
Kayrebt: An Activity Diagram Extraction and
Visualization Toolset Designed for

the Linux Codebase
Laurent Georget Frédéric Tronel Valérie Viet Triem Tong

EPC CIDRE CENTRALESUPELEC/INRIA/CNRS/University of Rennes 1, Rennes, France
laurent.georget@irisa.fr, {frederic.tronel,valerie.viettriemtong}@centralesupelec.fr

Abstract—We present Extractor and Viewer, two tools from the
Kayrebt toolset. The former is a plugin for the Gnu Compiler
Collection (GCC) which builds pseudo-UML2 activity diagrams
from C source code. It is specifically designed to handle the Linux
kernel, a large and complex codebase. Use cases for this tool are
numerous. The diagrams extracted from the C source code can
be used to get a better insight of the control or data flow inside a
program, or to evaluate the complexity of a function at a glance.
Kayrebt::Viewer is a GUI designed for visualizing and navigating
between the diagrams to explore source code.

Index Terms—Activity Diagrams; Linux; Control Flow; Com-
pilation; GCC.

I. INTRODUCTION

As of version 4.0, published on April 13 2015, the Linux R©
codebase counted over 13,000,000 lines of code, most of
which are device drivers. Not accounting for the drivers, the
architecture-specific code and the common library functions, the
overall total is roughly 3,000,000. (These statistics have been
measured with cloc [1].) This represents a huge amount of code,
which becomes quickly overwhelming for any single analyst
wanting to get a complete understanding on a specific feature
or to chase down a bug impacting several submodules of the
kernel. Another problem is that although the Linux kernel obeys
to some norms, such as the Single UNIX R© Specification [2],
which incorporates POSIX, those specifications are written in
natural language and as such, can be incomplete or ambiguous,
or even not properly implemented.

To tackle both those problems, the massiveness of the
codebase and the lack of a proper semantics for some
operations, we propose the Kayrebt toolset. This toolset is
a collection of pieces of software designed to (1) extract
knowledge from the C code under the form of activity diagrams,
(2) equip those diagrams representing the code with a formal
semantics (that we will not describe here), and (3) visualize the
diagrams produced and navigate easily from any entry point
in the kernel.The main target of our tools are people seeking
to get a quick understanding of a feature without getting lost
in the codebase. This is particularly useful when exploring
architecture-specific details which makes the code intricated.

The Kayrebt toolset is composed of several independent yet
collaborating tools. We often refer to the components of the
toolset using the namespace-like notation Kayrebt::Component

in this document. For the visualization part of the toolset,
we can identify three major tools. The first one, Extractor, is
a plugin for the Gnu Compiler Collection [3] (GCC). It is
designed to extend the compilation process of GCC to extract
activity diagrams out of the source code functions. The second
one, Globsym, is used to build a database of functions exposed
in a source code, with their declaration location. The third
one, Viewer, is a Graphical User Interface that can be used to
navigate between the activity diagrams generated for a project’s
codebase. We used GCC because Kayrebt is a toolset we built
to analyse the Linux kernel. As of today, the official Linux
kernel working branch (the one maintained by Linus Torvalds,
responsible of the Linux project) relies heavily on some GCC
peculiarities and does not compile entirely with other compilers
such as LLVM. Of course, in our case, we focused on the
Linux kernel because we built the Kayrebt visualizing tools
for our specific needs but its conception is generic enough to
be reusabe in other projects. In particular, any project that can
be compiled with GCC can use Kayrebt, although the result is
optimized for C code.

In this paper, we present two tools: Kayrebt::Extractor
and Kayrebt::Viewer. The paper is organized as follows. In
section II, we compare different tools used to extract and
represent control flow graphs. Section III presents the design
and development principles of our tools. Section IV presents an
example of use of Kayrebt::Extractor whereas section V deals
with the use of Kayrebt::Viewer. Finally, section VI concludes
on our tools and give insight on future work.

II. RELATED WORK

Several tools exist to dump the control flow graph in an
activity diagram-like form out of source code but most of
them are dedicated to static analysis rather than visualization.
Although we did also built the Kayrebt toolset to perform static
analysis on the Linux kernel (we will not enter into details in
the present paper), we are also convinced that activity diagrams
can be a useful representation of a source code if they can be
automatically extracted from it and if they are navigable.

Interesting approaches include Moritz [4], an extension for
the documentation tool Doxygen, and Crystal FLOW [5],
among others. Contrarily to Flowgen, those tools generate
flowcharts directly from the source code. Crystal FLOW and



other similar approaches let the user see the code and the
flowchart side-by-side, which is really useful. Nevertheless, we
have found those tools to be limited in the case of very large
and complex code base such as Linux, which makes a heavy
use of macros. They present exactly the code written by the
developer, but in the case of Linux, because the code is highly
configurable at compile-time, this representation is not always
useful. For example, from all the code composing the entire
Linux codebase, only a small subset usually ends up in the
compiled kernel because the code corresponding to optional
features can be compiled out. To sum up, they are an exact
representation of the code written by the programmer instead
of a view of what is actually compiled by the compiler.

Another approach is Flowgen [6], a tool able to extract
activity diagrams from annotated C++ code. It is designed to
make high-level diagrams using specially-crafted comments in
the source code. Its main goal are documentation and easier
collaboration between specialists of the problem dealt with by
the program and skilled programmers, specialized in optimizing.
Although this approach is very interesting, our work is quite
different. With Kayrebt, we do not want to rely on human
comments but on the compiler’s understanding of the code.

III. DEVELOPMENT

Kayrebt::Extractor is a plugin designed and built for GCC
4.8 and Kayrebt::Viewer is a graphical Qt 4.8 application. They
are both developed in C++11.

A. GCC Internals

GCC is organized in compilation steps called passes. Each
step takes the output of the preceding step as input and process
it to produce a lower-level, more optimized, further from
the original source code and closer to the machine level,
representation of the code, until the final machine code. A
large part of the compilation process is independent both
from the input language and target architecture and consists
in optimizations and rewriting. GCC works on a per function
basis. Functions are first optimized locally and interprocedural
optimizations occur later in the compilation process. There
is no optimizations across compilation units at all by default,
although Link-Time Optimizations (LTO) can be optionally
enabled.

GCC has a fairly recent and rapidly-changing support for
plugins. The simplest class of plugins implements one or
several passes, which have to be inserted in the compilation
process, without changing the behaviour of other passes.
Plugins are typically used to implement new optimizations
or, like Kayrebt::Extractor, to instrument GCC and make
dumps of internal representations. Depending on where the
new pass is inserted, the internal data structures representing
the code under compilation differ. We implemented one main
pass to compute the activity diagram for the function under
compilation. We have several constraint on the position of
the pass. First, we want to represent only the code which is
actually executed (no dead branch, etc.). We also want the code

to remain human-readable (we want to avoid optimizations
that change the control flow too deeply such as loop unrolling
for instance). Finally, we want the flow graph to appear clearly
in the representation so that the activity diagram is a simple
translation of the Control Flow Graph (CFG) created by GCC.

B. Kayrebt::Extractor’s Pass Placement

The pass building the CFG in GCC is called cfg. Hooking
the plugin after this pass is interesting because it makes the
construction of the activity diagram easier. The CFG representa-
tion is maintained until the very last passes. However, the code
representation becomes quickly too far from the originally
human-written code to be considered a good visualization.
A few passes after the construction of the CFG, the code
is transformed into Static Single Assignment (SSA) form as
described in [7], [8]. In SSA form, every single variable is
assigned once and once only. This allows several optimization
through alias analysis, etc. In our case, this representation is
a problem because transforming the code so that it conforms
to the SSA property means modifying it too much to be a
usable visualization of the original code. So, we chose to hook
our plugin just before the change to SSA form. This tradeoff
between the proximity to the compiler’s vision of the code and
the understandability for the user is the key idea of Kayrebt’s
design.

Optimizations made before this point include some dead
code elimination, which is useful for us. Furthermore, there are
no complex operations involving long arithmetic or boolean
expressions at this point, all the code is in a three addresses
form. One problem is that even before the compilation per se
starts, the code is preprocessed: macros are replaced, files are
included in the compilation unit, etc. On one hand, this is a
good thing because macros can be used to extend the syntax of
the language in an uncontrolled manner and unrolling them is
necessary to represent the actual code, i.e. the code the compiler
is going to process. On the other hand, macros are heavily
used in C projects to manipulate constant values. Replacing
their name by their value makes the diagrams less readable,
especially if the value is meaningless (error codes fall in this
category for instance).

C. Plugin Architecture

Extractor relies on a external library, called libactdiags (also
part of the Kayrebt toolset), which is usually packaged along
with Kayrebt::Extractor. This library contains the representation
of the activity diagrams as well as methods to build them
incrementally and output them in a specified format. For
now, the only format available is Graphviz [9]. The plugin is
divided in three modules: the entry point, the administrative
module, and the plugin core. The plugin entry point is the
interface with GCC. Its role is to install the new pass in
the GCC compilation process. The administrative module is
composed of a Configurator class handling the configuration of
the plugin (which can be specified by the command line or via
a configuration file) as well as classes that improve the activity



diagrams generated. Finally, the core is composed of classes
mapping the CFG built by GCC for its normal compilation
process into an activity diagram.

IV. ACTIVITY DIAGRAMS EXTRACTION WITH
KAYREBT::EXTRACTOR

Kayrebt::Extractor provides the user with a view of the
software under development or analysis. This view can be
customized through configuration. The configuration is a simple
YAML file. The listing 1 is an example of valid configuration.
The configuration is split up in various sections: one section
called “general” and one section for each compilation unit.
Kayrebt::Extractor can function in two modes. In the greedy
mode, it will generate an activity diagram for every function
it meets. In the non-greedy-mode, the functions to graph have
to be specified for each compilation unit. It is possible to
configure the location of the configuration file by passing an
argument to GCC for the plugin. Extracting one or several
activity diagrams from the code under analysis is done by
compiling it using GCC with the Kayrebt::Extractor plugin
enabled.

Listing 1. Example of Configuration File
g e n e r a l :

greedy : 0
u r l :

d b f i l e : ’my_db.sqlite’
dbname: ’symbols’

c a t e g o r i e s :
1: ’bgcolor=blue’
2: ’textcolor=red’

s o u r c e _ f i l e 1 . c:
f u n c t i o n s : [’function1’ ,’function2’ ]
match:
’(k|m)alloc.*’: 1

s o u r c e _ f i l e 2 . c:
f u n c t i o n s : [’one_more_function’ ]
s tar t_match :
’.*spin_lock.*’: 2

end_match: [’spin_unlock’ ]

For the sake of the example, say that we are working on the
Linux kernel and want to examine the system call shutdown
which is used to shut a socket down and free some resources.
We want to see more specifically the flow control relative to
error handling. Assuming we start the compilation from the
source tree’s root, the file to compile (the file in which the
system call shutdown is defined) is net/socket.c. The
system call function is SYSC_shutdown. The configuration
file is shown on listing 2.

Listing 2. Configuration File for the Extraction of Syscall shutdown
g e n e r a l :

c a t e g o r i e s :
1: ’style=filled,fillcolor=yellow’

net / s o c k e t . c:
f u n c t i o n s : [’SYSC_shutdown’ ]
match:
’.*err.*’: 1

The next step is to compile net/socket.c with the
plugin enabled. As we are working in the Linux tree, we
must respect the compilation chain and use the Makefile. The
following command makes the compilation:
make CFLAGS_KERNEL=’-fplugin=kayrebt_extractor

-fplugin-arg-kayrebt_extractor-config_file=

config’ net/socket.o

This creates a file net/socket.c.dump containing the
definition of the diagram for SYSC_shutdown. It is then
possible to extract the diagram from this file and convert
it into an image, for example using GraphViz’s dot tool.
Fig. 1 shows the resulting activity diagram. As one can see,
it is possible to use the “categories” mechanism to embed
any kind of attributes in the graph. Here, we chose to put in
category 1 the nodes matching the regular expression ‘.*err.*’,
to highlight the use of this parameter, and to give background
color yellow to category 1.

The collection of diagrams is useful for some tasks, like com-
parison between versions. In an activity diagram, the control
flow is clearly visible, so even a predicate added in a existing if-
else structure would be clearly visible. Conversely, the diagram
also highlights the absence of something. For example, it is
easy to distinguish a predicate like ptr && ptr->inside
from ptr->inside, where the latter version could be a
typical case of dereferencing a pointer without verifying it,
because the former will result in a additional branching in the
activity diagram.

V. NAVIGATING BETWEEN THE ACTIVITY DIAGRAMS WITH
KAYREBT::VIEWER

A. Presentation of Kayrebt::Viewer

For a better visualization experience, we built a Graphical
User Interface (GUI) called Kayrebt::Viewer shown on Fig. 2).
A thorough exploration of Kayrebt::Viewer is available as a
screencast.1. In this section, we summarize the design and the
main features of the program.

The main advantage of Kayrebt::Viewer over a simple
collection of diagrams as images is that diagrams may be
linked together. In a diagram, if a node representing a function
call contains the attribute “URL” with a non-empty string,
this string is understood as the path where the called function
diagram is stored. This visualizer is project-centric. From a
codebase, the user can generate all the diagrams she wants
using Kayrebt::Extractor. A database of functions in the project
is also required. It is a simple table with three columns required:
symbol which gives the name of the function, dir the path
to the directory where the compilation unit the function is
declared in resides, and file the name of the compilation
unit. Kayrebt::Viewer is parameterized through three paths: (1)
the source directory of the project, (2) the database file, and
(3) the directory where all the generated diagrams live. Those
settings are persistent across executions of Kayrebt::Viewer.

1https://www.lgeorget.eu/code-panel/2015/05/31/kayrebt_viewer/;
also available at https://youtu.be/Z94jgINyU3E

https://www.lgeorget.eu/code-panel/2015/05/31/kayrebt_viewer/
https://youtu.be/Z94jgINyU3E


Fig. 1. Activity diagram of shutdown system call

The main window of the program is divided into three panes
as shown in Fig. 2. The central and main pane is where the
diagrams are displayed. Kayrebt::Viewer is a multi-documents
interface, that is, an unlimited number of diagrams may be
opened at the same time. The left pane is a tab widget. It
contains a view of the symbol database presented earlier and
an history of the diagrams visited, organized as a tree. Finally,
the right pane shows a tree view of the source directory, as

Fig. 2. Screenshot of the Kayrebt::Viewer’s main window

configured. The database panel features multi-filtering and
sorting ; this is useful to quickly look for an entry point in the
kernel. We made the choice to include only exported functions
in this database in order to limit the quantity of information
displayed to the user.

B. Example of Use

One of the use case that lead us to develop the Kayrebt
toolset was the necessity to track down the use of a given
API in the kernel code, from a given entry point. For example,
let us assume that we are exploring the system call kill,
which is used by processes to send signals. We want to know
when security checks are done and where the Linux Security
Framework (LSM) has a callback point in the execution of
kill. This example is presented in the screencast too but we
summarize it here.

Typing kill in the filter in the left pane yields the
interesting entry of the database: a symbol named SYSC_kill,
in directory kernel/, in file signal.c. Double-clicking on
it make the diagram appear in the central pane. It also has an
action on the right pane: it selects and scrolls down to the file
signal.c in the source tree, which can be useful in case the
user might want to locate the file quickly to open it in an IDE at
the same time. The function seems to be pretty straightforward.
A structure called info is filled in with values and at the end
a function kill_something_info must do the real work.
In Kayrebt::Viewer, all function calls contain hyperlinks to
the diagram of the function called. Ctrl+clicking on the node
representing the function call opens the corresponding diagram.
Note that the history is also updated at this instant to reflect
the exploration path we have followed so far.

The new function that opened looks more complicated.
Hovering the branching nodes with the mouse clearly highlights
the reachable nodes. The nodes for which there exists a path
from the hovered node are temporarily drawn with thick, red
line until we move the cursor out of any node. This gives a quick
overview of the control flow. Here, we see several successive
branchings and a loop structure. The top level branching shows
that a simple condition leads to two unrelated behaviours:



whether the PID of the process to kill is positive or not. With
the help of the manual page of kill, it appears that if the
PID is positive, then the signal is sent only to one process,
otherwise, it is sent to a group of process. If we want to focus
on the first case, it is possible to remove branches from the
diagrams. This is achieved by double-clicking on a node or an
edge: the whole branch (i.e. the nodes and edges accessible
only from the node or edge we double-clicked) is removed.
Right-clicking on the diagram makes a contextual menu appear,
with a button to reset the diagram.

Removing the right branch leaves us with very few nodes ac-
tually. We see a section enclosed with rcu_read_lock and
rcu_read_unlock, which are two primitives to synchronize
the access on a kernel data structures. Between these two nodes,
a function looks promising: kill_pid_info. This function
is still in file signal.c, this can be verified in the history
view. It is simple, there is a loop around an rcu_read_lock
/ rcu_read_unlock section, and inside there are two
function calls pid_task and group_send_sig_info.
We can deduce that here, the pointer to the process with the
parameter PID is fetched, and then the signal is sent using it.
In the case the task fetched is invalid (because of a concurrent
access from another thread, for instance), an error will be
returned and the control flow will go back to the beginning of
the loop. This can be inferred with additional knowledge : the
functioning of the Read Copy Update (RCU) mechanism.

Function group_send_sig_info is rather simple.
We find one interesting function at the beginning:
check_kill_permission and another one later on, on a
branch which can be taken only if the check returns 0 and the
signal to send is not 0: do_send_sig_info. Presumably,
the former does all the sanity and security checks on the
arguments and the latter actually send the signal. This is
correct according to the kill manual which says that a
signal 0 can be used to check if the permissions of the
current process are sufficient to send a signal to the target
without actually sending a real signal. The two functions can
be explored. It is always possible to get back to an ancestor
function using the history to jump from one diagram to another.
A diagram already open, is not drawn a econd time, the
subwindow containing it is simply put in the foreground, in
order to help the user keeping the central pane as tidy as
possible. The function check_kill_permission has a
control flow graph specific to checking functions: multiple
successive branchings where one corresponds to a failure case
and is a shortcut to the end of the function, and the other one
goes on to the next check. At the end of the function, we find a
call to security_task_kill, which is the LSM function
we were looking for. When we enter it, we see in the history
view that we have changed of kernel source file. The function
is implemented in security/security.c. If we wish to
see what are the other functions exported in this file, we can
double-click it in the right pane, the source explorer. This
updates the “directory” and “file” filters in the left pane. So
finally, we have our answer. Guided with previous knowledge

of the synchronization mechanisms as well as the high-level
documentation of the system call we were exploring, we have
traced a possible execution until reaching a predetermined point
and the history records our exploration path.

VI. CONCLUSION AND FUTURE WORK

We built Kayrebt, a toolset of which we have presented two
tools: Extractor, a GCC plugin that extracts activity diagrams
out of functions during their compilation and Viewer, a GUI
for exploring and navigating through the diagrams produced
by Extractor in a codebase. Together, they can be used to help
the analyst to understand a large codebase he is not especially
familiar with, to get an idea of the control and data flow of
a function at a glance, or to identify the static function call
chain required to perform an operation. This is useful for codes
having several entry points such as an operating system kernel
or a GUI.

Many improvements are already under study or being
implemented in both Kayrebt::Extractor and Kayrebt::Viewer.
In Extractor, the categorization of nodes is made through regular
expressions. This is not optimal because this is not related
neither to the syntax nor to the semantics of codebase. It would
be more useful to have a kind of semantic categorization. With
this kind of categorization, it would be possible for example to
highlight the locking and unlocking of locks with a different
representation for each one. In Viewer, the next step will be to
provide users with a mean to save their exploration work for
later reuse. This would include opening back the visualizer in
the exact state in which it was closed. We also plan to make
the tool not only a visualizer but an editor. Example of use
cases are annotations made by the user on diagrams. Being
able to manually categorize some nodes and apply attributes
such as the background color, etc. would be useful.

REFERENCES

[1] A. Danial, “CLOC – Count Lines of Code,” Jul. 2014. [Online]. Available:
http://cloc.sourceforge.net/

[2] the Austin Group, “The Open Group Base Specifications Issue
7 IEEE Std 1003.1TM, 2013 Edition,” 2013. [Online]. Available:
http://pubs.opengroup.org/onlinepubs/9699919799/

[3] R. M. Stallman and the GCC developer community, “Using the GNU
Compiler Collection (GCC),” Tech. Rep., 2013. [Online]. Available:
https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/

[4] E. Klotz, “Moritz the Nassi-Shneiderman Diagram-Generator for
Doxygen.” [Online]. Available: http://moritz.sourceforge.net/

[5] “Crystal FLOW.” [Online]. Available: http://www.sgvsarc.com/Prods/
CFLOW/Crystal_FLOW.htm

[6] D. A. Kosower and J. J. Lopez-Villarejo, “Flowgen: Flowchart-Based
Documentation for C++ Codes,” arXiv preprint arXiv:1405.3240, 2014.
[Online]. Available: http://arxiv.org/abs/1405.3240

[7] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,
“Efficiently computing static single assignment form and the control
dependence graph,” ACM Transactions on Programming Languages and
Systems, vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=115372.115320

[8] The GCC developer community, “Static Single Assignment, internals of
the GNU compilers.” [Online]. Available: https://gcc.gnu.org/onlinedocs/
gccint/SSA.html

[9] E. R. Gansner and S. C. North, “An open graph visualization system
and its applications to software engineering,” Software: Practice and
Experience, vol. 30, no. 11, pp. 1203–1233, 2000. [Online]. Available:
www.graphviz.org

http://cloc.sourceforge.net/
http://pubs.opengroup.org/onlinepubs/9699919799/
https://gcc.gnu.org/onlinedocs/gcc-4.8.4/gcc/
http://moritz.sourceforge.net/
http://www.sgvsarc.com/Prods/CFLOW/Crystal_FLOW.htm
http://www.sgvsarc.com/Prods/CFLOW/Crystal_FLOW.htm
http://arxiv.org/abs/1405.3240
http://portal.acm.org/citation.cfm?doid=115372.115320
https://gcc.gnu.org/onlinedocs/gccint/SSA.html
https://gcc.gnu.org/onlinedocs/gccint/SSA.html
www.graphviz.org

	Introduction
	Related Work
	Development
	GCC Internals
	Kayrebt::Extractor's Pass Placement
	Plugin Architecture

	Activity Diagrams Extraction with Kayrebt::Extractor
	Navigating between the Activity Diagrams with Kayrebt::Viewer
	Presentation of Kayrebt::Viewer
	Example of Use

	Conclusion and Future Work
	References

