
HAL Id: hal-01213392
https://hal.science/hal-01213392v1

Submitted on 4 Feb 2016 (v1), last revised 5 Feb 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Trajectory Generation for Quadrotor Based Systems
using Numerical Optimal Control

Mathieu Geisert, Nicolas Mansard

To cite this version:
Mathieu Geisert, Nicolas Mansard. Trajectory Generation for Quadrotor Based Systems using Nu-
merical Optimal Control. ICRA, IEEE, May 2016, Stockholm, Sweden. �hal-01213392v1�

https://hal.science/hal-01213392v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Trajectory Generation for Quadrotor Based Systems
using Numerical Optimal Control

Mathieu Geisert1 and Nicolas Mansard1

Abstract— The recent works on quadrotor have focused on
more and more challenging tasks with increasingly complex
systems. Systems are often augmented with slung loads, inverted
pendulums or arms, and accomplish complex tasks such as
going through a window, grasping, throwing or catching.
Usually, controllers are designed to accomplish a specific task
on a specific system using analytic solutions, so each application
needs long preparations. On the other hand, the direct multiple
shooting approach is able to solve complex problems without
any analytic development, by using off-the-shelf optimization
solver. In this paper, we show that this approach is able
to solve a wide range of problems relevant to quadrotor
systems, from on-line trajectory generation for quadrotors, to
going through a window for a quadrotor-and-pendulum system,
through manipulation tasks for a aerial manipulator.

I. INTRODUCTION

During transportation missions, loads are often carried
thanks to a cable to avoid aerodynamic perturbations. Vari-
ous controllers have been designed for this under-actuated
system. For tasks involving only transportation, a typical
approach is to reduce the energy of the load to limit its swing
motion. Swing-free motion can be found using dynamic pro-
gramming approach [1],[2] or reinforcement learning [3],[4].
In [5],[6] the differential flatness of the system is used to
build a cascade of controllers capable of controlling the load
position and attitude. In [7], dynamic programming is used
to calculate aggressive trajectories. Using this technique,
authors showed that their method is able to find trajectories to
go through a window with a system quadrotor and slung load.
However the problem of finding how the quadrotor and the
load have to pass through the window is solved before hand
and given to the algorithm in the form of way-points. In [8],
trajectory of quadrotors throwing and catching an inverted
pendulum are generated off-line using direct optimal control
then executed on the real system using a LQR controllers.

For tasks such as screwing, assembling or other manipula-
tion tasks, robotic arms can be mounted on the flying vehicle.
In [9], a simple symmetric manipulator is used so quadrotor
and manipulator controllers can be built apart. When the
manipulator becomes more complex, the quadrotor controller
has to take into account movements of the arm [10], [11],
[12]. Once controllers are designed, the problem shift to the
trajectory generation. In [13], Inverse Kinematics is used to
determine trajectories of the joints and the quadrotor from the
end-effector trajectory. In most recent works, optimal control
is used to generate on-line picking trajectories [14]. The

1 Laboratory for Analysis and Architecture of Systems (LAAS), Centre
National de la Recherche Scientifique (CNRS), Toulouse 31077, France
mgeisert@laas.fr, nmansard@laas.fr

algorithm used is able to exploit the full system dynamics and
generate simultaneous trajectories for the quadrotor and the
arm but, because it uses an algorithm similar to Differential
Dynamic Programming (DDP), it cannot handle obstacle
constraints well.

In the expectancy to solve problems involving more and
more complex tasks on aerial systems, we believe that
analytic solutions are too restraining and too difficult to
exhibit on a generic manner. An alternative approach, that
has not been extensively explored yet, is to rather rely on the
field of direct optimal control and numerical optimization, to
numerically approximate a valid control sequence, that would
then be easily adapted to changes in both the task to achieve
and the dynamics of the robot.

The contribution of this paper is to show the interest
of one of these numerical approaches to design versatile
and efficient behaviors on complex aerial vehicles (aerial
pendulum and aerial manipulator). We propose a complete
formulation to numerically compute an optimal movement.
We then report an extensive benchmark of the capabilities
of numerical solvers to discover efficient trajectories around
obstacles and control these trajectories despite model un-
certainties. We also demonstrate that even if those kinds of
algorithms can look computationally heavy, they can be used
for on-line trajectory generation (Model Predictive Control).

Next section presents the optimal control problem and
more specifically, the direct multiple shooting formulation
used to solve the problem. Section III describes the three
robot models used for the benchmarks (i.e quadrotor, quadro-
tor with pendulum and quadrotor with robotic arm). Section
IV presents the initial guess, the model of obstacles and the
tools used to generate our results. The last section shows the
results obtained in simulation for a wide range of tasks.

II. OPTIMAL CONTROL

In this section, we briefly recall the framework of optimal
control and define explicitly the formulation of the numerical
problem that is used for the quadrotors. Meaning while, we
justify why we have selected this particular form among all
the possibility offered in the literature.

A. Indirect and Direct Approaches

In this paper, trajectories of different quadrotor based
systems are generated using algorithms of the optimal control
framework. The generic optimal control problem can be
expressed as follow:

minimize
x∈X ,u∈U

∫ T

0
L(x(t),u(t))dt +E(x(T))

subject to ∀t ∈ [0,T]

ẋ(t) = f (x(t),u(t)),

h(x(t),u(t))≥ 0, h0(x(0))≥ 0, hT (x(T))≥ 0,
r(x(t),u(t)) = 0, r0(x(0)) = 0, rT (x(T)) = 0.

Where the decision variables are the trajectory in state x : t ∈
[0,T]→ x(t) ∈X and in control u : t ∈ [0,T]→ u(t) ∈ U
(where X and U are the state and control spaces, and the
underlined symbol is used to differentiate the trajectory from
the time value), L represents the integral (or running) cost,
E is the terminal cost, f is the system dynamics and the h
and r functions represent arbitrary constraints.

Two very different approaches may be considered to solve
this problem, the indirect one and the direct one. The indirect
one changes the problem into an integration (ODE or DAE)
problem using the Pontryagin’s maximum principle or the
Hamilton-Jacobi-Bellman equation. The resulting problem is
a differential equation which is unfortunately often too com-
plex to be integrated as is. When it is possible, this approach
provides a complete (and often comparatively cheap) solution
to the problem. However, this type of approach is usually
applied on a specific system and/or task so the differential
equation can be simplify enough to be integrated.

The direct approach directly solves a discretized approxi-
mation of the nominal problem using numerical optimization
techniques. It has several advantages: it works directly on the
problem so the problem does not need to be reformulated;
is solved by generic solvers; and can often hope to directly
adapt a solution to variations of both the system dynamics
and the tasks. This paper only focuses on the direct optimal
control.

B. Direct Approaches

The discretization of the nominal problem results in a
redundant set of decision variables, x and u, constrained by
the system dynamics (redundant in the sense the x directly
arises from u). Three different formulations with different
properties are typically considered to handle this redundancy.

Single shooting method integrates the whole trajectory
from controls using ODE/DAE solvers and optimizes the
cost function over controls. This formulation is interesting
because of its simplicity and, since the resulting optimization
problem has a low number of degree of freedom and no
additional constraints, it easily deals with systems of large
dimension [15].

In colocation method, cost function is optimized over
states and control which are linked via the discretized
dynamic equation set as constraint for the optimization
problem. Those additional constraints force in practice the
solver to solve many inverse dynamics problems, which is
costly in general, but allow this method to be initialized with
state trajectories, to have fast convergence and to deal with
unstable systems well [16].

Multiple shooting tries to combine advantages of coloca-
tion and single shooting by using the same formalism as
colocation but with ODE/DAE solvers to integrate the dy-
namic equation of the system along time intervals instead of

discretizing it. The variables are then a full control trajectory
u along with a sparse number of state variables x1, ...,xJ
called shooting nodes. These nodes avoid the divergence
phenomenon encounter in single shooting, and despite an
increase in the number of decision variables, speed up the
solution [16].

In this paper, we consider quadrotor based systems: the
resulting problem is a small dimension nonlinear problem.
Single shooting would be able to calculate each step very
quickly however because of the non-linearity and the insta-
bility of the system the iterative numerical algorithm would
only be able to progress slowly and risks to diverge. Mul-
tiple shooting and colocation would probably give similar
quality results but thanks to its design where the problem
parametrization and the integration of the dynamic are sep-
arated, multiple shooting is more flexible and much faster
(wich is essential for Model Predictive Control). Addition-
ally, the relative stability of quadrotors (compared to rocket
or humanoid robot) allows to have only few shooting nodes
although non-linearities impose thin steps to integrate the
dynamic equations. Therefore, the different tasks presented
in this paper are solved using the direct multiple shooting
approach.

C. Direct Multiple Shooting

In multiple shooting methods, the system trajectory is
cut into small time intervals that correspond to shooting
intervals. A set of J state variables corresponding to the
starting point of each shot is introduced.

x(t j) = x j, x j ∈X , j = 0, ...,J−1

Thus, integration of the dynamic ẋ(t)= f (x(t),u(t)) will give
a piecewise continuous function with discontinuities at each
shooting node that we denote x(t;x j,u j) for t j ≤ t < t j+1.
Additional constraints are imposed to force continuity at the
shooting nodes. Constraints are similarly discretized over
time.

h(x(t j),u(t j))≥ 0,
r(x(t j),u(t j)) = 0, j = 0, ...,J−1.

Therefore, the optimal control problem becomes

minimize
x0,...,xJ−1,u0,...,uJ−1

N−1

∑
i=0

l j(x j,u)+E(xN)

subject to

x j+1− x(t j+1;x j,u(t)) = 0, j = 0, ...,J−1,
h(x(t j),u(t j))≥ 0, h0(x(0))≥ 0, hT (x(T))≥ 0,
r(x(t j),u(t j)) = 0, r0(x(0)) = 0, rT (x(T)) = 0.

where

l j(x j,u) :=
∫ t j+1

t j

L(x(t;x j,u(t)),u(t))dt

An other advantage of multiple shooting with respect
to single shooting is more technical to get but can be
understood from this final formulation. By explicitly express
continuity constraints (II-C) over certain points, multiple

shooting allows the numerical algorithm to relaxed those
constraints. One direct implication is that at the beginning
of the algorithm, those constraints can be fully relaxed
hence the initial guess does not need to be continuous.
Thus, multiple shooting can easily be initialized with other
algorithms which give trajectories in the state space and do
not take care of the full dynamic like planning algorithm
[17]. This formulation has also been found useful to control
unstable system or to handle terminal constraints because in
those cases it can be difficult to find a valid initial guess in
the control space.

The problem generated using direct multiple shooting
method can be condensed [18] then be solved using any
NonLinear Programming (NLP) solver.

D. Sequential Quadratic Programming

The problem generated using direct multiple shooting
can be condensed [18] then be solved using any nonlinear
programming solver. In this section, we present the Sequen-
tial Quadratic Programming algorithm which is one of the
commonly NLP algorithm used to solve this kind of problem.
In this part, we consider the following standard-form NLP
problem

min
x

f (x) subject to h(x)≥ 0, r(x) = 0

From this problem, we can introduce the Lagrangian function

L (x,λ ,µ) = f (x)−λ
T h(x)−µ

T r(x)

where λ and µ are Lagrangian multipliers. The necessary
conditions for x? to be a local optimum of the NLP are that
there exist mulpliers λ ? and µ?, such that

∇L (x?,λ ?,µ?) = 0,
h(x?) = 0,

r(x?)≥ 0, µ
? ≥ 0, r(x?)T

µ
? = 0.

At each step of the SQP algorithm, the objective function
f is approximate by its local quadratic approximation and
constraints by their local affine approximations

f (x)≈ f (xk)+∇ f (xk)
T

∆x+
1
2

∆xT Hk∆x

h(x)≈ h(xk)+∇h(xk)
T

∆x,

r(x)≈ r(xk)+∇r(xk)
T

∆x.

where Hk is a Hessian approximation of L (xk,λk,µk), and
∇ f (xk), ∇h(xk) and ∇r(xk) are Jacobians. Thus, at each step
of the SQP algorithm, we get the following QP subproblem

minimize
∆x∈{S,U}

∇ f (xk)
T

∆x+
1
2

∆xT Hk∆x,

subject to

h(xk)+∇h(xk)
T

∆x≥ 0,

r(xk)+∇r(xk)
T

∆x = 0.

Witch is solved using active-sets methods. So, starting from
an initial guess (x0,λ0,µ0), SQP solver decomposed the NLP

into a QP subproblem and iterate

xk+1 = xk +α∆xQP,

λk+1 = λk +α∆λ
QP,

µk+1 = µk +α∆µ
QP.

where α can be determined using linesearch methods [19].
Constraint linearization can give unsolvable QP subprob-

lems, so in those cases constraints have to be relaxed. One
technique is to use `1 relaxation where the quadratic problem
is transformed to

minimize
∆x∈{S,U}

∇ f (xk)
T

∆x+
1
2

∆xT Hk∆x+νu+ν(v+w),

subject to

h(xk)+∇h(xk)
T

∆x≥−u, (1)

r(xk)+∇r(xk)
T

∆x = v−w. (2)

where u, v and w are slack variables and ν is a penalty
parameter.

SQP solver differ in the way the Hessian is approximated,
the linesearch is done, the QP subproblems are solved or
the constraints are relaxed. SQP has been shown a powerful
tool and because of its superlinear convergence rate and its
ability to deal with nonlinear constraints well, it is currently
considered as one of the most powerful algorithm to solve
large-scale NLP.

E. Model Predictive Control (MPC)

MPC techniques use optimal control framework to solve
on-line trajectory generation problems. At each activation,
MPC solves an optimal control problem over a sliding time
window. In robotics, MPC is usually activated several times
per second so algorithms are the same but their applications
differ from the off-line trajectories generation. At each
activation, a solution is found using only one iteration of
the NLP solver. Therefore, the solution used will not be an
optimal solution but, by using the previous solution to build
the initial guess for the next step, MPC will at the same
time improve the solution and adapt it to the new state of
the system. The faster the algorithm is, the less the previous
solution is out-dated so the more the algorithm will be able
to improve it instead of just adapt it to the new situation.
Thus, fast single shooting methods like DDP are often used
[14]. However, DDP is not able to handle constraints, so
constraints like obstacle avoidance are introduced in the
problem using the cost function and therefore, we cannot
be sure that the system will respect those constraints. With
the algorithms used in this paper, the linearized constraints
are checked at each step so in the case of convex obstacle
constraints, we are sure that solutions given by the MPC will
always be collision-free (at least at each shooting node).

III. SYSTEM DYNAMICS

In order to exhibit the qualities of direct optimal control to
easily adapt to various dynamic models, we have performed a
benchmark with three different quadrotor-based robots whose
models are given in the three next subsections.

A. Quadrotor

The quadrotor is modeled as a rigid body of mass mq =
0.9[kg] evolving in the 3 dimensional space where effects
linked to fluid dynamic are all neglected. Position and
orientation of the quadrotor with respect to the inertial frame
are respectively noted xxxq ∈R3 and Θq ∈ SO(3) (where Θq can
indistinctly be represented by Euler angles or quaternions)
and its rotation speed in its local frame is represented by
Ωq ∈ so(3) = R3. Rotor dynamics is neglected so each
propeller i produces a thrust fi =C fV 2

i and a torque around
its main axis τzi = (−1)i+1CmV 2

i where Vi ∈ [Vmin,Vmax] is
the motor velocity [20]. Neglecting the rotor dynamics, the
control is directly the rotor acceleration. The state vector is
xxx = [xxxq,Θq, ẋxxq,Ωq,V1, ...,V4]

T and the system control inputs
are ui = V̇i ∈ [V̇min,V̇max], i ∈ {1, ...,4}.

mqẍ =

 0
0
−mqg

+RΘq

 0
0

∑i C fV 2
i

 (3)

IΩq +Ωq× (IΩq) =

 dC f (V 2
1 −V 2

3)
dC f (V 2

2 −V 2
4)

Cm(V 2
1 −V 2

2 +V 2
3 −V 2

4)

 (4)

where d is the distance between a rotor and the center of
mass of the quadrotor and I is the quadrotor inertia matrix
and RΩq is the rotation matrix between the world frame an
the quadrotor frame.

B. Quadrotor with Pendulum

The second model corresponds to the same quadrotor,
carrying a load attached by a rigid linkage.

1) With a fixed load: We assume that the quadrotor is
attached to a load of mass mp with a weightless rigid bar of
length L = 4[m]. The rigid bar and the quadrotor are linked
with a spherical joint (3 degrees of freedom).

To calculate the quadrotor position and the pendulum
orientation, the system is modeled as a weightless solid bar
with point masses at each tip. Thus, all forces are applied
on the axis of the bar and the inertia matrix of the respects
Jpxx = Jpyy. Moreover we assume that at the beginning of
the trajectory the bar is not rotating around its main axis
so Coriolis effects vanish and the dynamic equation can be
simplified to

JpΩ̇p = ∑
i

Ti and Ωpz = 0

Thus, the system state vector is xxx =
[xxxq,Θq, ẋxxg,Ωq,θp,ψp,ωpx,ωpy,V1, ...,V4]

T where θp and
ψp are receptively the roll and pitch angles between the
world frame and the pendulum frame, ωpx and ωpy the
rotation speeds of the pendulum in its local frame and ẋxxg
the velocity of the center of mass of the whole system.

2) Grasping and releasing a load: The mass at the end
of the pendulum changes when grasping and releasing. We
model the load transfer by a smooth variation of mp, to keep
the smoothness of the dynamic formulation (discontinuous
transfer would have been possible too, but we believe that

(a) system quadrotor and pendulum (b) system quadrotor and arm

Fig. 1: Models of the systems

the smooth transfer more adequately models the linkage).
We assume that the velocity of the end-effector with respect
to the inertial frame is low at grasping and releasing time
so the part of dynamic equation that corresponds to the
variation of the mass can be neglected (this assumption is
typically correct at the convergence of the direct optimal
control solver).

d p
dt

= mqẍq +mpẍp + ṁpẋp︸ ︷︷ ︸
≈0

dLG

dt
= GQ×mqẍq +GP×mpẍp +GP× ṁpẋp︸ ︷︷ ︸

≈0

However, when mass of the load changes, the center of mass
moves along the pendulum so, at each step, dynamic need
to be integrated according to the position/velocity of a new
point.

||G2G1||=
Lmqṁp

(mq +mp)2 + ṁp(mp +mq)
dt

Where G1 is the position of the center of mass at time t and
G2 is its postion at time t +dt. Thus, velocity of the center
of mass is computed using

dẋG

dt
=

G2G1

dt
×Ωp +∑Forces/(mp +mq)

C. Aerial Manipulator

In that section, we consider that a robotic arm is placed
under a quadrotor. The model of the robot arm used for those
tests is the Universal Robot UR5. For simplicity, the model
of the arm is kept as it is and the model of the quadrotor is
adapted to correspond about to one that could lift this kind
of load (cf. Appendix). Moreover, the quadrotor model is
simplified by directly using motor thrusts as controls (fi ∈
[fmin, fmax], τzi = (−1)i+1Cm fi/C f). The UR5 has 6 degrees
of freedom, its state is the joints positions and velocities
while the joint torques are chosen as controls. Therefore, the
overall system composed of quadrotor and arm has 24 states
and 10 controls.

While the dynamics of the two previous systems was writ-
ten algebraically, we rather used for the aerial manipulator
an algorithmic form, which is more condensed to write,
more versatile and better corresponding to a realistic use.
Dynamic of the whole system is calculated using Recursive
Newton-Euler Algorithm (RNEA) and Composite Rigid Body
Algorithm (CRBA) [21]. To speed up calculation, Pinnocchio
[22], a fast implementation of those algorithms is used. From
those algorithms, we get

M(q)q̈+b(q̇,q)+g(q) = τ

where M(q) is the mass matrix (computed by CRBA),
b(q̇,q) + g(q) are the generalized bias and gravitational
forces (computed by RNEA) and τ is the vector of
generalized forces τ = [fbase,τbase,τ joints]

T where fbase =
[0,0,∑i fi]

T , τbase are the torques induced by the propellers
and τ joints corresponds to the vector of torques acting on each
joint of the arm. To add actuator inertia to this model, a term
Mmot = Jmot ∗K2

red (motor/reducer inertia Jmot , reduction rate
of the reducer Kred) is added to the mass matrix.

M = Mcrba +

[
06 06
06 I6

]
Mmot

Then, the mass matrix M is inverted (using a sparse cheap
algorithm [21]) to get the direct dynamic needed by the
optimal control. Moreover, constraints on positions and con-
trols are added to the optimization to respect joint limits and
maximum torques of the UR5.

IV. IMPLEMENTATION DETAILS

A. Initial Guess

Contrary to single shooting methods where states are
implicit variables so the initial guess needs to be specified
in the control space, multiple shooting method is initialized
within the control and state space. This allows to use simple,
noncontinuous but powerful initial guess like quasi-static or
obstacle free trajectories and that’s why multiple shooting has
been shown to be a very useful tool to connect the planning
and control parts [17].

In the experiments, the initial guesses used were mainly
quasi-static trajectories between the start and the goal posi-
tion

xq j = xstart +
j

N
(xgoal− xstart), j = 0, ...,N,

Vi =
√

mg/4C f , i = 1, ...,4.

And all other variables are set to 0.

B. Obstacle Avoidance

Contrary to Dynamic Programming where the obstacle
avoidance problem is often treated outside then re-injected
in the optimal control problem under the form of way-points,
direct methods easily deal with constraints on the state space
so the obstacle avoidance problem can easily be inserted in
the optimal control problem by adding inequalities on the
position of the system.

To get strictly convex and differentiable constraints, ob-
stacles are embedded inside ellipsoids. This model allows to
keep trajectories outside of obstacles even when constraints
are linearized but also to guide trajectories around obstacles.
So in the optimal control problem, the constraint for one
obstacle is modeled as

(xxxq− xxxe)
T A(xxxq− xxxe)−1 ≥ 0

Where xxxq is the quadrotor position, xxxe is the position of the
ellipsoid center and A ∈ R3×3 is a positive definite matrix.

For task involving obstacles avoidance, a quasi-static
trajectory going through obstacles could be a bad initial
guess because trajectory continuity and obstacle avoidance
constraints can be incompatible when linearized. In that case,
constraints are relaxed till the obstacle is thin enough to
be between two nodes where constraints are checked. From
this trajectory, at each step the algorithm will decrease the
relaxation term u in (1) i.e the obstacle constraint will grows
back. When the constraints have finally converged back, the
result is usually a trajectory where the system goes fast
enough to get through the obstacle when constraints are not
checked. Thus, when obstacles are present, the initial guesses
used are obstacle free trajectories or at least trajectories
where the obstacle constraints does not need to be relaxed.

C. Experimental Setup

The multiple shooting algorithm has been implemented
by Moritz Diehl et al. in an open source optimal control
software, the ACADO toolkit [23]. ACADO solves multiple
shooting problems thanks to a Sequential Quadratic Pro-
gramming (SQP) algorithm, together with state-of-the-art
techniques to condense, relax, integrate and differentiate the
problem. This tool has already been shown to be useful to
generate complex quadcopter trajectories as throwing and
catching an inverted pendulum [8]. Trajectories presented in
the following parts have been generated using this toolkit.

Problems are solved on a Intel Xeon(R) CPU E3-1240 v3
@ 3.40GHz with Runge-Kutta 45 integrator and Broyden-
Fletcher-Goldfarb-Shanno (BFGS) Hessian approximation.
Moreover, controls are discretized as a piecewise constant
function, constant between each shooting node.

V. RESULTS

In this section, we report various examples of the capabil-
ities of the optimal control problem solver to discover and
control complex trajectories with the three models presented
above. The general idea is to give a complete list of the
capabilities of the approach in term of range of exploration,
speed of computation and robustness to perturbation. For all
the reported examples, no external planning methods was
use to discover the trajectory (although the aggressive flip
trajectory (V-B.1) was not found from scratch by the solver
due to its symmetry). MPC is demonstrated in the case where
we were able to set it up. In general, the computation time is
sufficient to enable MPC, however in some cases, we were
not able to obtain a reasonable trade-off between computa-
tion approximation and control performance (in particular for

System Task Time [s] (SQP it-
erations)

Quadrotor
alone

Horizontal displacement of 10[m] 0.35 (4)
Horizontal displacement of 30[m] 0.46 (5)
Vertical displacement of 10[m] +
obstacles avoidance

0.51 (6)

Quadrotor +
pendulum

Pendulum stabilization after a per-
turbation (ωpx initial = 2[rad/s])

0.78 (4)

Horizontal displacement of 10[m]
with inverted pendulum

0.76 (4)

From pendulum ψp initial = 0 to in-
verted pendulum ψp f inal = π

1.99 (7)

Quadrotor +
arm

Reaching a position with the end-
effector (distance 5[m])

6.74 (6)

TABLE I: Computation times for non optimal trajectories.

the quadrotor with pendulum). The complete implementation
of MPC in all the demonstrated examples along with its
application on real quadrotors is left for future works.

A. Non Optimal Trajectories

In the case where the task is simple enough, we can
encode it using only constraints. Starting with initial guess
which does not respect the system dynamic but respects
the initial and final constraints (quasi-static trajectory), the
algorithm is able to find a valid trajectory after few iterations
(convergence criteria : KKT conditions under 10−12). Tab. I
shows the computation times for trajectories of 20 shooting
nodes over 8 seconds.

B. Aggressive Maneuvers

1) Time optimal trajectories with the quadrotor alone:
Direct methods allow to add parameters to the optimization.
In that case, resolution of the optimization will be over
the controls and parameters state space. Those parameters
can be used to modify dynamics, cost or constraints. So
by adding the final time T as parameter to optimize and
setting it as cost, the algorithm will try to find a time optimal
trajectory respecting the initial and final constraints. Even
if the final time T changed over the SQP iterations, the
number of nodes of the multiple shooting remains constant.
Therefore, variation of the final time is taken into account
when dynamic is computed i.e by the integrator. Fig. 2
shows the result obtained for position reaching tasks (6
meters lateral displacement with static terminal constraint)
in time optimal with the quadrotor system alone. As we
can see, commands calculated by the optimal control are
bang null bang as we can expect for a time optimal control.
However, the more the algorithm converges to the optimal
solution, the more it hits constraints so the longer are the
QP resolutions and the smaller are the steps. Therefore,
complete convergence is obtained after 57 seconds (373 SQP
iterations) although a solution as T = 1.05Toptimal is obtained
after only 12.7 seconds (105 SQP iterations).

When the quadrotor is performing a vertical displacement
going up, from a certain distance, the optimal time trajectory
is a trajectory where the quadrotor is flipping over at the
end of the trajectory and use its propellers to slow down.
In [24], authors showed that an indirect optimal control was

Fig. 2: Trajectories for the time optimal problem solved on
the quadrotor system.

able to found those trajectories. Here, the algorithm used is
a local algorithm, so it is not able to jump between valid
areas of a non-continuous constraints and is only able to
find a local optimum. In this case, the end constraint that
the system should be in static position is a non-continuous
constraint which constrained the final roll and pitch angles
to [φ f ,θ f] = [2kπ,2lπ], [k, l] ∈ N2 where [k, l] is actually
determined by the initial guess. So, with initial guess used
(quasi-static with roll φ = 0 and pitch θ = 0), the algorithm
is only able to find trajectories where the quadrotor does half
a turn in one way then another in the other way instead of
a whole turn. Moreover, because of the system symmetry,
when the trajectory is strictly vertical, the local optimum is
always the trajectory without flip. To find a trajectory with
flip, the initial guess needs to be perturb enough to exit the
basin of attraction of the solution without flip. The size of
the perturbation depend on the length of the trajectory: for
a 40 meters high trajectory, setting a lateral displacement
of 1 meter in the initial guess is enough to find the flipping
trajectory; for less than 20 meters high, a simplified flip needs
to be encoded in the initial guess (for instance, for a 20
shooting nodes trajectory, the roll angle is set as φi = π for
i = {16,17,18} and φi = 0 otherwise).

2) Time optimal trajectories with systems quadrotor with
pendulum or arm: Optimal time trajectories for the tasks
presented in Tab. I are visible in the attached video.

3) Model Predictive Control (MPC): To speed up calcu-
lation when using the algorithm as MPC, the cost function
is simply set as∫ T

0
(xq− xgoal)

TC1(xq− xgoal)+Ω
T
q C2Ωq

where the term ΩT
q C2Ωq is used for stabilization of the

trajectory and C1, C2 are weighting matrices. For this test,
each 0.2 second a new control is found using the first
iteration of a SQP solving a multiple shooting problem of 20
nodes over a 8 seconds sliding time window. The time used
to perform one SQP iteration is variable according to the
number of QP iterations but here, each SQP iteration took

Fig. 3: Trajectory of the quadrotor using MPC formulation.
The blue ellipses represent the obstacle avoidance con-
straints.

about 0.1 second. This delay is not taken into account in the
simulation but on a real application, MPC can use techniques
like delay compensation [25] to compensate delays between
measures of the state and computation of controls. In the
attached video, MPC stability is tested with wind gusts (wind
gusts are modeled as a constant piecewise force acting on the
quadrotor and no estimation of the perturbation is inserted
into the model).

C. Point-to-point Trajectories Through Obstacles

1) Time optimal trajectories through obstacles: The at-
tached video shows optimal time trajectories with obstacle
avoidance for the three systems.

To simplify constraints with system quadrotor with arm,
we suppose that the distance between the obstacle and its
constraints is set to be always greater than the length of the
arm so the obstacle constraints are only applied on center of
mass of the quadrotor.

2) MPC: By using simple ellipsoidal constraints for the
obstacles, checking those constraints is fast enough to be
done online (Fig. 3).

3) Going through a window: In this experiment, we
ask the quadrotor with pendulum system to go through
a window while carrying a load (mp = 0.45). Since the
window height (2[m]) is smaller than the pendulum length
(4[m]), the quadrotor has to find a solution where it swings
up the pendulum to get through. The window is supposed
infinitely large so only the top and bottom part are modeled
as obstacles i.e using ellipsoid constraints. No guess are used
(the initial guess is a static trajectory at the initial position)
so the algorithm is free to find the best solution according
the cost function. The trajectory needs to be able to spread
through the window, so no terminal constraints are set on the
pendulum state and the terminal constraint that the system
should be static is only apply on the quadrotor.

In this test, the cost function corresponds to the squared
distance between the goal position (which is at the other
side of the window) and the quadrotor final position E(x) =

Fig. 4: Trajectories of the system quadrotor and pendulum
(mq = 0.45[kg]) while going through a window with terminal
cost.

Fig. 5: Influence of the cost function on going through a
window trajectory. In red, the trajectory using terminal cost
function, in blue the one with integral cost function.

C3||xq(T)−xgoal ||2. In this case, the quadrotor starts to move
back and forth till the pendulum swings high enough to
get through the window (Fig. 4, computation time : 10.3
seconds).

In the second test, a running cost is added L(x,u) =∫ T
0 C4||xq(t)− xgoal ||2dt. Here, moving backward at the be-

ginning of the trajectory is costly so instead of moving back
and forth, the algorithm is able to find a solution where
the quadcopter is moving from left to right to swing the
pendulum up. (Fig. 5). This kind of behavior wouldn’t be
possible if we were using waypoints as in [7] because it
would restrict the solution to the one encoded by the way-
points.

D. Pick and Place

In this part, system starts and ends at chosen positions
and, on its way, has to pick an object at a certain position
then place it to an other one. No obstacles are added to the
problem so the object is considered as flying in the air. The

Fig. 6: Trajectory of the quadrotor and its pendulum for
picking task.

task is encoded as follow: the initial and final states are set
using initial and final constraints and picking/placing tasks
are encoded using the cost function

L(x,u) =
ρ√
2π

e
ρ2(t−Tpick)

2

2 (∆xT
pickC5∆xpick + ẋT

eeC6ẋee) (5)

+
ρ√
2π

e
ρ2(t−Tplace)

2

2 (∆xT
placeC7∆xplace + ẋT

eeC8ẋee) (6)

+uTC5u

∆xpick = (xee− xpick)

∆xplace = (xee− xplace)

where xee is the position of the end-effector, xpick and xplace
are respectively the positions where the system needs to
take and leave the object and Ci are weigthing matrices. ρ

allows to manage the duration during which the end-effector
needs to be at the picking/placing positions and Tpick, Tplace
are parameters that correspond to the time when object is
picked/placed. Terms ẋeeCiẋee are used to stabilize the end-
effector on the desired position instead of moving around.

For the quadrotor with pendulum, we suppose that the
object which needs to be moved has a mass mo = 0.55[kg].
Therefore, the mass at the bottom of the pendulum will
increase from mq = 0.05[kg] to mq = 0.6[kg] when picking
then back to mq = 0.05[kg] after releasing the object. So
mass is set as a trapezoidal function where the slop lasts
one interval of the time grid. Fig. 7 shows trajectory of the
system when picking the object : by swinging the pendulum
then drawing an arc of circle around a position, the quadrotor
is able to keep the bottom of the pendulum around the same
place even if its mass changes. To get a nice behavior like
this with a under actuated system, the optimization needs to
have enough degrees of freedom so the time grid is set as
60 nodes over a 8 seconds trajectory.

For the system quadrotor plus arm, we consider that the
object has a weight which is light enough to be neglected.
Therefore, the system keeps the same dynamic during the

Fig. 7: Trajectories of the pendulum for picking and placing
task.

Fig. 8: Error between picking/placing position and the end-
effector position. At the top, error for system quadrotor and
pendulum, at the bottom, error for system quadrotor and arm.
Time scale is centered on the picking/placing time.

whole trajectory and Tpick and Tplace can easily be included
in the optimization, so they are set as free parameters with
constraints that 0 < Tpick < Tplace < T and will be optimized
by the algorithm. This system has much more actuated
degrees of freedom than the last one, thus the algorithm is
able to find a end-effector position with a much smaller error
(Fig. 8) even with a rougher time grid i.e 20 nodes over a
8 seconds trajectory. Fig. 9 shows that the algorithm is able
to exploit the full dynamic of the system: when performing
the picking/placing, the arm is able to compensate for the
motion of the quadrotor so it does not need to be in hovering
state. For those tests, the algorithm does not only solve a
task of placing the end-effector at certain positions, at certain
times but also tries to keep it as close as possible, as long as
possible. Therefore, the shape of the cost function is much
more complex and the algorithm needs a lot of iterations to
converge a suitable solution (250 SQP iterations so about 7
minutes for both systems).

Fig. 9: End-effector and quadrotor trajectories for system
quadrotor and arm solving the ”pick and place” task.

E. Manipulation Tasks

In the Pick and Place experiment, time varying functions
(5) (6) are used to specify way-points for the end-effector.
For more complex manipulation tasks, the cost function can
be used to set a complete reference trajectory for the end-
effector. As Pick and Place, the optimization needs several
minutes to converge to a acceptable solution but allows to
exploit the full system dynamic. The attached video shows
trajectories where the aerial manipulator is used to drag an
object or to turn a crank handle.

VI. CONCLUSIONS

In this paper, we investigated on how direct methods
of numerical optimal control can be exploited to plan and
control the motion of complex quadrotor based systems. We
empirically demonstrated that this approach is well suited to
address several typical problems of UAVs such as generating
and achieving aggressive maneuvers, generating oscillatory
patterns with a hanging load, dynamically moving through
an obstacle field and generating in-contact movements with
an aerial manipulator. In particular, we show that multiple-
shooting approaches are well suited to discover complex
trajectories around obstacles; and we dimensioned the com-
putational load using a prototype implementation (around a
few seconds of computations to compute a trajectory from
scratch, a tenth of a second to update a trajectory in MPC).
Although the computation cost are very satisfactory, we
were not able to set up MPC in a generic manner, apart
on the quadrotor alone. This is due to the choice of the
cost function, that should regularize the system movements
for MPC while we generally setup more aggressive cost
for exploration. We will now focus on the construction
of cost function more suitable for MPC along with their
implementation on physical robots.

APPENDIX

Quadrotor (values are taken from measures on our
own model): mq = 0.9[kg], distance between cen-ref

model
drone

ref
model
drone

ter of mass and rotor d = 0.25[m], Inertia Jq =

diag(0.018,0.018,0.026)[kg.m2], C f = 6.6×10−5, Cm = 1×
10−6, Vmoti ∈ [50,300][rad.s−1], V̇moti ∈ [−314,314][rad.s−1].
Quadrotor with pendulum : mp = 0.05[kg], L = 4[m]. Aerial
manipulator : mq = 40[kg], Jq = diag(10,10,20)[kg.m2], dis-
tance rotor to center of mass d = 1[m], fi ∈ [0,200][N], UR5
model taken from its official urdf file, Jmot = 5.10−6[kg.m2],
Kred = 250. Window : heigh h = 2[m]. Cost functions :
C1 = 10−3, C2 = 10−2, C3 = 10−1, C4 = 10−2, C5 =C7 = 10,
C6 =C8 = 1, ρ = 2 lien

vers
la
video

lien
vers
la
video

REFERENCES

[1] I. Palunko, R. Fierro, and P. Cruz. Trajectory generation for swing-
free maneuvers of a quadrotor with suspended payload: A dynamic
programming approach. In IEEE International Conference on Robotics
and Automation (ICRA), pages 2691–2697, May 2012.

[2] D. Zameroski, G. Starr, J. Wood, and R. Lumia. Rapid swing-free
transport of nonlinear payloads using dynamic programming. In
Journal of Dynamic Systems, Measurement and Control, volume 130,
page 041001, 2008.

[3] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia. Learning
swing-free trajectories for UAVs with a suspended load. In IEEE
International Conference on Robotics and Automation (ICRA), pages
4902–4909, May 2013.

[4] I. Palunko, A. Faust, P. Cruz, L. Tapia, and R. Fierro. A reinforcement
learning approach towards autonomous suspended load manipulation
using aerial robots. In IEEE International Conference on Robotics
and Automation (ICRA), pages 4896–4901, May 2013.

[5] K. Sreenath, N. Michael, and V. Kumar. Trajectory generation and
control of a quadrotor with a cable-suspended load – a differentially-
flat hybrid system. In IEEE International Conference on Robotics and
Automation (ICRA), pages 4888–4895, May 2013.

[6] S. Tang, K. Sreenath, and V. Kumar. Aggressive maneuvering of a
quadrotor with a cable-suspended payload. In Robotics: Science and
Systems, Workshop on Women in Robotics, Jul 2014.

[7] C. de Crousaz, F. Farshidian, M. Neunert, and J. Buchli. Unified
motion control for dynamic quadrotor maneuvers demonstrated on
slung load and rotor failure tasks. In IEEE International Conference
on Robotics and Automation (ICRA), pages 2223–2229, May 2015.

[8] D. Brescianini, M. Hehn, and R. D’Andrea. Quadrocopter pole
acrobatics. In IEEE/RJS International Conference on Intelligent
Robots and Systems (IROS), pages 3472–3479, Nov 2013.

[9] M. Orsag, C. Korpela, S. Bogdan, and P. Oh. Valve turning using
a dual-arm aerial manipulator. In International Conference on Un-
manned Aircraft Systems (ICUAS),, pages 836–841, May 2014.

[10] A.E Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, and R. Cano.
Control of an aerial robot with multi-link arm for assembly tasks. In
IEEE International Conference on Robotics and Automation (ICRA),
pages 4916–4921, May 2013.

[11] V. Ghadiok, J. Goldin, and W. Ren. Autonomous indoor aerial gripping
using a quadrotor. In IEEE/RJS International Conference on Intelligent
Robots and Systems (IROS), pages 4645–4651, Sep 2011.

[12] J. Thomas, J. Polin, K. Sreenath, and V. Kumar. Avian-inspired
grasping for quadrotor micro uavs. In ASME International Design
Engineering Technical Conference (IDETC), Aug 2013.

[13] G. Arleo, F. Caccavale, G. Muscio, and F. Pierri. Control of quadrotor
aerial vehicles equipped with a robotic arm. In Mediterranean
Conference on Control Automation (MED), pages 1174–1180, Jun
2013.

[14] G. Garimella and M. Kobilarov. Towards model-predictive control for
aerial pick-and-place. In IEEE International Conference on Robotics
and Automation (ICRA), pages 4692–4697, May 2015.

[15] Y. Tassa, T. Erez, and E. Todorov. Synthesis and stabilization
of complex behaviors through online trajectory optimization. In
IEEE/RJS International Conference on Intelligent Robots and Systems
(IROS), pages 4906–4913, Oct 2012.

[16] M. Diehl, H.G. Bock, H. Diedam, and P.-B. Wieber. Fast direct
multiple shooting algorithms for optimal robot control. In Fast Motions
in Biomechanics and Robotics, volume 340, pages 65–93, 2005.

[17] P. Bouffard and S. Waslander. A hybrid randomizednonlinear program-
ming technique for small aerial vehicle trajectory planning in 3d. In
IEEE/RJS International Conference on Intelligent Robots and Systems

(IROS), 3rd Workshop on Planning, Perception and Navigation for
Intelligent Vehicles (PPNIV), pages 63–68, Oct 2009.

[18] C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager. Complementary
Condensing for the Direct Multiple Shooting Method. In Modeling,
Simulation, and Optimization of Complex Processes, pages 195–206,
2012.

[19] J. Nocedal and S. J. Wright. Numerical Optimization. 2nd edition,
2006.

[20] L. Benziane. Attitude estimation & control of autonomous aerial
vehicles. PhD thesis, June 2015.

[21] R. Featherstone. Rigid Body Dynamics Algorithms. 2007.
[22] N. Mansard, J. Carpentier, and F. Valenza. Pinocchio : Dy-

namic computations using spatial algebra. https://github.com/stack-
of-tasks/pinocchio.

[23] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – An Open
Source Framework for Automatic Control and Dynamic Optimization.
volume 32, pages 298–312, 2011.

[24] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea. Quadcopter perfor-
mance benchmarking using optimal control. In IEEE/RJS International
Conference on Intelligent Robots and Systems (IROS), pages 5179–
5186, Sep 2011.

[25] M. Diehl, H.J. Ferreau, and N. Haverbeke. Efficient numerical methods
for nonlinear mpc and moving horizon estimation. In Nonlinear Model
Predictive Control, volume 384, pages 391–417, 2009.

