the generator does not ex-
hibit a spectral which is related to ergodic theorem. We begin with general properties of positive
semigroups in L1-spaces.

2.1. Spectral properties of semigroups in L1. Let us consider a Borel measure µ over some
given space Ω and let X = L1(Ω,dµ). Given a nonnegative mapping

M : Ω → R

the multiplication operator
A : D(A) ⊂ X → X

defined by

Af(x) = −M(x)f(x) for any f ∈ D(A) = {f ∈ X ; Mf ∈ X}
is the generator of a positive C0-semigroup (U(t))t>0 in X given by

[U(t)f ](x) = exp(−M(x)t)f(x) ∀t > 0.

Remark 2.1. The semigroup is positive in the sense that it preserves the positive cone of X, i.e.
f ∈ X, f > 0 µ-a.e. implies U(t)f > 0 µ-a.e.

Remark 2.2. Notice that, if equipped with the graph norm ‖f‖A := ‖f‖+ ‖Af‖, the space D(A)
can be identified with L1(Ω, (1 +M(x))dµ(x)).

General result about semigroup theory ensures that, as a multiplication operator, the spec-
trum of A is given by the so-called essential range of −M , i.e.

S(A) = {λ ∈ C ; µ ({x ∈ Ω , |λ+M(x)| < ε}) 6= 0∀ε > 0}
and, if M(·) is continuous, one actually has

S(A) = Range(−M) ⊂ R−.

Since, for any t > 0, U(t) is also a multiplication operator, its spectrum is given by the essential
range of exp(−M(·)t) and, in particular,

S(U(t)) = exp (S(A)t) ∀t > 0

where the closure is meant of course in C. In particular, if we define

M0 := µ− ess-infx∈ΩM(x),
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then, then one has
S(A) ⊂ (−∞,−M0]

and the type of the semigroup (U(t))t>0 is less than −M0. Recall the type of a semigroup
(U(t))t>0 is defined as

ω0(U) = inf{ω ∈ R , ∃C > 1 ‖U(t)‖ 6 C exp(ωt) ∀t > 0}.
A fundamental property of positive semigroups in L1-spaces is the following (see [12])

Proposition 2.3. If X = L1(Ω, µ) and (S(t))t>0 is a positive C0-semigroup of X then its type
coincide with the spectral bound of its generator G, i.e.

ω0(S) = s(G).

Let us consider now the influence of unbounded perturbations. Namely, consider now a
positive (integral) operator B : D(A) ⊂ X → X and assume that, for any λ > −M0,

BR(λ,A) : X → X is a weakly compact operator in X

where R(λ,A) = (λ − A)−1 is the resolvent of A which exists at least for λ > −M0. In such
a case, even if B is not a bounded operator, one knows ’for free’ that the sum A + B is the
generator of a positive C0-semigroup in X. Precisely, one has:

Theorem 2.4. [24, Theorem 6] If B is a positive operator such that BR(λ,A) is a weakly compact
operator in X then, T = A+B (with domain D(A)) is the generator of a C0-semigroup (V (t))t>0

in X. Moreover, the essential spectrum of (V (t))t>0 is such that

Sess(U(t)) = Sess(V (t)) ∀t > 0

where we adopted here the notion of essential spectrum due to Schechter.

Remark 2.5. Since X is an L1-spaces, for an (un)bounded operator T : D(T ) ⊂ X → X
the essential spectrum of S is exactly the part of the spectrum left invariant by weakly-compact
operators, i.e.

Sess(T ) =
⋂

K∈W (X)

S(T +K)

where W (X) is the ideal of B(X) made of the weakly compact operators in X. We refer to [17]
for more details on that matter.

Remark 2.6. The semigroup (V (t))t>0 in the above theorem is given by a Dyson-Phillips series

V (t) =

∞∑

j=0

Uj(t), t > 0

where U0(t) = U(t) is the unperturbed semigroup and, for any j > 0,

Uj+1(t) =

∫ t

0
Uj(t− s)BU0(s)ds. (2.1)
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Remark 2.7. Since B is a weakly-compact perturbation of A, one has Sess(B) = Sess(A) ⊂
(−∞,−M0] and

S(B) ⊂ (−∞,−η] ∪ {λk}k
where (λk)k is a sequence of eigenvalues of B (maybe finite or empty). In particular, exp(λkt) is an
eigenvalue of V (t) for any t > 0 and any k.

2.2. Exponential trend to equilibrium in presence of a spectral gap. We begin here with a
general result which holds for any C0-semigroup in some Banach space X.

Theorem 2.8. [12, Theorem 3.7, Chapter V] Let (V (t))t>0 be a C0-semigroup with generator A
in some Banach space X such that

ωess(V ) < 0

where ωess(V ) denotes the essential type of (V (t))t>0. Then the set {λ ∈ S(A) ; Reλ > 0} is finite
(or empty) and consists of isolated eigenvalues λ1, . . . , λm of A with finite algebraic multiplicity. If
P1, . . . ,Pm denote the corresponding spectral projections and k1, . . . , km the corresponding orders
of poles of R(·, T ) then

V (t) = V1(t) + . . . + Vm(t) +Rm(t), t > 0 (2.2)

where

Vn(t) = exp(λnt)

kn−1∑

j=0

tj

j!
(A− λn)

j
Pn n = 1, . . . ,m

and there exists δ > 0 and C > 1 such that

‖Rm(t)‖B(X) 6 C exp(−δt) ∀t > 0.

The above result is important in particular when the above set {λ ∈ S(A) ; Reλ > 0} re-
duces to a singleton λ1 which becomes then the dominant eigenvalue of T . In such a case, the
conclusion reads

‖V (t)− V1(t)‖ 6 C exp(−δt) ∀t > 0.

If moreover λ1 is a simple eigenvalue, i.e. k1 = 1, then the rescaled semigroup exp(−λ1t)V (t)
converges exponentially fast towards a rank-one projection. Sufficient conditions for this to
holds are explicit whenever X is a Banach lattice and when the C0-semigroup (V (t))t>0 is posi-
tive. For simplicity, we state here our result in the case in which X is some L1-space:

Proposition 2.9. Assume X = L1(Ω, µ) where (Ω,F) is a measure space and µ a given mea-
sure over (Ω,F). Let (V (t))t>0 be a positive C0-semigroup with generator A in X satisfying the
assumption of Theorem 2.8. Then, there exists ε > 0,

S(A) ∩ {z ∈ C ; Rez > s(A)− ε} = {s(A)}

where s(A) is an isolated eigenvalue of A with finite algebraic multiplicity k1 and the splitting (2.2)
holds for m = 1 and any s(A)− ε < δ < s(A).
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Again, the above can be made more precise if the semigroup is irreducible. We recall that, in
L1(Ω, µ), a C0-semigroup (V (t))t>0 is said to be irreducible if, given f ∈ X, φ ∈ X⋆, f, φ > 0
µ-a. e., then there exists t0 > 0 such that

〈V (t0)f , φ〉X,X⋆ > 0

where 〈·, ·〉X,X⋆ denotes the duality bracket between X and its dual space X⋆ = L∞(Ω, µ).
One has then the following:

Proposition 2.10. [1, C.III. Proposition 3.5, p. 310] Assume X = L1(Ω, µ) where (Ω,F) is a
measure space and µ a given measure over (Ω,F). Let (V (t))t>0 be a irreducible C0-semigroup
with generator A in X. Then the following holds

(1) Every positive eigenvector f of A is a quasi-interior point, i.e. f > 0 µ-a. e.
(2) Every positive eigenvector of the adjoint A⋆ is strictly positive.
(3) If Ker(s(A)−A⋆) contains a positive eigenelement, then dim(Ker(s(A)−A)) 6 1.
(4) If s(A) is a pole of the resolvent of A, then it has algebraic multiplicity one. The correspond-

ing spectral projection is then of the form Π = φ⊗ f where φ ∈ X⋆ is a positive eigenvector
of A⋆, f ∈ X is a positive eigenvector of A and 〈u, φ〉X,X⋆ = 1.

Remark 2.11. Notice that, if (V (t))t>0 is irreducible with generator A, then there exists κ > 0 such
that

{λ ∈ S(A) ; Reλ = s(A)} = s(A) + κ iZ.

We refer to [12, Theorem 1.12, Chapter VI] for further details.

2.3. Convergence to equilibrium without spectral gap. In the above section, we described
the situation in which the generator of the semigroup admits a spectral gap and its consequences
on the exponential convergence. In this section, we describe a completely different situation in
which no spectral gap estimate is available. In such a case, we do not expect the semigroup to
converge exponentially to some “equilibrium”. We present here some recent result, due to the
second author, which provides in L1-spaces sufficient condition for the semigroup to converge
as time goes to infinity in absence of spectral gap. Such result will be then applied to the BE for
soft potential in the last part of the paper.

Theorem 2.12. Let (U(t))t>0 be a substochastic C0-semigroup in L1(Ω, µ) with generator A and
let

B : D(A) → L1(Ω,dµ)

be positive and satisfy

lim
λ→+∞

rσ
(
B(λ−A)−1

)
< 1 and

∫

Ω
Af +Bfdµ 6 0 ∀f ∈ D(B) ; f > 0

where rσ(·) denotes the spectral radius. Let (V (t))t>0 be the substochastic C0-semigroup generated
by

T = A+B : D(T ) = D(A) → L1(Ω,dµ).

We assume that (V (t))t>0 is irreducible and that Ker(T ) 6= {0}. If

lim
t→0

‖U(t)f‖L1(Ω,µ) = 0 ∀f ∈ L1(Ω, µ)
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and if there exists m ∈ N such that the mapping

t > 0 7→ Rm(t) =

∞∑

j=m

Uj(t) ∈ B(L1(Ω,dµ))

is continuous in operator norm (where (Uj(t))j has been defined in (2.1)), then

lim
t>0

V (t)f = Pf

where P denotes the ergodic projection on Ker(A).

Remark 2.13. Recall that, under the above hypothesis, Ker(A) = span(ϕ) is one dimensional with
ϕ > 0, Ker(A∗) = span(ϕ∗) is one dimensional where A∗ denotes the adjoint of A and ϕ∗ > 0. In
such a case, the C0-semigroup (V (t))t>0 is mean ergodic with ergodic projection P given by

Pf =

(∫

Ω
ϕ∗ fdµ

)
ϕ ∀f ∈ L1(Ω,dµ)

where ϕ∗ and ϕ are chosen such that
∫
Ω ϕ∗ ϕdµ = 1 (see [25] for details).

3. EXPONENTIAL TREND TO EQUILIBRIUM FOR HARD POTENTIALS

We consider in this section the case of hard-potentials and aim to prove Theorem 1.1. We
recall that we shall consider here a positive weight function m = m(v) such that m−1(v) > 1 for
any v ∈ R

d and will work in the space

X = L1(m−1(v)dv).

The typical weights we shall consider are exponential weights given by (1.10) and algebraic
weights given by (1.11).

Since we are interested here in the properties of the linear BE in the space X for hard potential
interactions, we shall consider the collision interactions

B(v − v∗, σ) = |v − v∗|γ b(cos θ), cos θ =

〈
v − v∗
|v − v∗|

;n

〉

with b nonnegative satisfying the cut-off assumption (1.6) and moreover γ > 0. Introduce then

Y = Yγ = L1
(
R
d ; (1 + |v|)γ m−1(v)dv

)
⊂ X

and let
Tf(v) = Σ(v)f(v), D(T ) = {f ∈ X ; Σf ∈ X} = Yγ .

Clearly, T generates a C0-semigroup (U(t))t>0 in X defined by

U(t)f(v) = exp(−Σ(v)t)f(v) t > 0, f ∈ X.

The linear Boltzmann operator is then defined as

Lf(v) = Kf(v)− Σ(v)f(v) = (K + T ) f(v), ∀f ∈ D(T )

where the gain part K is given by (1.7).
A first very important observation is the following:
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Lemma 3.1. The linear operator K depends continuously on b ∈ L1(Sd−1): more precisely, if

(bn)n ⊂ L1(Sd−1) is a sequence of kernels such that

lim
n→∞

‖bn − b‖L1(Sd−1) = lim
n→∞

∫

Sd−1

|bn(cos θ)− b(θ)|dσ = 0

then

lim
n→∞

‖Kn −K‖B(Y,X) = 0

where (Kn)n is the sequence of collision operators associated to (bn)n.

Proof. The proof relies on standard computations for the Boltzmann operator (see for instance
[23, Proposition 2.1] for similar considerations). Let γ > 0 be given and let (bn)n ⊂ L1(Sd−1)
be given. Using the explicit expression (1.7), for any n ∈ N and any f ∈ Y it holds

‖Knf −Kf‖X 6

∫

R2d×Sd−1

|B(v − v∗, σ)−Bn(v − v∗, σ)| |f(v′)|M(v′∗)m
−1(v)dvdv∗dσ

where we set Bn(v − v∗, σ) = |v − v∗|γbn(cos θ), B(v − v∗, σ) = |v − v|γb(cos θ). Using the pre-
post collisional change of variables (v′, v′∗, σ) → (v, v∗, σ) (see [29, Chapter 1, Section 4.5]), we
obtain

‖Knf −Kf‖X 6

∫

R2d×Sd−1

|B(v − v∗, σ)−Bn(v − v∗, σ)| |f(v)|M(v∗)m
−1(v′)dvdv∗dσ

=

∫

R2d

|bn(cos θ)− b(cos θ)| |v − v∗|γ |f(v)|M(v∗)m
−1(v′)dvdv∗dσ

6

∫

Rd

(1 + |v|)γ |f(v)|dv
∫

Rd

M(v∗)(1 + |v∗|)γdv∗
∫

Sd−1

|bn(cos θ)− b(cos θ)| m−1(v′)dσ

where we used that |v − v∗|γ 6 (1 + |v|)γ(1 + |v∗|)γ for any v, v∗ ∈ R
2d.

Now, if m is an exponential weight of type (1.10), since |v′|s = (|v′|2)s/2 6 (|v′|2+ |v′∗|2)s/2) =
(|v|2 + |v∗|2)s/2 6 |v|s + |v∗|s for any v, v∗, σ, we get that

m−1(v′) 6 m−1(v)m−1(v∗) ∀v, v∗, σ ∈ R
2d × S

d−1

to that the above inequality reads

‖Knf −Kf‖X 6 ‖bn − b‖L1(Sd−1)

∫

Rd

(1 + |v|)γ |f(v)|m−1(v) dv

∫

Rd

M(v∗)(1 + |v∗|)γm−1(v∗) dv∗

and, since
∫

Rd

M(v∗)(1 + |v∗|)γm−1(v∗) dv∗ = C(m) < ∞ we get that

‖Knf −Kf‖X 6 C(m)‖bn − b‖L1(Sd−1) ‖f‖Y ∀f ∈ Y

which proves the result.
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If the weight m is an algebraic weight of type (1.11), as above we see that, for any v, v∗, σ ∈
R
2d × S

d−1,

m−1(v′) = 1 + |v′|β 6 1 +
(
|v|2 + |v∗|2

)β/2
6 1 + 2β/2−1

(
|v|β + |v∗|β

)

so that
m−1(v′) 6 Cβ m

−1(v)m−1(v∗)

with Cβ = max(1, 2β/2−1). One concludes as above that

‖Knf −Kf‖X 6 C(β)‖bn − b‖L1(Sd−1) ‖f‖Y ∀f ∈ Y

for some positive constant C(β) depending only on β. �

Remark 3.2. As we shall see later on, since the angular collision kernel maybe approximated by
some sequence of bounded kernels over Sd−1, to investigate the weak-compactness properties of K,
it will be enough to assume b to be bounded.

For simplicity, we denote Kγ the gain part associated to the variable hard-spheres collision
kernel Bγ(v − v∗, σ) = |v − v∗|γ , i.e.

Kγf(v) =

∫

Rd×Sd−1

|v − v∗|γf(v′)M(v′∗)dv∗dσ ∀f ∈ Y

and, clearly, for any nonnegative f , one sees that

Kf(v) 6 ‖b‖L∞Kγf(v) ∀v ∈ R
d.

One has the following fundamental result

Proposition 3.3. If the weight function m are given by (1.10) or (1.11) then, for any γ ∈ [0, d−2],

Kγ : Y → X

is a positive weakly-compact operator.

Proof. Recall that (see Appendix A)

Kγf(v) =

∫

Rd

kγ(v,w)f(w)dw

where kγ(v,w) 6 |v − w|γ−(d−2)kd−2(v,w) and

kd−2(v,w) = C|v − w|−1 exp

(
−1

8

[
|v − w|+ |v| − |w|

|v − w|

]2)
∀v,w ∈ R

d × R
d.

Let us prove the weak compactness property. Let dν(v) = m−1(v)dv and let B be the unit ball
of Y. Since X = L1(dν), according to Dunford-Pettis Theorem, the weak compactness of Kd−2

amounts to prove that

sup
f∈B

∫

A
|Kγf(v)| dν(v) −→ 0 as ν(A) → 0 (3.1)
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and

sup
f∈B

∫

|v|>r
|Kγf(v)| dν(v) −→ 0 as r → ∞. (3.2)

Using the representation of Kγ as an integral operator, it is easy to check that (3.1) and (3.2)
will follow if one is able prove that

sup
w∈Rd

m(w)

(1 + |w|)γ
∫

A
kγ(v,w)m

−1(v)dv −→ 0 as ν(A) → 0 (3.3)

and

sup
w∈Rd

m(w)

(1 + |w|)γ
∫

|v|>r
kγ(v,w)m

−1(v)dv −→ 0 as r → ∞. (3.4)

Let us prove (3.3). Let A ⊂ R
d be a given Borel subset and let w ∈ R

d be fixed. Let Bw = {v ∈
R
d , |v − w| < 1}. Since kγ(v,w) 6 C|v −w|γ+1−d one has
∫

A
kγ(v,w)m

−1(v)dv 6 C

∫

A
|v − w|γ+1−ddν(v)

= C

(∫

A∩Bw

|v − w|γ+1−ddν(v) +

∫

A∩Bc
w

|v −w|γ+1−ddν(v)

)
.

Clearly, since γ + 1− d 6 −1
∫

A∩Bc
w

|v − w|γ+1−ddν(v) 6 ν(A)

while, for any p > 1, 1/q + 1/p = 1, one has
∫

A∩Bw

|v − w|γ+1−ddν(v) 6

(∫

A∩Bw

dν(v)

)1/q (∫

A∩Bw

|v − w|p(γ+1−d)m−1(v)dv

)1/p

.

Now, if m(v) = exp(−a|v|s) for a > 0 and s ∈ (0, 1), one gets that

m−1(v) 6 m−1(w) exp(a|v − w|s) 6 exp(a)m−1(w) ∀w ∈ R
d, ∀v ∈ Bw

while, for algebraic weights, i.e. if m(v) = (1 + |v|)−β , β > 0 then

m−1(v) = (1 + |v − w + w|β) 6 1 + 2β−1|v − w|β + 2β−1|w|
6 (1 + 2β−1)(1 + |w|β) ∀w ∈ R

d, v ∈ Bw.

One sees from this that, in both cases, there exists some positive constant C > 0 such that
∫

A∩Bw

|v − w|p(γ+1−d)m−1(v)dv 6 C m−1(w)

∫

Bw

|v − w|p(γ+1−d)dv.

Choosing now 1 6 p < d
d−γ−1 , one sees that
∫

Bw

|v − w|p(γ+1−d)dv = |Sd−1|
∫ 1

0

d̺

̺1−d−p(1+γ−d)
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is finite and is independent of w. Thus, there exists C = C(p) > 0 such that
∫

A
kγ(v,w)m

−1(v)dv 6 C
(
m

− 1

p (w)ν(A)1/q + ν(A)
)

∀w ∈ R
3.

Since p > 1, this proves that (3.3) holds true. Let us now prove (3.4). One first notices that

sup
|w|6r/2

m(w)

(1 + |w|)γ
∫

|v|>r
kγ(v,w)m

−1(v)dv −→ 0 as r → ∞. (3.5)

Indeed, one notices that

kγ(v,w) 6 C |v − w|γ+1−d exp

(
1

4

[
|w|2 − |v|2

])

with γ + 1− d 6 −1. Therefore, if |w| 6 r/2 and |v| > r, one gets

kγ(v,w) 6 C
(r
2

)γ+1−d
exp

(
− 3

16 |v|
2
)

where we used that |v| > 2|w|. Then, (3.5) follows easily since, in both the considered cases,
∫

Rd

exp
(
− 3

16 |v|
2
)
dν(v) < ∞.

Consequently, to prove (3.4), it is enough to show that

sup
|w|>r/2

m(w)

(1 + |w|)γ
∫

|v|>r
kγ(v,w)m

−1(v)dv −→ 0 as r → ∞. (3.6)

According to Proposition A.1, for both the considered weights, there exist C0 > 0 and α > 0
such that ∫

Rd

kγ(v,w)m
−1(v)dv 6 C0

(
1 + |w|γ−α

)
m−1(w)

with α = s if m(v) = exp(−a|v|s) s ∈ (0, 1] or α = 2 if m(v) = (1 + |v|−β), β > 0. Therefore, for
any r > 0,

m(w)

(1 + |w|)γ
∫

|v|>r
kγ(v,w)m

−1(v)dv 6 C0
1 + |w|γ−α

(1 + |w|)γ

and (3.6) follows since sup|w|>r/2

1 + |w|γ−α

(1 + |w|)γ → 0 as r → ∞. This achieves to prove that Kγ :

Y → X is weakly-compact. �

Remark 3.4. Notice that the above result does not hold true without weight m−1 (i.e. if a = 0 or
β = 0). Indeed, it is shown in [20, Proposition 3.22] that

Kd−2 : L1(Rd; (1 + |v|)dv) → L1(Rd; dv)

is not weakly compact. The same method shows that actually, Kγ is not weakly compact for γ ∈
[0, d − 2]. Notice that, in the absence of weight, it is (3.6) which is violated while (3.3) and (3.5)
still hold true.
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Remark 3.5. Notice also that almost all the above computations are still valid for γ < 0. In
particular, (3.5) and (3.3) still hold true for −d 6 γ < 0. However, the final argument in our proof
does not hold true for γ < 0, since clearly

lim
r→∞

sup
|w|>r/2

1 + |w|γ−α

(1 + |w|)γ = ∞.

Corollary 3.6. For any γ ∈ (0, d − 2] and any b(·) ∈ L1(Sd−1), let K denote the collision operator
associated to B(v − v∗, σ) = |v − v∗|γb(cos θ) defined by (1.7). Then

KR(λ, T ) : X → X

is positive and weakly compact for any λ > 0.

Proof. The fact that KR(λ, T ) is positive is obvious. Given λ > 0, the range of R(λ, T ) is Y and
one has to prove that

K : Y → X is weakly-compact.

Let (bn)n be a sequence of angular kernel such that bn ∈ L∞(Sd−1) and ‖bn − b‖L1(Sd−1) → 0 as
n → ∞ and let (Kn)n be the sequence of collision operator associated to (bn)n. According to
Lemma 3.1, limn ‖Kn −K‖B(Y,X) = 0. In particular, if Kn is weakly compact for any n ∈ N, so
is K. It suffices therefore to prove that K : Y → X is weakly-compact whenever b ∈ L∞(Sd−1).
Now, for b ∈ L∞(Sd−1), one clearly has

Kf(v) 6 ‖b‖L∞(Sd−1)Kγf(v) ∀v ∈ R
d, ∀f ∈ Y, f > 0,

i.e. K is dominated by the operator ‖b‖L∞(Sd−1)Kγ . By Dunford-Pettis Theorem, the weak com-
pactness of Kγ given by Proposition 3.3 ensures that of K. �

From now on, we shall always consider that the angular kernel b ∈ L1(Sd−1).
According to the previous Proposition, Theorem 2.4 applies to this case yielding the following

Theorem 3.7. If the weight function is given by (1.10) or (1.11), then, for any γ ∈ [0, d − 2], the
linear Boltzmann operator (L,D(L)) with D(L) = Y is the generator of a positive C0-semigroup
(V (t))t>0 on X with moreover

Sess(V (t)) = Sess(U(t)) ∀t > 0.

Remark 3.8. Notice that the spectrum S(T ) of T in X is given by

S(T ) = Range(−Σ) = (−∞,−η]

where η = ess− infv∈RdΣ(v) > 0 is explicit. Moreover, the essential spectrum of (L,D(L)) is then

Sess(L) = Sess(T ) ⊂ (−∞,−η]

and S(L) = Sess(T )
⋃{λk}k>1 where (λk)k are eigenvalues of (L,D(L)) with finite algebraic

multiplicities.
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Remark 3.9. Notice that, since the kernel k(·, ·) is positive:

k(v,w) > 0 for a. e. v,w ∈ R
d × R

d

the semigroup (V (t))t>0 generated by (L,D(L)) is irreducible in X. Actually, if f ∈ X, f > 0,

f 6= 0, then [V (t)f ](v) > 0 for a. e. v ∈ R
d. Indeed, the semigroup being given by a Dyson-Phillips

expansion series

V (t)f =

∞∑

n=0

Vn(t)

where V0(t) = U(t) and Vn+1(t)f =
∫ t
0 Vn(t− s)KU(s)fds for any f ∈ X. Since the kernel k(·, ·)

is positive, it is easy to check that [Vn(t)f ](v) > 0 for a. e. v ∈ R
d if f ∈ X, f > 0 non identically

equal to zero.

Notice that 0 is a simple eigenvalue of L with eigen-space spanned by M. In particular, the
spectral bound s(L) is such that s(L) > 0. Finally, using Proposition 2.3 one has

Proposition 3.10. The type ω0(V ) of the C0-semigroup (V (t))t>0 is zero, i.e.

ω0(V ) = s(L) = 0.

Proof. Let 〈·; ·〉X,X⋆ denotes the duality bracket between X and the dual space X
⋆. Now, since

ωess(V ) < 0 6 s(L), one knows (see Remark 3.8) that s(L) is an isolated eigenvalue of L with
finite algebraic multiplicity. According to Proposition 2.10, since the C0-semigroup (V (t))t>0 is
irreducible, s(L) is also an eigenvalue of the adjoint operator L⋆ in X

⋆ associated to a positive

eigenfunction g⋆, g⋆(v) > 0 for a.e. v ∈ R
d. Then, since L(M) = 0, one has

0 = 〈L(M) ; g⋆〉
X,X⋆ = 〈M ; L⋆(g⋆)〉

X,X⋆ = s(L) 〈M ; g⋆〉
X,X⋆

and, since both g⋆ and M are positive, one has 〈M ; g⋆〉
X,X⋆ > 0 from which necessarily

s(L) = 0. The conclusion follows from the well-know fact that, being the C0-semigroup (V (t))t>0

positive, one has ω0(V ) = s(L). �

Remark 3.11. In the above proof, we used the fact that s(L) is an eigenvalue of the adjoint operator
(L⋆,D(L⋆)) associated to a positive eigenfunction g⋆. Actually, thanks to the conservative properties
of L one can now be more precise. Namely, one notices that

∫

Rd

Lf(v)dv = 0 ∀f ∈ D(L). (3.7)

In particular, with the notations of the above proof, one deduces that

〈Lf ; m〉
X,X⋆ = 〈f ; L⋆m〉

X,X⋆ =

∫

Rd

Lf(v)dv = 0 ∀f ∈ D(L).

In particular, L⋆ m = 0 and s(L) = 0 is an eigenvalue of the adjoint operator (L⋆,D(L⋆)) associated
to the eigenfunction g⋆ = m. Moreover, using again Proposition 2.10, the spectral projection Π0

associated to the eigenvalue s(L) = 0 of L is given by Π0 = m⊗M, i.e.

Π0f = 〈f,m〉X,X⋆M = ̺fM ; with ̺f =

∫

Rd

f(v)dv ; ∀f ∈ X. (3.8)
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We are in position to prove Theorem 1.1

Proof of Theorem 1.1. The fact that L is the generator of a positive semigroup in X has been
already proven in Theorem 3.7 so we focus here only on the large time behaviour of (V (t))t>0.
Combining Theorem 3.7 with Proposition 3.10, one has

ωess(V ) = ωess(U) 6 −η < 0 = ω0(V ) = s(L).

We get therefore the conclusion using Proposition 2.9, Theorem 2.8 together with the expression
of Π0 given by (3.8). �

4. CONVERGENCE TO EQUILIBRIUM FOR LINEAR BE WITH SOFT POTENTIALS

We investigate in this section the case of soft potentials. Our analysis is performed in the
“unweighted” space

X = L1(Rd,dv)

since we shall apply results pertaining to the “substochastic theory” of semigroups. We recall
here that, in such a case, the collision frequency is bounded by virtue of (1.8). We use the
notations of the previous section. Using again the decomposition

L = K − T

with Tf(v) = Σ(v)f(v), one has D(T ) = X and, consequently, the C0-semigroup (U(t))t>0 in X

defined by

U(t)f(v) = exp(−Σ(v)t)f(v) t > 0, f ∈ X,

is uniformly continuous in the following sense:

lim
t→0+

‖U(t)− I‖L (X) = 0 (4.1)

where L (X) stands for the Banach space of all bounded operators in X endowed with the
uniform operator topology induced by ‖ · ‖L (X) whereas I is the identity operator in X. Indeed,
one checks easily that, for any f ∈ X:

‖U(t)f − f‖X 6

∫

Rd

|exp(−tΣ(v))− 1| |f(v)|dν(v) 6 t

∫

Rd

Σ(v) |f(v)|dν(v) 6 σ2 t‖f‖X,

from which

‖U(t)− I‖L (X) 6 tσ2 ∀t > 0

where σ2 > 0 is the positive constant appearing in (1.8). Then, (4.1) follows. Concerning the
collision operator K, we have the following:

Proposition 4.1. Assume m to be given by (1.10) or (1.11). If γ ∈ (−d, 0] and b ∈ L1(Sd−1) is
nonnegative, then K : X → X is bounded.
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Proof. The proof uses some of the computations made in Lemma 3.1. Namely, given f ∈ X and
γ ∈ (−d, 0], b ∈ L1(Sd−1), one sees that

‖Kf‖X 6

∫

R2d×Sd−1

B(v − v∗, σ) |f(v)|M(v∗)dvdv∗dσ

=

∫

R2d

b(cos θ) |v − v∗|γ |f(v)|M(v∗)dvdv∗dσ.

Therefore, we get

‖Kf‖X 6 ‖b‖L1(Sd−1)

∫

R2d

|f(v)|M(v∗) |v − v∗|γ dv∗dv.

Since it clearly holds that M ∈ Lq(Rd) for any q > 1, one deduces from Hardy-Littlewood-
Sobolev inequality (see [19, Theorem 4.3]) that

∫

R2d

|f(v)|M(v∗) |v − v∗|γ dv∗dv 6 Cd(γ) ‖f‖L1(Rd) ‖M‖Lq(Rd)

with some universal constant Cd(γ) depending only on γ and with q > 1 such that γ/d = 1/q−1.
Thish proves the result. �

With this in hands, one can prove a first non quantitative convergence theorem

Proposition 4.2. If γ ∈ (−d, 0) and b(·) ∈ L1(Sd−1) then L generates a C0-semigroup (V (t))t>0

in X which satisfies

lim
t→∞

‖V (t)f0 − ̺0M‖X = 0

where ̺0 =

∫

Rd

f0(v)dv for any f0 ∈ X.

Proof. Since both T and K are bounded operator, one has L ∈ L (X) and the C0-semigroup
(V (t))t>0 generated by L is uniformly continuous. Since the same holds for the C0-semigroup
(U(t))t>0, defining

R1(t) = V (t)− U(t)

it is clear that the mapping t > 0 7→ R1(t) ∈ L (X) is continuous (with respect to the operator
norm). Since moreover Ker(L) 6= {0} (since M ∈ X and L(M) = 0) and the semigroup
(V (t))t>0 is irreducible, one concludes with Theorem 2.12. �

We can make the above result more precise and provide here a quantitative version of the
above convergence result. Recall that the gain operator K can be written as an integral operator

Kf(v) =

∫

Rd

k(v,w)f(w)dw ∀f ∈ X

for some nonnegative measurable kernel k(v,w) such that

Σ(v) =

∫

Rd

k(w, v)dw ∀v ∈ R
d. (4.2)
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Recalls that Σ ∈ L∞(Rd) and infv Σ(v) = 0. The above identity will play a crucial role in the
proof of the following:

Proposition 4.3. Define the mapping ϑ : R
+ → R

+ by

ϑ(r) :=
1

r

1

1− Σmax√
r2+Σ2

max

(r > 0) (4.3)

where Σmax := supv Σ(v) < ∞. Then, one has

iR \ {0} ⊂ ̺(L)
and

‖R(iα,L)‖
L (X) 6 ϑ (|α|) ∀α ∈ R \ {0}.

Proof. Consider the resolvent equation

λf − Lf = g, g ∈ X, f ∈ D(L) = X

where λ /∈ Range(−Σ) = S(T ) where T is the multiplication operator by −Σ. Since L = K + T
and λ ∈ ̺(T ), such a problem is then equivalent to

φ−KR(λ, T )φ = g

where φ = (λ− T )f . In particular, for such λ, one will get λ ∈ ̺(L) if

‖KR(λ, T )‖
L (X) < 1

and then

φ =

∞∑

n=0

(KR(λ, T ))n g and f =

∞∑

n=0

KR(λ, T ) (KR(λ, T ))n g. (4.4)

Let us now consider λ = iα with α ∈ R, α 6= 0. Then, α /∈ Range(−Σ) and R(iα, T ) is the
multiplication operator by 1

iα+Σ . Consequently,

KR(iα, T )φ =

∫

Rd

k(v,w)

iα+Σ(w)
φ(w)dw ∀φ ∈ X.

Consequently

‖KR(iα, T )φ‖X 6

∫

Rd

dv

∫

Rd

k(v,w)√
α2 +Σ2(w)

|φ(w)| dw

=

∫

Rd

Σ(w)√
α2 +Σ2(w)

|φ(w)|dw

where we used Fubini’s theorem and the identity (4.2). Therefore

‖KR(iα, T )‖
L (X) 6 sup

w

Σ(w)√
α2 +Σ2(w)

=
Σmax√

α2 +Σ2
max

< 1
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since the mapping r > 0 7→ r√
α2+r2

is nondecreasing. Then, iα ∈ ̺(L) and from (4.4), we
deduce that

‖R(iα,L)‖L (X) 6
1

|α|

∞∑

n=0

(
Σmax√

α2 +Σ2
max

)n

=
1

|α|
1

1− Σmax√
α2+Σ2

max

where we used the fact that ‖R(iα, T )‖L (X) = supv |iα + Σ(v)|−1 = |α|−1. This proves the
result. �

Introduce the mapping

ϑlog(r) := ϑ(r) log

(
1 +

ϑ(r)

r

)
r > 0.

Notice that, since ϑ(·) is strictly decreasing with

lim
r→+∞

ϑ(r) = 0, lim
r→0+

ϑ(r) = +∞.

the same holds true for ϑlog(·) and ϑ−1
log : R

+ → R
+ denotes its inverse mapping.

Recall that the C0-semigroup (V (t))t>0 generated by L in X is such that

lim
t→∞

‖V (t)f0 − Pf0‖X = 0

where the projection P is given by

Pf0 =

(∫

Rd

f0(v)dv

)
M for any f0 ∈ X.

Moreover, P is the spectral projection over Ker(L) and, as such, the following holds

X = Ker(L)⊕ Im(L).
Denote then by

Z = Ker(L)⊕ Im(L).
It is easy to check that Z is dense in X and one deduces from the spectral properties of L
established in Proposition 4.3 the following

Theorem 4.4. Assume that f ∈ Z, then, for any c ∈ (0, 1),

‖V (t)f − Pf‖X = O
(
ϑ−1
log(ct)

)
as t → ∞.

Proof. Since its generator L is bounded, the C0-semigroup (V (t))t>0 is analytic and therefore
asymptotically analytic [12]. Then, combining Proposition 4.3 with [11, Corollary 2.12], we
deduce that, for any c ∈ (0, 1)

‖V (t)LR(1,L)‖L (X) = O(ϑ−1
log(c t)) as t → ∞. (4.5)

In particular,
‖V (t)h‖ = O(ϑ−1

log(c t)) as t → ∞
for any h ∈ Im(L) from which we get the result since Pf = V (t)Pf for any t > 0. �
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One easily deduces the following algebraic rate of convergence:

Corollary 4.5. Let f ∈ Z. Then, for any ε > 0, there exists C > 0 such that

‖V (t)f − Pf‖X 6 C (1 + t)−
1

3+ε ∀t > 0. (4.6)

Proof. The proof consists simply in noticing that, since ϑ(r) ≃ 2Σ2
max

r3 whenever r ≃ 0+, for any
ε > 0, there is some universal constant κε > 0 such that

ϑlog(r) 6
κε
r3+ε

for r ≃ 0+.

One deduces from that that

ϑ−1
log(ct) = O(t−

1

3+ε ) for t → ∞
and the result follows. �

Remark 4.6. Notice that the above convergence result, combined with Datko-Pazy’s Theorem shows
in particular that Im(L) is not closed in X. Indeed, if it were closed, we would have Z = X and the
above convergence theorem would imply that for, say p > 4

∫ ∞

0
‖V (t)f − Pf‖p

X
dt < ∞ ∀f ∈ X.

According to Datko-Pazy’s Theorem [12, Theorem V.1.8], the semigroup (V (t)(I− P))t>0 would
then be asymptotically exponentially stable. In particular, the spectrum of its generator L(I− P)
would be contained in {z ∈ C ; Rez 6 −λ∗} for some λ∗ > 0 and 0 would be an isolated eigenvalue
of L. We know that this cannot be the case so Z 6= X.

Remark 4.7. The study of the decay rate of the Boltzmann linearized operator in the hilbert space

H = L2(Rd,M−1(v)dv)

has been performed by R. Caflisch in the seminal paper [9] in the dimension d = 3 for γ ∈ (−1, 0).
The same techniques can be performed for the linear operator L, and, adopting the notations of the
previous result, [9, Theorem 3.1] would read as follows: for any f ∈ H such that

‖f − ̺fM‖∞,a = sup
v∈Rd

exp(a |v|2) |f(v) − ̺fM(v)| < ∞ for some 0 < a <
1

4
(4.7)

there exists C > 0 and λ > 0 (explicit and depending on γ, ‖f‖α) such that

‖V (t)f − ̺fM‖H 6 C ‖f − ̺fM‖∞,a exp
(
−λt

2

2−γ

)
∀t > 0.

Notice that, here again, H splits as H = Ker(L) ⊕ Im(L). One can get rid of the very restrictive
pointwise decay (4.7) using an approach similar to the one we performed for the proof of Theorem
4.4. Indeed, recall that L is self-adjoint in the space H [9]) so that, classical spectral analysis of
self-adjoint operators [12] ensures that

‖R(iα , L)‖L (H) 6
1

|α| ∀α ∈ R \ {0}.
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Then, according to [5, Theorem 1.5], such an estimate is equivalent to

‖V (t)LR(1,L)‖L (H) = O

(
1

t

)
as t → ∞.

Arguing then as in the proof of Theorem 4.4, one conclude that, if f ∈ Ker(L)⊕ Im(L), then there
exists C > 0 such that

‖V (t)f − ̺f M‖H 6
C

1 + t
∀t > 0.

Again, as in Remark 4.6, Im(L) is not closed.

APPENDIX A. COMPUTATION OF THE KERNEL k(v,w)

This section is devoted to the computation of the gain part operator Kγ for the special case
in which the collision kernel is given by

B(v − v∗, σ) = |v − v∗|γ for γ ∈ (−d,∞)

and, in particular, does not depend on the angular cross-section. In such a case,

Kγ =

∫

Rd×Sd−1

|v − v∗|γf(v′)M(v′∗)dv∗dσ.

We aim to prove that Kγ admits the integral representation

Kγf(v) =

∫

Rd

kγ(v,w)f(w)dw.

and shall resort to the so-called Carleman representation to compute the kernel kγ(v,w). Namely,
one considers an alternative parametrization of post-collisional velocities as

v′ = v − 〈v − v∗, n〉n and v′∗ = v∗ + 〈v − v∗, n〉n, n ∈ S
d−1

for which

Kγf(v) =

∫

Rd×Sd−1

B̃(v − v∗, n)f(v
′)M(v′∗)dv∗dn

where

B̃(v − v∗, n) = 2d−2

∣∣∣∣
〈

v − v∗
|v − v∗|

;n

〉∣∣∣∣
d−2

B(v − v∗, σ).

We refer to [29, Chapter 2A. 4] for details. Since |v′ − v| = |〈v − v∗, n〉|, one gets that B̃(v −
v∗, n) = 2d−2 |v′ − v|d−2 |v − v∗|γ−(d−2) and

Kγf(v) = 2d−2

∫

Rd×Sd−1

|v − v∗|γ−(d−2)
∣∣v′ − v

∣∣d−2
f(v′)M(v′∗)dv∗dn.

For fixed n ∈ S
d−1, we perform the change of variables v∗ 7→ u = v∗ − v to get

Kγf(v) = 2d−2

∫

Rd×Sd−1

f(v + 〈u, n〉n)M(v + u− 〈u, n〉n)|u|γ−(d−2) |〈u, n〉|d−2dudn
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and then, setting u = rn+ z, z ⊥ n, r ∈ R, we get

Kγf(v) = 2d−2

∫

R×Sd−1

f(v + rn)|r|d−2drdn

(∫

n⊥

M(v + z) |z + rn|γ−(d−2)dz

)
.

Setting now w = v + rn, dw = 2|r|1−ddrdn, we get

Kγf(v) = 2d−1

∫

Rd

f(w)
dw

|v − w|

(∫

(v−w)⊥
M(v + z) |z + w − v|γ−(d−2)dz

)

i.e.

Kγf(v) =

∫

Rd

kγ(v,w) f(w)dw

with

kγ(v,w) = 2d−1 |v − w|−1

∫

(v−w)⊥
M(v + z) |z + w − v|γ−(d−2)dz.

Let us compute the above kernel in a more precise way. Let v,w ∈ R
d be given. We denote the

center of mass by V =
v + w

2
. Then, for any z ∈ (v − w)⊥, one has

|v + z|2 = |V + z|2 + 1

4
|v − w|2 + 1

2

(
|v|2 − |w|2

)

and, setting V = V0 + V⊥ where V⊥ ⊥ v − w and V0 parallel to (v − w) we get

|V + z|2 = |V0|2 + |V⊥ + z|2 with |V0|2 =
(
|v|2 − |w|2

)2

4|v − w|2

i.e.

|v + z|2 = |V⊥ + z|2 + 1

4

[
|v −w|+ |v|2 − |w|2

|v − w|

]2
.

Therefore

kγ(v,w) = 2d−1(2π)−d/2 |v − w|−1 exp

(
−1

8

[
|v − w|+ |v|2 − |w|2

|v − w|

]2)

∫

(v−w)⊥
exp

(
−|V⊥ + z|2

2

)
|z + w − v|γ−(d−2) dz.

We denote by Iγ(v,w) this last integral:

Iγ(v,w) =

∫

(v−w)⊥
exp

(
−|V⊥ + z|2

2

)
|z + w − v|γ−(d−2) dz

=

∫

(v−w)⊥
exp

(
−|ξ|2

2

)
|V⊥ − ξ + v − w|γ−(d−2) dξ
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where we recall that V⊥ is orthogonal to v−w. One sees in particular that, if γ = d− 2, the last
integral is constant (independent of v,w):

Id−2(v,w) =

∫

Rd−1

exp

(
−|x|2

2

)
dx = (2π)

d−1

2 ,

so that

kd−2(v,w) = 2d−1(2π)−1/2 |v − w|−1 exp

(
−1

8

[
|v − w|+ |v|2 − |w|2

|v −w|

]2)
∀v,w. (A.1)

For general γ 6 d− 2, one notices that, being both V⊥ and ξ orthogonal to v −w:

Iγ(v,w) =

∫

(v−w)⊥
exp

(
−|ξ|2

2

)(
|V⊥ − ξ|2 + |v − w|2

)γ−d+2

2 dξ

so that
Iγ(v,w) 6 |v − w|γ−(d−2)Id−2(v,w) ∀v,w ∀γ 6 d− 2 (A.2)

and
kγ(v,w) 6 |v − w|γ−(d−2)kd−2(v,w) ∀γ 6 d− 2. (A.3)

Such a rough estimate is enough to prove a general property of kγ (already established in [6,
Proposition A.1] in the case of hard-spheres in dimension d = 3):

Proposition A.1. The following holds.

(1) Assume m(v) = exp(−a|v|s), a > 0, s ∈ (0, 1] and set

Hγ(w) =

∫

Rd

kγ(v,w)m
−1(v)dv, w ∈ R

d, γ 6 d− 2.

Then, there exists a positive constant C0 > 0 such that

Hγ(w) 6 C0(1 + |w|γ−s)m−1(w) ∀w ∈ R
d.

(2) If m(v) =
(
1 + |v|β

)−1
for β > 0 and let Hγ be defined as above. Then, there exists a

positive constant C1 > 0 such that

Hγ(w) 6 C1(1 + |w|γ−2)m−1(w) ∀w ∈ R
d.

Proof. In both cases, recall that, according to (A.3), one has

Hγ(w) 6

∫

Rd

|v − w|γ−(d−2)kd−2(v,w)m
−1(v)dv

where kd−2(v,w) is given by (A.1). Taking into account that |v|2−|w|2
|v−w| − |v − w| = 2 v−w

|v−w| · w we
may rewrite (A.1) as

kd−2(v,w) = 2d−1(2π)−1/2|v − w|−1 exp

{
−1

2

(
|v − w|+ v − w

|v − w| · w
)2
}
. (A.4)
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Assume now that m is an exponential weight, i.e. m(v) = exp(−a|v|s) for a > 0 and s ∈ (0, 1].
Performing the change of variables u = v−w and using spherical coordinates (with ̺ = |u| and
̺|w| cos θ = u · w) one gets therefore

Hγ(w) 6 Cd|Sd−2|
∫ ∞

0
d̺

∫ π

0
G(̺, θ)dθ

for some universal constant Cd > 0 and where

G(̺, θ) = ̺γ exp

{
−1

2

(
̺+ |w| cos θ

)2

+ a

(
̺2 + |w|2 + 2̺|w| cos θ

)s/2
}
(sin θ)d−2 .

Setting now A = [0,∞) × [0, π], we split A into the two regions of integration:

A1 = {(̺, θ) ∈ A ; 3|w| cos θ > −2̺} and A2 = A \ A1.

Notice first that, since cos θ 6 1 and s ∈ (0, 1]

exp
(
a(̺2 + |w|2 + 2̺|w| cos θ)s/2

)
6 exp (a(̺+ |w|)s) 6 exp(a̺s) exp(a|w|s) ∀(̺, y) ∈ A.

Moreover, since ̺+ |w| cos θ > ̺/3 for any (̺, θ) ∈ A1 we have
∫

A1

G(̺, θ)d̺dθ 6 exp(a|w|s)
∫ ∞

0
̺γd̺

∫ π

0
exp

(
− 1

18
̺2 + a̺s

)
(sin θ)d−2 dθ

6 C1 exp(a|w|s) = C1m
−1(w)

(A.5)

since the integral is convergent. Let us estimate now the integral over A2. For any (̺, θ) ∈ A2,
one notices first that

̺2 + |w|2 + 2̺|w| cos θ < |w|2 − ̺2/3 and ̺ 6 (3/2)|w|,
so that
∫

A2

G(̺, θ)d̺dθ

6

∫ (3/2)|w|

0
̺γ exp

(
a
(
|w|2 − ̺2/3

)s/2)
d̺

∫ π

0
exp

(
−1

2
(̺+ |w| cos θ)2

)
(sin θ)d−2 dθ (A.6)

To carry out the θ-integral, perform the change of variables z = ̺+ |w| cos θ to get
∫ π

0
exp

(
−1

2
(̺+ |w| cos θ)2

)
(sin θ)d−2 dθ 6

1

|w|

∫ ∞

−∞
exp

(
−z2/2

)
dz =

C2

|w|

for some explicit C2 > 0 1. Plugging this in (A.6) we obtain
∫

A2

G(̺, θ)d̺dθ 6
C2

|w|

∫ (3/2)|w|

0
̺γ exp

(
a
(
|w|2 − ̺2/3

)s/2)
d̺.

1notice that this proof needs d > 3
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Setting now x = |w|2 − ̺2/3, we obtain
∫

A2

G(̺, cos θ)d̺dθ 6
3C2

2 |w|3
γ−1

2

∫ |w|2

|w|2/4

(
|w|2 − x

)γ−1

2 exp(axs/2)dx.

Since 3
4 |w|2 6 |w|2 − x 6 |w|2 for any x ∈ (14 |w|2, |w|2), one sees that

∫

A2

F (̺, y)d̺dy 6 C3|w|γ−2

∫ |w|2

0
exp(axs/2)dx (A.7)

for some explicit C3 > 0 depending only on γ. We observe now that, for any r > 0,
∫ r

0
exp(axs/2) dx 6

2

as
r1−s/2

∫ r

0

as

2
xs/2−1 exp(axs/2) dx

=
2

as
r1−s/2

∫ r

0

d

dx
exp(axs/2) dx 6

2

as
r1−s/2 exp(ars/2).

Using this in (A.7) for r = |w|2 we get
∫

A2

F (̺, y)d̺dy 6
2C3

a s
|w|γ−s exp (a|w|s) . (A.8)

Putting together (A.5) and (A.8) we finally obtain the result.
Assume now that m−1(v) = 1+ |v|β for β > 0. One argues in a similar way. Namely, as above,

Hγ(w) 6 Cd|Sd−2|
∫

A
G(̺, θ)d̺dθ

for some universal constant Cd > 0 and where now

G(̺, θ) = ̺γ exp

{
−1

2

(
̺+ |w| cos θ

)2
}(

1 +

(
̺2 + |w|2 + 2̺|w| cos θ

)β/2
)
(sin θ)d−2 .

As above, one splits the region A = [0,∞) × [0, π] into the two above regions A1 and A2. One
clearly has

(
1 +

(
̺2 + |w|2 + 2̺|w| cos θ

)β/2
)

6 (1 + 2β−1)
(
1 + ̺β

)(
1 + |w|β

)

from which, as above,
∫

A1

G(̺, θ)d̺dθ 6

(
1 + 2β−1

)
m−1(w)

∫

A1

̺γ exp

(
− 1

18
̺2
)(

1 + ̺β
)
(sin θ)d−2 d̺dθ

so that there is C1 > 0 such that
∫

A1

G(̺, θ)d̺dθ 6 C1m
−1(w). (A.9)



30 B. LODS & M. MOKHTAR-KHARROUBI

Arguing now as above, one gets that

∫

A2

G(̺, θ)d̺dθ 6

∫ 3

2
|w|2

0
̺γ


1 +

(
|w|2 − ̺2

3

)β
2


 d̺

∫ π

0
exp

(
−1

2
(̺+ |w| cos θ)2

)
(sin θ)d−2 dθ

6
C

|w|

∫ 3

2
|w|

0
̺γ


1 +

(
|w|2 − ̺2

3

)β
2


 d̺

for some positive constant C > 0. One computes the above integral as in the previous part and
obtain that there exists a positive constant C2 > 0 such that

∫ 3

2
|w|

0
̺γ


1 +

(
|w|2 − ̺2

3

)β
2


 d̺ 6 C2 |w|γ−1

∫ |w|2

|w|2

4

(
1 + xβ/2

)
dx 6 C2|w|γ−1m−1(w).

Gathering all together, we get that there exists C3 > 0 such that
∫

A2

G(̺, θ)d̺dθ 6 C3 |w|γ−2 m−1(w). (A.10)

Combining (A.9) and (A.10) we get the desired conclusion. �

Remark A.2. Notice that the above computations are valid for any γ ∈ (−d,∞) (i.e. it is valid for
both hard and soft potentials). However, it turns out to be particularly relevant for hard potentials
γ ∈ [0, d−2]. For soft potentials, it will become inoperative as explained by the following reasoning.

Recalling that X = L1(Rd,dν(v)) with dν(v) = m−1(v)dv, one can write Kγ as an integral
operator for the measure dν

Kγf(v) =

∫

Rd

kγ(v,w)f(w)dν(w)

by simply setting

kγ(v,w) = kγ(v,w)m(w), ∀v,w ∈ R
d.

In such a case, the above Proposition asserts that
∫

Rd

kγ(v,w)dν(v) = m(w)Hγ(w) 6 C0

(
1 + |w|γ−α

)

where α = s if m(v) = exp(−a|v|s), s ∈ (0, 1] and α = 2 if m(v) = (1 + |v|β)−1 (β > 0). Since, for
γ > 0 the mapping

w 7→ 1 + |w|γ−α

(1 + |w|)γ is bounded

we see that, for hard potentials there exists ϑ ∈ L∞(Rd) such that
∫

Rd

kγ(v,w)dν(v) 6 ϑ(w)Σ(w) for a. e. w ∈ R
d
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i.e. [24, Inequality (5)] is satisfied. Notice however that nothing guarantees that the subcriticality
condition [24, Inequality (6)] is met in X. It it not clear if the above is still true for soft potential,
i.e. whenever γ < 0.

We go on with properties of the kγ(v,w) for positive γ. First of all, the detailed balance law
holds true:

kγ(v,w)M(w) = kγ(w, v)M(v) ∀v,w ∈ R
d × R

d

This leads us to define

pγ(v,w) = M−1/2(v)kγ(v,w)M1/2(w), v, w ∈ R
d × R

d,

so that pγ(v,w) = pγ(w, v). Notice that,

pγ(v,w) 6 |v − w|γ−d+2M−1/2kd−2(v,w)M1/2(w)

from which we easily see that

pγ(v,w) 6 C |v − w|γ−d+1 exp

{
−1

8

(
|v − w|2 +

(
|v|2 − |w|2

)2

|v − w|2

)}
∀v,w ∈ R

2d.

This yields to the following whose prove is a direct adaptation of that given in [2, Lemma
3.2].

Lemma A.3. For any γ > d−2
2 , there exists C > 0 such that
∫

Rd

|pγ(v,w)|2dw 6
C

(1 + |v|) , ∀v ∈ R
d.

Proof. We use the above bound to get that there exists C > 0 such that

∫

Rd

pγ(v,w)
2dw 6 C

∫

Rd

|v − w|2γ+2−2d exp

{
−1

4

(
|v − w|2 +

(
|v|2 − |w|2

)2

|v − w|2

)}
dw

6 C

∫

Rd

|u|2γ+2−2d exp

{
−1

4

(
|u|2 +

(
|v|2 − |u− v|2

)2

|u|2

)}
du

where we set u = v − w. Using spherical coordinates u = ̺dn and denoting by θ the angle
between u and v, one readily gets
∫

Rd

pγ(v,w)
2dw 6 C

∫ ∞

0
̺2γ+1−dd̺

∫

Sd−1

exp

(
−1

4

(
̺2 + (2|v| cos θ − ̺)2

))
dn

= C

∫ ∞

0
̺2γ+1−dd̺

∫ π

0
sind−2(θ) exp

(
−1

4

(
̺2 + (2|v| cos θ − ̺)2

))
dθ.

Notice that the assumption 2γ + 1− d > 0 implies

sup
v∈Rd

∫

Rd

pγ(v,w)
2dw 6 Cπ

∫ ∞

0
̺2γ+1−d exp

(
−̺2

4

)
d̺ < ∞.
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Set for simplicity

I(v) =

∫ ∞

0
̺2γ+1−dd̺

∫ π

0
sind−2(θ) exp

(
−1

4

(
̺2 + (2|v| cos θ − ̺)2

))
dθ, v ∈ R

d.

As in [2, Lemma 3.1], perform the change of variables x = ̺/|v| − 2 cos θ, y = ̺/|v|, one gets

I(v) =
|v|2γ+2−d

2

∫

Ω
y2γ+1−d

(
1− (x− y)2

4

) d−3

2

exp

{
−|v|2

4

(
x2 + y2

)}
dxdy

6
|v|2γ+2−d

2

∫

Ω
y2γ+1−d exp

{
−|v|2

4

(
x2 + y2

)}
dxdy

where Ω = {(x, y) ∈ R
2 ; y > 0 ; |x − y| 6 2}. Changing the variables again as t = |v|x/2 and

s = |v|y/2 one finally gets

I(v) 6
22γ+2−d

|v|

∫

R

dt

∫ ∞

0
exp

{
−
(
t2 + s2

)}
s2γ+1−dds

and using again that 2γ + 1 − d one sees that this last integral is convergent which gives the
conclusion. �

APPENDIX B. QUANTITATIVE ESTIMATES OF THE SPECTRAL GAP FOR HARD-POTENTIALS

We present here a quantitative version of Theorem 1.1 which relies on recent advances on
the so-called factorisation method and enlargement of the functional space, initiated in [23] for
the nonlinear Boltzmann equation and extended to an abstract framework in [14]. The method
consists in using the fact that, in the hilbert space

H = L2(Rd,M−1dv)

the spectral gap of the linear Boltzmann operator L is explicit (at least for hard-spheres inter-
actions [21] but the approach given then can be extended easily to the general hard potential
dealt with in this paper). In particular, since L is self-adjoint in this space, the decay of the
associated semigroup is directly deduced from the spectral structure of the generator.

To avoid confusion, in this section, we shall denote L2 the linear Boltzmann in the Hilbert
space H while L1 will stand for the linear Boltzmann operator in X where X has been defined
in the Introduction:

X = L1(Rd,m−1(v)dv)

where the weight m is given by (1.10) or (1.11). We also denote by (V2(t))t>0 and (V1(t))t>0

the C0-semigroups generated respectively by L2 and L1.
Notice that we restrict ourselves, for simplicity, to the case in which b ∈ L∞(Sd−1), which, as

seen in Section 3 is no restriction. Then, again, there is no loss in generality in assuming that b
is constant, b ≡ 1. In such a case, the linear operator K corresponds simply to Kγ .

We begin by recalling the following result (see [21, 18])
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Theorem B.1. For γ ∈ [0, d− 2], the linear operator (L2,D(L2) is negative self-adjoint in H where

D(L2) = {f ∈ H ; Σf ∈ H} = L2(Rd, (1 + |v|γ)M−1(v)dv).

Moreover, Ker(L2) = span(M) and there exists some explicit µ2 > 0 such that

−
∫

Rd

f L2f M−1dv > µ2‖f‖H ∀f ∈ D(L2) with

∫

Rd

f(v)dv = 0.

As a consequence,

‖V2(t)f − ̺fM‖H 6 exp(−µ2t)‖f‖H for all f ∈ H, ∀t > 0

where ̺f =

∫

Rd

f(v)dv for any f ∈ H.

Notice that, the spectrum of L2 in H can be expressed as follows

S(L2) = (−∞,−η] ∪ {λn}n
where λ1 = 0 > λ2 > λn > λn+1 (n ∈ R) are nonpositive eigenvalues of L2 with finite algebraic
multiplicities and limn→∞ λn = −η = − infv∈Rd Σ(v) > 0. For any n ∈ N, we denote by ΠL2,n

the spectral projection associated to λn. Notice that µ2 = −λ2.

In order to extend the above result to the weighted L1-space X, we shall resort to the follow-
ing that we state here for the above operators L2 and L1:

Theorem B.2. [14, Theorem 2.1] Assume that the linear operator (L1,D(L1)) in X admits the
following splitting:

L1 = A1 + B1

where

(i) A1 : X → H is bounded;
(ii) the operator B1 : D(B1) → X (with D(B1) = D(L1) = Y) is β-dissipative for some positive

β > 0, i.e. ∫

Rd

signf(v)B1f(v)m
−1(v)dv 6 −β‖f‖Y ∀f ∈ Y. (B.1)

Then, for any ε > 0,

S(L1) ∩ {z ∈ C Rez > −η + ε} = S(L2) ∩ {z ∈ C ; Rez > −η + ε} = {λ1, . . . , λNε}
for some finite Nε ∈ N. Moreover, for any k ∈ {1, . . . , Nε}, λk is an eigenvalue of L1 with algebraic
multiplicity which is finite and equal to the one of λk as an eigenvalue of L2 and the associated
spectral projection ΠL1,k is given by ΠL1,k|H = ΠL2,k.

The above Theorem asserts that, provided L1 admits the above splitting (i)-(ii) in the weighted
space L1, the second eigenvalue of L1 in X is λ2 = −µ2. This, combines with the results of Sec-
tion 3 would implies that the constant λ∗ appearing in Theorem 1.1 can be chosen as µ2 + δ for
any δ > 0. Since µ2 is explicit, this provides a quantitative estimate of the speed of convergence
in Theorem 1.1.
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Remark B.3. Notice that it would be possible to invoke also results from [14], especially, [14,
Theorem 2.13], to deduce decay properties for the semigroup (V1(t))t>0 from that of (V2(t))t>0

under the assumptions of Theorem B.2. We refer also to [22] for more results in this direction and
to [8, Theorem 3.1] for a much less general but simpler version of this kind of results.

It remains to prove that L1 can be split as

L1 = A1 + B1

where both the operators A1 and B1 satisfy the assumptions of Theorem B.2. To do so, for any
R > 0, let

A1f = K(χBR
f), B1 = L1 −A1

where BR is the open ball in R
d with radius R > 0 and center 0 and χBR

denotes the indicator
function of BR.

Our proof is very similar to the one of [6] and is based upon the results of Appendix A. One
has therefore, with the notations of Section 3

A1f(v) =

∫

BR

k(v,w)f(w)dw, B1f(v) = −Σ(v)f(v) +

∫

{|w|>R}
k(v,w)f(w)dw

Proposition B.4. With the above notations, for any R > 0,

A1 : X → H
is bounded.

Proof. Let f ∈ X be given and let k(v,w) be the kernel of K. Recall that K = Kγ with kernel
kγ(v,w). Using Minkowski’s integral inequality (with measures M−1(v)dv and |f(w)|dw) one
gets easily

‖A1f‖H 6

∫

|w|6R
|f(w)|

(∫

Rd

k2γ(v,w)M−1(v)dv

)1/2

dw.

Now, with the notations of Appendix A, one has
∫

Rd

k2γ(v,w)M−1(v)dv = M−1(w)

∫

Rd

p2γ(v,w)dv

and, using Lemma A.3, there is some positive constant C > 0 such that
∫

Rd

k2γ(v,w)M−1(v)dv 6 CM−1(w)(1 + |w|)−1 6 CM−1(w) ∀w ∈ R
3.

Thus,

‖A1f‖H 6
√
C

∫

|w|6R
|f(w)|M−1/2(w)dw

and, since the domain of integration is bounded, there is some positive constant cR > 0 such
that ‖A1f‖H 6 cR‖f‖X which proves point. �
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Now, we prove that R > 0 can be chosen in such a way that

B1f(v) = L1f(v)−A1f(v) = L+(χ{|·|>R}f)(v)− σ(v)f(v)

satisfies the above point (ii). For any f ∈ Y, set I(f) =
∫
Rd signf(v)Bf(v)m−1(v)dv. Now, one

has the following

Proposition B.5. Assume that m is given by (1.10) with 1 − γ < s < 1 There exists R > 0 large
enough so that ∫

Rd

signf(v)B1f(v)m
−1(v)dv 6 −β‖f‖Y ∀f ∈ Y

where β = infv∈ Rd

Σ(v)

(1 + |v|)γ .

Proof. Let f ∈ Y be fixed.

I(f) =

∫

Rd

signf(v)K(χ{|·|>R}f)f(v)m
−1(v)dv −

∫

Rd

Σ(v)|f(v)|m−1(v)dv

=

∫

Rd

signf(v)m−1(v)dv

∫

{|w|>R}
kγ(v,w)dw −

∫

Rd

Σ(v)|f(v)|m−1(v)dv

6

∫

{|w|>R}
|f(w)|Hγ(w)dw − σ0

∫

Rd

(1 + |v|)γ |f(v)|m−1(v)dv

where we used the fact that Σ(v) > σ0(1 + |v|)γ for some positive constant σ0 > 0 and set, as in
Appendix A,

Hγ(w) =

∫

Rd

kγ(v,w)m
−1(v)dv, ∀w ∈ R

3.

Let us assume now that m is an exponential weight given by (1.10).Then, using Proposition A.1,
there is some positive constant C > 0 such that

I(f) 6 C

∫

{|w|>R}
|f(w)|

(
1 + |w|γ−s

)
m−1(w)dw − σ0

∫

Rd

(1 + |v|)γ |f(v)|m−1(v)dv.

In other words,

I(f) 6 −σ0

∫

{|v|6R}
|f(v)|m−1(v) dv

+

∫

{|v|>R}
|f(v)|

(
C(1 + |v|γ−s)− σ0(1 + |v|)γ

)
m−1(v) dv.

We choose now R > 0 such that C(1 + |v|γ−s) − σ0(1 + |v|)γ 6 −σ0 for all |v| > R (which can
be done since s > 0), so that

I(f) 6 −σ0

∫

Rd

|f(v)|m(v)−1 dv = −σ0‖f‖Y , (B.2)

i.e. B1 satisfies (B.1) with β = σ0.
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Assume now that m is an algebraic weight given by (1.11). Then, as above, using Proposition
A.1, there is some positive constant C > 0 such that

I(f) 6 C

∫

{|w|>R}
|f(w)|

(
1 + |w|γ−2

)
m−1(w)dw − σ0

∫

Rd

(1 + |v|)γ |f(v)|m−1(v)dv

and, repeating the above argument, one can choose R > 0 large enough so that C(1 + |v|γ−s)−
σ0(1 + |v|)γ 6 −σ0 for all |v| > R to see that B1 satisfies (B.1) with β = σ0. �
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