Provenance-Based Quality Assessment and Inference in Data-Centric Workflow Executions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Provenance-Based Quality Assessment and Inference in Data-Centric Workflow Executions

Clément Caron
  • Fonction : Auteur
  • PersonId : 971485
Bernd Amann
Camelia Constantin
Patrick Giroux
  • Fonction : Auteur
André Santanchè
  • Fonction : Auteur

Résumé

In this article we present a rule-based quality model for data centric workflows. The goal is to build a tool assisting workflow designers and users in annotating, exploring and improving the quality of data produced by complex media mining workflow executions. Our approach combines an existing fine-grained provenance generation approach [3] with a new quality assessment model for annotating XML fragments with data/application-specific quality values and inferring new values from existing annotations and provenance dependencies. We define the formal semantics using an appropriate fixpoint operator and illustrate how it can be implemented using standard Jena inference rules provided by current semantic web infrastructures.
Fichier non déposé

Dates et versions

hal-01213301 , version 1 (08-10-2015)

Identifiants

Citer

Clément Caron, Bernd Amann, Camelia Constantin, Patrick Giroux, André Santanchè. Provenance-Based Quality Assessment and Inference in Data-Centric Workflow Executions. OTM 2014 Conferences - Confederated International Conferences: CoopIS, and ODBASE 2014, Oct 2014, Amantea, Italy. pp.130-147, ⟨10.1007/978-3-662-45563-0_8⟩. ⟨hal-01213301⟩
135 Consultations
0 Téléchargements

Altmetric

Partager

More