
HAL Id: hal-01213280
https://hal.science/hal-01213280v1

Submitted on 30 Jun 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing the Number of Queries in Interactive Value
Iteration

Hugo Gilbert, Olivier Spanjaard, Paolo Viappiani, Paul Weng

To cite this version:
Hugo Gilbert, Olivier Spanjaard, Paolo Viappiani, Paul Weng. Reducing the Number of Queries in
Interactive Value Iteration. 4th International Conference on Algorithmic Decision Theory (ADT 2015),
Sep 2015, Lexington, KY, United States. pp.139-152, �10.1007/978-3-319-23114-3_9�. �hal-01213280�

https://hal.science/hal-01213280v1
https://hal.archives-ouvertes.fr

Reducing the Number of Queries
in Interactive Value Iteration

Hugo Gilbert1, Olivier Spanjaard1, Paolo Viappiani1, Paul Weng2,3
1Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606,

Paris, France
2SYSU-CMU Joint Institute of Engineering, Guangzhou, China

3SYSU-CMU Shunde International Joint Research Institute, Shunde,
China

{hugo.gilbert,olivier.spanjaard,paolo.viappiani}@lip6.fr,
paweng@cmu.edu

Abstract. To tackle the potentially hard task of defining the reward
function in a Markov Decision Process (MDPs), a new approach, called
Interactive Value Iteration (IVI) has recently been proposed by Weng and
Zanuttini (2013). This solving method, which interweaves elicitation and
optimization phases, computes a (near) optimal policy without knowing
the precise reward values. The procedure as originally presented can be
improved in order to reduce the number of queries needed to determine
an optimal policy. The key insights are that 1) asking queries should be
delayed as much as possible, avoiding asking queries that might not be
necessary to determine the best policy, 2) queries should be asked by fol-
lowing a priority order because the answers to some queries can enable
to resolve some other queries, 3) queries can be avoided by using heuris-
tic information to guide the process. Following these ideas, a modified
IVI algorithm is presented and experimental results show a significant
decrease in the number of queries issued.

1 Introduction

In problems of sequential decision-making under uncertainty, an agent
has to repeatedly choose according to her current state an action whose
consequences are uncertain in order to maximize a certain criterion in
the long run. Such problems can be represented as Markov Decision Pro-
cesses (MDPs) [9]. In this model, the outcome of each action is stochastic
and numeric rewards are granted each time an action is performed. The
numerical values of rewards are defined either by the environment or by a
human user and the goal of the agent is to choose a policy (which specifies
which action to take in every state) such as to maximize the expectation
of the discounted sum of future rewards. The latter case, where a human
must specify the reward values, represents a difficulty when using MDP

methods as this task can be cognitively hard, even for an expert user. And
yet, it is well known that the optimal policy is extremely sensitive to the
numerical reward values. This problem has motivated much work aim-
ing at mitigating the burden of defining precisely the reward function. In
the literature, four main approaches can be distinguished, although their
boundaries may be blurry.

Robust approach. In the first approach, the parameters of the MDP
(i.e., rewards and possibly also probabilities) are assumed to be impre-
cisely known. A natural way [2, 7] to handle such situation is to search
for robust solutions, i.e., solutions that are as good as possible even in
the worst case. However, this method often leads to solutions that are too
pessimistic. A better approach is based on minimax regret [20]. Here, one
tries to minimize the gap between the value of the best policy (after the
true reward values are revealed) and that of the chosen policy. However,
this leads to NP-hard problems.

Non standard decision criterion. A second approach is to change the
decision criterion optimized by the agent. Different criteria have been pro-
posed. For instance, Delage and Mannor [6] proposed to use a criterion
based on quantiles (on distributions over history values). Unfortunately,
by changing the decision criterion, one loses all the nice properties sat-
isfied by the standard criterion (e.g., existence of an optimal stationary
deterministic policy). Weng [16, 17] proposed two new decision criteria
that could be used when only the order over rewards, but not the exact
values, is known. In both cases, all or some of the nice properties of the
standard criterion are preserved. However, those approaches have not yet
been experimentally evaluated.

Preference learning. Another approach, which has been mainly devel-
oped for reinforcement learning (i.e., a context more general than MDP),
aims at learning the reward values, either from demonstrations (live [1] or
from recorded logs [8]) or from interactions with a human tutor [15]. One
drawback of this approach is that it generally assumes that demonstra-
tions from human tutors can be easily translated into the state/action
representation of the learning agent, which may be difficult as humans
and agents evolve in different state/action spaces.

Preference elicitation. A final approach assumes a human tutor is
present and the agent may query her to get more precise information
about reward values. In a series of papers, Regan and Boutilier [10–13]
show how to compute policies which optimize minmax regret with respect
to all candidate functions, and discuss how this criterion can be used to
generate informative queries to ask the tutor about the true reward func-

tion. Iteratively issuing such queries is shown to allow convergence to the
optimal policy for this function. However the problem of computing such
robust policy reveals to be NP-hard [20] and their algorithm issues bound
queries which can be cognitively difficult to answer. Following the same
line of research, Weng and Zanuttini [18], revisited a well known algo-
rithm for solving MDPs, Value Iteration, by incorporating the elicitation
process in the solving procedure. In this new algorithm called Interactive
Value Iteration (IVI), a human tutor is queried about multi-sets of re-
wards when the information acquired so far does not allow to continue
solving the MDP. This procedure is appealing as answering comparison
queries is much less cognitively demanding than giving the reward func-
tion to optimize. However, the original IVI procedure does not try to
explicitly minimize the number of queries issued and may lead to a pro-
hibitive effort for the tutor.

In this paper, we address the problem of modifying IVI in order to
reduce the number of queries issued. To that aim, we propose a variation
of IVI based on the ideas that 1) delaying the queries open the possi-
bility that some of them meanwhile become unnecessary, 2) the order in
which the queries are asked matters, and this order should be optimized,
3) queries can be avoided by using heuristic information to guide the it-
eration process. We show empirically that these combined techniques can
greatly reduce the number of queries issued.

The paper is organized as follows. After recalling the main features of
interactive value iteration (Section 2), we present our proposed optimiza-
tions (Section 3). Finally, we provide the results of numerical tests that
show a significant decrease in the number of queries issued (Section 4).

2 Background

2.1 Markov Decision Process

A Markov Decision Process (MDP) [9] is defined by a tupleM = (S,A,p,r,
γ) where S is a finite set of states, A is a finite set of actions, p : S ×
A→ P(S) is a transition function with P(S) being the set of probability
distributions over states, r : S×A→ R is a reward function and γ ∈ [0, 1[
is a discount factor.

A (stationary, deterministic) policy π : S → A associates an action to
each state. Such a policy is evaluated by a value function vπ : S → R and

a Q-function, Qπ : S ×A→ R defined as follows:

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (1)

Qπ(s, a) = r(s, a) + γ
∑
s′∈S

p(s, a, s′)vπ(s′) (2)

Then a preference relation is defined over policies by: π % π′ ⇔ ∀s ∈
S, vπ(s) ≥ vπ′(s). A solution to an MDP is a policy, called optimal policy,
that ranks the highest with respect to %. Such a policy can be found by
solving the Bellman equations.

v∗(s) = max
a∈A

r(s, a) + γ
∑
s′∈S

p(s, a, s′)v∗(s′) (3)

As can be seen, the preference relation % over policies is directly induced
by the reward function r. In a setting where the reward function is not
known with certainty, taking the maximum over actions (as done in (3))
can be problematic. In this paper we will query ordinal information from
a tutor to unveil the maximal actions.

2.2 Ordinal Reward MDP

In this paper, while the rewards’ numerical values are assumed to be
unknown, we suppose that the order over rewards is given. Such situation
can be represented as an Ordinal Reward MDP (ORMDP) [16] defined
by a tuple (S,A, p, r̂, γ) where the reward function r̂ : S × A → E takes
its values in a set E = {r1 < r2 . . . < rk} of unknown ordered rewards.

In order to count the number of each unknown reward obtained by
a policy, an ORMDP can be reformulated as a Vector Reward MDP
(VMDP) (S,A, p, r, γ) where r(s, a) is the vector in Rk whose ith com-
ponent is 1 for r̂(s, a) = ri, and 0 on the other components. Like in
standard MDPs, in such a VMDP we can define the value function vπ

and the Q-function Q
π

of a policy π by :

vπ(s) = r(s, π(s)) + γ
∑
s′∈S

p(s, π(s), s′)vπ(s′) (4)

Q
π
(s, a) = r(s, a) + γ

∑
s′∈S

p(s, a, s′)vπ(s′) (5)

where additions and multiplications are componentwise. The i-th com-
ponent of a vector v ∈ Rk can be interpreted as the expected number of
unknown reward ri.

Therefore, a value function in a state can be interpreted as a multi-set
or a bag of elements of E. Now comparing policies amount to comparing
vectors. Interactive value iteration [18] is a procedure inspired from value
iteration to find the optimal policy according to the true unknown reward
function by querying when needed an expert for comparisons of two bags
of elements of E. We present in the next section how this algorithm works.

2.3 Interactive Value Iteration

In order to find an (approximate) optimal policy for an ORMDP with
an initially unknown preference relation over vectors, Weng and Zanut-
tini [18] developed a variant of value iteration, named Interactive Value
Iteration (IVI), where the agent may ask a tutor which of two sequences
of rewards should be preferred. An example of query is “r1 + r3 ≥ 2r2?”,
meaning “is receiving r1 and r3 as good as receiving 2r2?”. As the tutor
answers queries, the set of admissible reward functions shrinks and more
vectors can be compared without querying the tutor.

At the beginning of the process, the agent only knows the order over
rewards, i.e., r1<r2<. . .<rk, and knows that she can set without loss of
generality r1 to 0 and rk to 1 [17]. This initial knowledge is represented by
a set K of linear constraints. When having to choose the best of two value
vectors v and v′ in a given state (see Algorithm 2), function StDom(v, v′)
compares the two vectors with respect to the following dominance relation
(which is analogous to stochastic dominance):

∀j = 1, . . . , k
k∑
i=j

vi ≥
k∑
i=j

v′i (6)

In case no dominance is found, the next step is to check whether one of
the two vectors is necessarily preferred to the other given the constraints
in K. The function KDom(v, v′) checks whether v is not less preferred
than v′ (denoted by v � v′) by solving the following linear program:

z∗K = min (v − v′) · r (7)

s.t. r ∈ C(K) (8)

where the dot in (7) denotes the inner product and C(K) the set of reward
functions r = (r1, . . . , rk) satisfying all constraints in K. We distinguish
the following three cases: 1) A non-negative optimal value for the objective
function z∗K implies that for any possible reward function, v � v′; v is then
said to KDominate v′. 2) In case of negativity of the optimal value z∗K ,

KDom(v′, v) is called to check if v′ � v for all reward function satisfying
constraints in K. 3) If the two vectors can still not be compared, the
tutor is asked which of v or v′ should be preferred. A query is a 2-subset
{v, v′} from which the tutor picks her preferred element (if indifferent,
she arbitrarily picks one of them). If she picks v, then v � v′, otherwise
v′ � v. If v � v′ (resp. v′ � v), then the new constraint (v − v′).r ≥ 0
(resp. (v′ − v).r ≥ 0) is added to K.

Algorithm 1 summarizes the IVI procedure. It uses the functions Init,
that returns the initial set K of linear constraints induced by r1<. . .<rk,
and getBest (Algorithm 2) that returns the best of two vectors. The
function getBest calls first function StDom, then function KDom, and
finally function query (Algorithm 3) if no dominance is found. Note
that StDom(v, v′)=KDom(v, v′) for initial set K, and that StDom(v, v′)⇒
KDom(v, v′) in all cases. Nevertheless, the IVI procedure takes advantage
of the computational efficiency of StDom to save some calls to KDom.

Weng and Zanuttini [18] showed that the number of queries used by
IVI is polynomial in the size of the MDP. However, as the tutor is queried
each time two vectors cannot be compared, it seems that a more sophisti-
cated approach could greatly reduce the number of queries needed by the
algorithm. In the next section, we propose a modified version of IVI that
integrates several techniques in order to reduce the number of queries.

Algorithm 1: IVI [18]

Data: S,A, p, r̂, γ, E, ε
Result: vt

1 t← 0
2 compute r from r̂
3 K ← Init(E)
4 for s ∈ S do v0(s)← (0, . . . , 0)
5 repeat
6 t← t+ 1
7 for s ∈ S do
8 best← (0, . . . , 0)
9 for a ∈ A do

10 v ← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

11 (best,K)←
getBest(best, v,K)

12 vt(s)← best

13 until ||vt − vt−1|| < ε
14 return vt

Algorithm 2: getBest

Data: v, v′,K
Result: (v,K)
if StDom(v, v′) then return (v,K)
if StDom(v′, v) then return (v′,K)
if KDom(v, v′,K) then return (v,K)
if KDom(v′, v,K) then return
(v′,K)
(best,K)← query(v, v′,K)
return (best,K)

Algorithm 3: query

Data: v, v′,K
Result: (v,K)
Ask query {v, v′}
if v � v′ then

return (v,K ∪ {(v − v′).r ≥ 0})
else

return (v′,K ∪ {(v′ − v).r ≥ 0})

3 Modified Interactive Value Iteration

Interactive Value Iteration is appealing for users as answering comparison
queries is significantly less cognitively demanding than directly defining
the reward function. And yet to be a reasonable alternative, the number
of queries needs to be as low as possible. As stated in the introduction,
several ideas are investigated to address this problem: 1) delaying queries
in order to avoid asking some unnecessary queries; 2) prioritizing queries
in order to ask the most informative ones first; 3) allowing small mis-
takes in the dominance tests in the early stages in order to anticipate the
shrinking of the set of admissible reward functions.

3.1 Delaying the queries

In Algorithm 1, the tutor is queried whenever two vectors v and v′ cannot
be compared. The intuition behind the improvement that we propose is
that by delaying the query phase after all vectors (each vector refers to a
possible action in a given state) are generated we might benefit from the
fact that new dominance relations might appear later on. Indeed when
trying to assess which of three vectors v1, v2, and v3 is the best, we may
be able to find that v3 dominates both v1 and v2; this is enough for us,
even if we ignore which is better between v1 and v2. Therefore querying
which of v1 and v2 is best, as would do Algorithm 1, is unnecessary. Thus,
delaying the querying step from the loop over actions will prevent asking
some unnecessary queries. For this purpose, we replace Lines 8 to 13 in
Algorithm 1 by the following lines:

for s ∈ S do

Q(s)← ∅
for a ∈ A do

Q(s, a)← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

Q(s)← Q(s)∪{Q(s, a)}
Q(s)← StDFilter(Q(s))
Q(s)← KDFilter(Q(s))
while |Q(s)| > 1 do

Let {v, v′} ⊆ Q(s)
(,K)← query(v, v′,K)
Q(s)← KDFilter(Q(s))

vt(s)←unique vector of
Q(s)

for s ∈ S do

Q(s)← ∅
for a ∈ A do

Q(s, a)← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

Q(s)← Q(s)∪{Q(s, a)}
Q(s)← StDFilter(Q(s))
Q(s)← KDFilter(Q(s))
while |Q(s)| > 1 do

Let {v, v′} ⊆ Q(s)
(,K)← query(v, v′,K)
Q(s)← KDFilter(Q(s))

vt(s)←unique vector of
Q(s)

where primitives StDFilter and KDFilter are given in Algorithms 4 and 5:
the former checks the dominance described by Equation 6 for each pair of
vectors v, v′ in Q and returns the set of undominated vectors; the latter
does the same thing for K-dominance.

Basically, Q(s) is a set of vectors (discounted collections of unknown
rewards) associated to a state s while Q(s, a) is related to the value of
taking an action a in state s. As in the original IVI, we filter out dominated

and K-dominated vectors before starting the querying phase. Finally, in
the while loop we query the user about pairs of non-dominated vectors
in Q(s) until Q(s) contains a single element, that is assigned to vt(s)
in the last line. This idea of delaying the queries can be pushed further
by delaying the querying phase out of the loop over states or by waiting
several time steps before asking queries. We will return to this point when
discussing future works in Section 5.

Algorithm 4: StDFilter

Data: Q
Result: Filtered Q
for v ∈ Q do

for v′ ∈ Q with v 6= v′ do
if StDom(v, v′) then
Q← Q \ {v′}

return Q

Algorithm 5: KDFilter

Data: Q
Result: Filtered Q
for v ∈ Q do

for v′ ∈ Q with v 6= v′ do
if KDom(v, v′) then
Q← Q \ {v′}

return Q

3.2 Prioritizing the queries

By delaying the queries out of the loop over actions and even out of the
loop over states, one can choose to ask queries in a different order than
the sequential one induced by the original IVI procedure. Certainly this
order will count as queries are not all equally informative. Thus queries
that we presume might solve many others should be asked first. Defining
a relevance score to guide the querying process seems to be a promising
technique to curb the number of queries necessary to solve the MDP. For
this purpose, we now replace Lines 8 to 13 in Algorithm 1 by the following
lines:

for s ∈ S do

Q(s)← ∅
for a ∈ A do

Q(s, a)← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

Q(s)← Q(s)∪{Q(s, a)}
Q(s)← StDFilter(Q(s))
Q(s)← KDFilter(Q(s))

Queries←
⋃
s

{{v, v′}⊆Q(s):v 6=v′}

while Queries 6= ∅ do
{v, v′} ← arg max{X -
score({v, v′}) : {v, v′} ⊆
Queries}
(,K)← query(v, v′,K)
for s ∈ S do Q(s) =
KDFilter(Q(s))
Queries←

⋃
s

{{v, v′} ⊆

Q(s) : v 6= v′}

for s ∈ S do

Q(s)← ∅
for a ∈ A do

Q(s, a)← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

Q(s)← Q(s)∪{Q(s, a)}
Q(s)← StDFilter(Q(s))
Q(s)← KDFilter(Q(s))

Queries←
⋃
s

{{v, v′}⊆Q(s):v 6=v′}

while Queries 6= ∅ do
{v, v′} ← arg max{X -
score({v, v′}) : {v, v′} ⊆
Queries}
(,K)← query(v, v′,K)
for s ∈ S do Q(s) =
KDFilter(Q(s))
Queries←

⋃
s

{{v, v′} ⊆

Q(s) : v 6= v′}

where function X -score (with X∈{Q,K,S}) is one of the priority func-
tions described below, the value of which is intended to reflect how infor-
mative a query is, and Queries is the set of all unsolved queries over S.

Note that here the best vector returned by query(v, v′,K) does not need
to be saved.

To define priority functions evaluating the informative value of a
query, several methods could be considered. Here we propose two types
of heuristics. The first type aims at reducing as much as possible the set
of remaining unsolved queries (i.e., focusing on the impact on the cardi-
nality of Queries, the set of unsolved queries) while the second type tries
to reduce as much as possible the set of admissible reward functions (i.e.,
focusing on the impact on the polytope C(K)).

Strategies aiming at reducing the cardinality of set Queries. Let {v, v′} be
a query. If we know that, for instance, v is preferred to v′, this induces an
additional constraint that reduces the polytope C(K). This new, smaller,
polytope may induce new relations of K-dominance — for instance, we
might be able to check that for all r ∈ C(K ∪ {v � v′}) a vector v1 is
preferred to another vector v2 — in other words the information carried
in an answer to a query can generalize to other queries. A natural idea
to evaluate the information value of a query is then to count the number
of queries that can be resolved if v � v′, the number of queries resolved
if, on the other hand, v′ � v and to take the minimum between the two
values.This relevance score will be called Q-score (Q for Queries). Let
Qval(v, v

′) be the number of queries decided if v � v′; then:

Q-score({v, v′}) = min{Qval(v, v′), Qval(v′, v)}. (9)

This idea is simple and natural but comes at the cost of solving 4(N − 1)
linear programs (one for each call to KDom) in the worst case if N is the
number of queries.

Strategies aiming at directly reducing polytope C(K). Another idea is to
use the optimal objective values given by procedure KDom. Consider a
query {v, v′} ∈ Queries. Let Kval(v, v′) be the optimal value of the linear
program described by Equations 7-8, normalized by ||v−v′||. Since neither
v nor v′ could be filtered, both Kval(v, v′) and Kval(v′, v) are necessarily
negative. We define the priority of query {v, v′} as

K-score({v, v′}) = min{|Kval(v, v′)|, |Kval(v′, v)|}. (10)

The idea of K-score is that Kval(v, v′) and Kval(v′, v) give us an approxi-
mation of the volume of the polytope on both sides of the constraint de-
fined by the query. Thus it is likely that a high K-score query will reduce
largely the polytope no matter the answer of the tutor. This alternative

has the benefits of its algorithmic simplicity. Indeed the computation of
Kval(v, v′) and Kval(v′, v) only requires to solve small linear programs.

Alternatively, following the same idea, we sampled rewards in the
admissible reward space (using a Gibbs sampler [5]). Let SR be the set of
samples generated and consider a query {v, v′} ∈ Queries. Let Sval(v, v′)
= |{r ∈ SR : (v − v′).r ≥ 0}|. We define the priority of query {v, v′} as
its S-score (S for sampling):

S-score({v, v′}) = min{Sval(v, v′),Sval(v′, v)}. (11)

The numbers of samples on each side of the hyperplane defined by the
query {v, v′} gives us an approximation of the volumes of the polytope on
each side of the query. Hence a query which has roughly 50% of samples
on both sides will approximately cut the polytope in two equal volumes
and it will be deemed a very informative query according to this strategy.
A similar idea was used by Rosenthal and Veloso [14] in a context where
rewards are a weighted sum of known subrewards and the elicitation pro-
cedure searches for the unknown weights.

3.3 Allowing small mistakes in the early stages

The modification of IVI we propose in this subsection aims at making
a compromise between the number of iterations of the procedure and
the number of queries issued. The idea is to take the “risk” of slowering
convergence by avoiding as much as possible to ask queries in the early
stages. For this purpose, the condition z∗K ≥ 0 in function KDom (we
recall that z∗K corresponds to the optimal value of program (7-8)) is loos-
ened: a vector v′ is considered to be dominated if z∗K ≥ − err(t), where
err(t) ≥ 0 is a function that decreases to 0 with t. Clearly, this trick has
the potentiality to avoid many queries during the early stage with the
possible drawback of temporarily driving IVI towards a misleading direc-
tion. To insure that this modification will not prevent the algorithm to
converge towards the optimal value function, we modify the main loop of
IVI so that the algorithm will keep running until err(t) ≤ δ with δ << 1.

3.4 Synthesis

Algorithm 6 synthesizes our modifications to IVI. The initialization of the
algorithm (lines 1 to 4) is unchanged. The main loop (lines 5 to 22) iter-
ates until the value function converges to the optimal value function and
the err(t) function converges to 0. From line 7 to line 13, we fill the sets

of possible value vectors for each state by computing and appending the
Q-values of the corresponding state-action pairs (lines 7 to 11) and then
filter out the vectors (lines 12 and 13) that we already know are dominated
by using functions StDFilter (Algorithm 4) and KDFilter (Algorithm 5).
This latter algorithm now takes an extra parameter (i.e., err(t)) for imple-
menting the idea presented in the previous subsection. In the second part
of the loop we consider the set of all unsolved queries Queries composed
of pairs of non-dominated vectors of a same state. While there exists un-
solved queries we select and issue the most informative query (lines 16
and 17) using the priority score, X -score (X ∈ {Q,K,S}). Once the tutor
answered the query, the acquired information may enable to filter other
vectors (lines 18) thus reducing the number of unsolved queries (line 19).
Once all the queries are solved, each set Q(s) is composed of a single
element, corresponding to vt(s) (the value vector of s for the next time
step). The optimal value function for M = (S, A, p, r̂, γ) is returned.
By using standard bookkeeping techniques, we could return the optimal
policy as well.

Algorithm 6: Modified IVI

Data: S, A, p, r̂, γ, E, ε, err
Result: vt

1 t← 0
2 compute r from r̂
3 K ← Init(E)
4 for s ∈ S do v0(s)← (0, . . . , 0)
5 repeat
6 t← t+ 1
7 for s ∈ S do

8 Q(s)← ∅
9 for a ∈ A do

10 Q(s, a)← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

11 Q(s)←
Q(s) ∪ {Q(s, a)}

12 Q(s)←
StDFilter(Q(s))

13 Q(s)← KDFilter(Q(s),
err(t))

14 Queries←
⋃
s

{{v, v′}⊆

Q(s) :v 6=v′}
15 while Queries 6= ∅ do
16 {v, v′} ← arg max{X -

score({v, v′}) : {v, v′} ⊆
Queries}

17 (,K)← query(v, v′,K)

18 for s ∈ S do Q(s) =

KDFilter(Q(s), err(t))
19 Queries←

⋃
s

{{v, v′} ⊆

Q(s) : v 6= v′}
20 /*each Q(s) is now a

singleton*/
21 for s ∈ S do vt = Q(s)

22 until ||vt − vt−1|| < ε and
err(t) < δ

23 return vt

Data: S, A, p, r̂, γ, E, ε, err
Result: vt

1 t← 0
2 compute r from r̂
3 K ← Init(E)
4 for s ∈ S do v0(s)← (0, . . . , 0)
5 repeat
6 t← t+ 1
7 for s ∈ S do

8 Q(s)← ∅
9 for a ∈ A do

10 Q(s, a)← r(s, a) +
γ
∑

s′∈S p(s, a, s
′)vt−1(s′)

11 Q(s)←
Q(s) ∪ {Q(s, a)}

12 Q(s)←
StDFilter(Q(s))

13 Q(s)← KDFilter(Q(s),
err(t))

14 Queries←
⋃
s

{{v, v′}⊆

Q(s) :v 6=v′}
15 while Queries 6= ∅ do
16 {v, v′} ← arg max{X -

score({v, v′}) : {v, v′} ⊆
Queries}

17 (,K)← query(v, v′,K)

18 for s ∈ S do Q(s) =

KDFilter(Q(s), err(t))
19 Queries←

⋃
s

{{v, v′} ⊆

Q(s) : v 6= v′}
20 /*each Q(s) is now a

singleton*/
21 for s ∈ S do vt = Q(s)

22 until ||vt − vt−1|| < ε and
err(t) < δ

23 return vt

0 50 100 150 200 250 300
n

0

10

20

30

40

50

60

70

Q
u
e
ry

 n
u
m

b
e
r

Delayed + Q-Score

Delayed + K-Score

Delayed + S-Score

Fig. 1: Number of queries vs number of
states for each priority scores.

0 5 10 15 20 25 30
k

0

20

40

60

80

100

120

Q
u
e
ry

 n
u
m

b
e
r

Delayed + Q-Score

Delayed + K-Score

Delayed + S-Score

Fig. 2: Number of queries vs number of
rewards for each priority scores.

4 Numerical Tests

We tested our approach on three different domains: randomly generated
MDPs, autonomic computing [4] and a simulated setting of personalized
assistance to impaired people (Coach domain [3])1. The original IVI and
the improved version described in Section 3 were coded in python using
Gurobi 6.0 as an LP solver. The discount factor γ is set to 0.95, ε to 10−3,
δ to 10−7 and err(t) = e−t. The number of samples used by the S-score
is 5000. All numeric results are averaged over 20 runs.

Random MDPs. We first compared IVI and different variations of our
improved IVI on randomly generated MDPs; Given fixed n, m, k (the
numbers of states, of actions and of different types of rewards), we ran-
domly generate the transition function assuming that each pair (s, a) has
blog2(n)c successors (chosen uniformly from the set of states) and tran-
sition probabilities are obtained by sampling between 0 and 1 and then
normalizing. The type of reward of each pair (s, a) is picked from the
uniform categorical distribution r1, . . . , rk; the numerical values are ran-
domly generated in interval [0, 1] and reordered in order to be consistent.

In Figures 1 (the number of queries asked as a function of n; k = |E| is
fixed to 10 and m to 5) and 2 (the number of queries asked as a function
of the number |E| of different ordinal rewards; n is fixed to 50 and m to
5) we compare the different priority scores that can be used to choose the
next query to ask; the graph shows that all three techniques (Q-score,
K-score and S-score) are similarly effective with S-score performing best.

1 In both the autonomic computing domain and in Coach, we randomly generated the
transition values and the rewards in such a way to satisfy the constraints imposed
by the problem domain.

0 50 100 150 200 250 300
n

0

20

40

60

80

100

120

Q
u
e
ry

 n
u
m

b
e
r

Original

Delayed

Delayed + S-Score

Delayed + err

Delayed + S-Score + err

Fig. 3: Number of queries vs number of
states for different query strategies.

0 5 10 15 20 25 30
k

0

20

40

60

80

100

120

140

160

180

Q
u
e
ry

 n
u
m

b
e
r

Original

Delayed

Delayed + S-Score

Delayed + err

Delayed + S-Score + err

Fig. 4: Number of queries vs number of
rewards for different query strategies.

In Figure 3 we compare the impact of the different improvements that
we described in Subsections 3.1-3.3 with the performance of the original
IVI (k = |E| is fixed to 10 and m to 5). For the queries’ priority we focus
on the S-score since this seemed to be the best performing strategy. As
expected, IVI asks the highest number of queries (around 80 with 100
states; 120 with 300 states); delaying the moment of asking queries al-
ready gives a very significant advantage (around 60 and 85 queries for
100, 300 states). If we additionally ask queries according to the priority
induced by the S-score, the number of queries reduces even more (around
45 and 55 queries for 100, 300 states); but surprisingly this improvement
is less than the improvement obtained by the combination of delaying
the queries and the heuristic of allowing small errors in the initial iter-
ations.The best results are obtained by combining the S-score with the
“error” heuristic (about 40 queries with 300 states). Interestingly, with
our improvements, the number of queries asked by modified IVI grows
very slowly with respect to the number of states.

Figure 4 compares the same strategies but with different numbers of
rewards (i.e., k = |E|), the number of states n being fixed to 50 andm to 5.
By comparing Figure 3 with Figure 4 we can see that parameter k impacts
much more the number of queries than parameter n; especially when
considering the version of IVI including all our improvements (denoted
as “Delayed + S-score + err” in the plots).

Autonomic Computing. We also applied our algorithm on the domain
of autonomic computing [4]. In this domain, we assume there are κ ap-
plication server elements on which N available resources have to be as-
signed. A feasible allocation is an integer vector a = (a1, . . . , aκ) with∑κ

i=1 ai ≤ N . The client’s demand (changing over time) is an integer vec-
tor d = (d1, . . . , dκ) representing κ levels of demand in {1, . . . , D}. A state

of the MDP is a vector (a, d) defining current allocation and demand. An
action is the adoption of a new allocation m = (m1, . . . ,mκ). The reward
of taking action m in state (a, d) is r((a, d),m) = u(a, d)−c(a, d,m) where
u(a, d) =

∑κ
i=1 u(ni, di) is the sum of non-decreasing utility-functions

u(ai, di) and c(a, d,m) is the sum of the costs for removing a resource
unit from the server. An action deterministically sets the next allocation,
while the uncertainty about demands is stochastic and exogenous.

We ran IVI and modified IVIs on instances with κ = 2, N = 3 and
D = 3 (90 states and 10 actions). While the original IVI needs 188.7
queries to converge, by delaying the queries we reduce this number to
108.9. Prioritizing the order in which the queries are asked further reduces
the number of queries to 86.9. Finally by using the heuristic that allows
small mistakes in the first iterations of the algorithm, we only need to ask
66.3 queries.

Coach. Finally, we present our experimental results on the “Coach” do-
main [3]. In this problem, we provide assistance to a person with dementia
accomplishing a daily-life activity (e.g., handwashing) that is decomposed
into T = {0, . . . , l} phases. Different types of aids are available, modeled
by actions A = {0, . . . ,m}; a ∈ A is a form of assistance, each associated
with a different level of intrusiveness between 0 and m; 0 represents no
prompt (no aid is given), m−1 represents the most intrusive prompt and
m means that a caregiver has to be called. The goal is to aid the person
in completing the task, with enough aid but avoiding being too intrusive.

A state in the MDP is described as a tuple (t, d, f) where t ∈ T is the
current timestep, d ∈D={0, . . . , 5} is the delay (time already spent in the
current phase of the task) and f ∈ A is the last prompt used. Transitions
model the chance of “success”, i.e., the probability that the person moves
to the next phase. To model the effectiveness of the aid, at each phase
t < l of the task, the probability of success is increasing with the level of
intrusiveness of the action a; however the probability is decreasing with
d. The reward associated to taking action a in state (t, d, f) is defined
by r((t, d, f), a)=rgoal(t)+rprogress(d)+rdelay(d)+rprompt(a) where rgoal(t)
gives a large reward when the final phase is reached and 0 otherwise,
rprogress(d) is a small reward when passing to the next phase with no delay
and 0 otherwise, rdelay(d) and rprompt(a) are increasing cost functions.

We ran IVI and our improved versions of IVI on instances with l = 14
and m = 6 (630 states and 7 actions). The original version of IVI needed
169.9 queries to converge. By delaying the queries we reduced this number
to 114.7. Prioritizing the order in which the queries where issued curbed

this score to 77.9. Lastly by allowing small mistakes at the beginning of
the algorithm the number of queries issued decreased to 71.2.

5 Conclusion and Future Works

IVI is an appealing procedure that mitigates the burden of defining the
reward function of an MDP by interweaving the elicitation and resolution
phases. In order to find an optimal policy for an MDP, this procedure
queries the tutor about comparisons of multisets of rewards when needed.
This paper presents modifications to the original algorithm that are shown
to reduce substantially the number of queries issued. The main ideas of the
paper are that we can avoid unnecessary queries by delaying the querying
phase, and reasoning about the order in which we ask the query.

A natural extension of our work would be to explore new priority
scores to guide the querying process. For instance, a strategy alternative
to the ones proposed in Section 3.1 would be to work in the space of
differences of value vectors v − v′. Points v − v′ for which v � v′ (resp.
v′ � v) would be labelled + (resp. −) and an SVM method would be used
to find the hyperplane (going through point 0) best separating + and −
labels. The vector orthogonal to this hyperplane can be interpreted as the
most likely reward function given K. The next query would then be the
unsolved query closest to this hyperplane.

Additionally, we intend to delay even more the querying phase by
waiting several time steps before asking queries. In this setting (similar
to the one of multiobjective MDPs [19]), sets Q(s) would not reduce to
a singleton at the end of each iteration. Our preliminary results in this
direction (where we delay over 3 time steps) are promising and lead to an
even more important reduction of the number of queries. Indeed only ≈ 25
queries are needed to solve a random MDP with 50 states, 5 actions and
10 ordinal rewards (results averaged on 20 runs). However, the number
of possible value vector for each state can easily explode in this setting
and we need to adapt our algorithm to prevent this from happening.

Acknowledgments. Work supported by the French National Research
Agency through the Idex Sorbonne Universites, ELICIT project under
grant ANR-11-IDEX-0004-02.

References

1. Abbeel, P., Ng, A.: Apprenticeship Learning via Inverse Reinforcement Learning.
In: Proc. Twenty-first Inter. Conf. on Machine Learning. ICML ’04, ACM, New
York, NY, USA (2004)

2. Bagnell, J., Ng, A., Schneider, J.: Solving uncertain Markov Decision Processes.
Tech. rep., CMU (2001)

3. Boger, J., Hoey, J., Poupart, P., Boutilier, C., Fernie, G., Mihailidis, A.: A plan-
ning system based on Markov decision processes to guide people with dementia
through activities of daily living. IEEE Transactions on Information Technology
in Biomedicine p. 2006

4. Boutilier, C., Das, R., Kephart, J.O., Tesauro, G., Walsh, W.E.: Cooperative Ne-
gotiation in Autonomic Systems Using Incremental Utility Elicitation. In: In Pro-
ceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence. pp.
89–97 (2003)

5. Casella, G., George, E.I.: Explaining the Gibbs sampler. The American Statistician
46, 167–174 (1992)

6. Delage, E., Mannor, S.: Percentile optimization in uncertain Markov decision pro-
cesses with application to efficient exploration. In: ICML. pp. 225–232 (2007)

7. Givan, R., Leach, S., Dean, T.: Bounded-parameter Markov decision process. Artif.
Intell. 122(1-2), 71–109 (2000)

8. Piot, B., Geist, M., Pietquin, O.: Boosted and Reward-regularized Classification
for Apprenticeship Learning. In: 13th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2014). Paris, France (2014), (accepted,
to appear)

9. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1st edn. (1994)

10. Regan, K., Boutilier, C.: Regret-based Reward Elicitation for Markov Decision
Processes. In: Proceedings of the Twenty-Fifth Conference on Uncertainty in Arti-
ficial Intelligence. pp. 444–451. UAI ’09, AUAI Press, Arlington, Virginia, United
States (2009)

11. Regan, K., Boutilier, C.: Robust Policy Computation in Reward-Uncertain MDPs
Using Nondominated Policies. In: Fox, M., Poole, D. (eds.) AAAI. AAAI Press
(2010)

12. Regan, K., Boutilier, C.: Eliciting Additive Reward Functions for Markov Decision
Processes. In: Proceedings of the Twenty-Second International Joint Conference
on Artificial Intelligence - Volume Volume Three. pp. 2159–2164. IJCAI’11, AAAI
Press (2011)

13. Regan, K., Boutilier, C.: Robust Online Optimization of Reward-uncertain MDPs.
In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Three. pp. 2165–2171. IJCAI’11, AAAI Press (2011)

14. Rosenthal, S., Veloso, M.M.: Monte Carlo preference elicitation for learning addi-
tive reward functions. In: RO-MAN. pp. 886–891. IEEE (2012)

15. Thomaz, A., Hoffman, G., Breazeal, C.: Real-Time Interactive Reinforcement
Learning for Robots. In: AAAI Workshop Human Comprehensible Machine Learn-
ing. pp. 9–13 (2005)

16. Weng, P.: Markov Decision Processes with Ordinal Rewards: Reference Point-
Based Preferences. In: Proc. of the 21st Inter. Conf. on Automated Planning and
Scheduling, ICAPS 2011, Freiburg, Germany June 11-16, 2011 (2011)

17. Weng, P.: Ordinal Decision Models for Markov Decision Processes. In: ECAI 2012
- 20th Eur. Conf. on Artificial Intelligence. Including Prestigious Applications
of Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier,
France, August 27-31 , 2012. pp. 828–833 (2012)

18. Weng, P., Zanuttini, B.: Interactive Value Iteration for Markov Decision Processes
with Unknown Rewards. In: Rossi, F. (ed.) IJCAI. IJCAI/AAAI (2013)

19. White, D.J.: Multi-objective infinite-horizon discounted Markov decision processes.
Journal of Mathematical Analysis and Applications 89(2) (1982)

20. Xu, H., Mannor, S.: Parametric regret in uncertain Markov decision processes. In:
CDC. pp. 3606–3613. IEEE (2009)

