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Abstract—The advent of smart grids have urged a radical 

reappraisal of distribution networks and power quality 

requirements, and effective use of the network are indexed as the 

most important keys for smart grid expansion and deployment 

regardless. One of the most efficient ways of effective use of these 

grids would be to continuously monitor their conditions. This 

allows for early detection of power quality degeneration 

facilitating therefore a proactive response, prevent a fault ride-

through the renewable power sources, minimizing downtime, and 

maximizing productivity. In this smart grid context, this paper 

proposes the evaluation of signal processing tools, namely the 

Hilbert transform and the linear Kalman filter to estimate voltage 

phasor for voltage sags detection. 
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I. INTRODUCTION 

Despite accumulated experienced in the conventional 
electric distribution networks, the task of power quality in 
distributed networks is still an art. It has become more 
challenging as far as the generation system is moved nearby the 
distribution level and this is achieved by using a set of micro 
grids and energy islands based on renewable sources, connected 
to the main grid [1-3]. This allows better utilization of the grid 
by transforming the actual distribution network into intelligent, 
robust energy delivery system. Therefore, key considerations 
when deploying smart grids are their availability, reliability, 
resiliency and profitability. Figure 1 depicts an overview of this 
complex infrastructure. Today, research is focused on the use 
of state estimation concept in power quality issues and in 
particular power quality state estimators (PQSE) [4], [20] (Fig. 
2).The PQSE is covering many power quality areas such as 
harmonic state estimation, frequency estimation [5], transient 
estimation [4], and voltage sags estimation. In the context of 
smart grids, it is then difficult to deal with such a complex 
system through conventional procedures used in classical 
distribution networks for keeping it under control, operating at 
the desired quality of the service (QoS), and dealing with 
reliability regarding a smart grid complexity and uncertainty 
[6]. This requires much more sophisticated computer-oriented 
monitoring than in a classical grid [2]. In terms of PQ standards, 
voltage, frequency and harmonics are the three main parameters 
that must be considered and controlled to acceptable standards 
whilst the power and energy balance is maintained. In this 

context, voltage sags estimation is indexed as an essential 
requirement for a condition monitoring system in order to meet 
PQ standards [7-8]. 

For voltage sag detection, there are various methods used in 
contemporary power systems. These methods are based on 
electrical quantity signatures analysis (current, voltage, power, 
etc.) [9-12]; and usually involves the use of reference frame 
transformations such as Park’s vector [13] or space vector [8-
14]; other methods are based on advanced signal processing 
tools [15-17] where the EEMD is investigated; but the well-
known method is based on the symmetrical components 
transformation [18-19]. This work attempts to highlight the use 
of signal processing techniques for phasor estimation in the 
context of smart grids. 

 

 

Fig. 1. A smart grid topology [© SAET]. 

 

Fig. 2. State estimation techniques [20]. 



II.  VOLTAGE SAGS DETECTION AND 

CHARACTERIZATION 

Voltage events are characterized by their magnitude and 
duration. Depending on the magnitude of the variation they are 
classified as sags, swells or interruptions, and depending on 
their duration they can be classified as transient event, short 
term event or long term event as depicted in Fig. 3. Voltage sags 
are indexed as the most important power quality issue. They are 
classified as a short-term event and characterized as a deviation 
of the RMS supply voltage from a reference value with typical 
dip depths ranging from 0.9 to 0.5 p.u. of a 1 p.u. nominal [9]; 
lasting from few milliseconds to few cycles. Voltage sags are 
caused by abrupt increases in loads such as phase-to-phase or 
phase to ground short circuits, they are also caused by abrupt 
increases in source impedance during a loose of connection 
[21]. 

Voltage sag characterization concerns events quantification 
through a limited number of parameters. These parameters 
depend on the field of study. However, main characterization 
methods use two parameters to determine the severity of a 
voltage sag: magnitude (or “remaining voltage”) and duration 
[3]. In the context of a smart grid, it is therefore important to 
know whether voltage sag exists and afterward estimate its 
duration. The most usual voltage sags signatures are presented in 
Fig. 4 [8]. During a voltage sag three-phase system balanced 
conditions are no longer valid leading to possible disastrous 
consequences on the user end-loads and on the smart grid itself. 
So, for voltage sag detection, let us consider the mathematical 
model of three phase voltages, during the sag voltage the phase 
to ground voltages are expressed by (1) [7]: 
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v ,ω ,
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and α
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are respectively the three 

magnitudes, the frequency, and the three initial phase angles of 
the corresponding voltage phases. For voltage sag 
characterization the most common path is the use of 
symmetrical components [19], [22]. For the system described 
by (1) the symmetrical components calculation is carried out 
through the transform given by (2): 
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Indices 0, 1 and 2 are referring to zero, positive and negative 
sequences respectively. [ ]F is the transformation matrix 

introduced by Fortescue, and it is expressed by (4): 
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Where a represents the rotational operator given by (5): 
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However, the system given by (1) is time-dependent and 
expressed in time-domain. Since the computation of the 
symmetrical components requires the use of the phasor 
representation; system (1) must be represented in a complex 
formalism described by (6): 
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Fig. 3. Voltage events classification. 

 

Fig. 4. Voltage sag main signatures [8]. 

 



( )

( )

( )

( ) 2

( ) 2

( ) 2

a
a

b
b

c
c

j t
a

j t
b

j t
c

v t V e

v t V e

v t V e

ω α

ω α

ω α

+

+

+

=

=

=







                                            (6) 

 
Therefore, the use of symmetrical components relies on the 
amplitude and phase identification, in other words on phasor 
representation as depicted in Fig. 5. 

 

III.  PHASOR ESTIMATION 

Phasor estimation is an essential task in power grids and 
power quality; since the voltage phase and voltage amplitude 
determine the available active power and its flow. So phasors 
are useful tools for operating and monitoring the grid. For 
phasor estimation many techniques and methods are 
investigated according to the application [23]. The FFT is used 
to estimate the fundamental harmonic, but a major drawback of 
this method is the asynchronous sampling. To overcome this 
lack, an FFT-based sliding window was proposed in [6].  Also 
the RMS value is used to estimate the amplitude of the phasor, 
but RMS is based upon averaging of sampled data during one 
cycle, so it cannot represent instantaneous information. As 
voltage sags lead to transient phenomena (voltage unbalance 
and voltage/current waveform disturbances) [21], it is obvious 
that the Fast Fourier Transform (FFT) and other techniques 
based upon it, are no longer valid if they have been used in some 
cases [6]. Advanced signal processing techniques are therefore 
required to deal with the complexity and uncertainty associated 
with a smart grid. In [9-13], a Teager-Kaiser energy operator 
has been proposed for power system oscillations detection and 
analysis. However, this operator is highly affected by noises. In 
[25-27] and [32], wavelets and prony method were used. 
Wavelets however require properly windowed disturbing 
events to ensure accurate computations. Moreover, prony 
method highly depends on the system parameters and operating 
modes. Also the PLL algorithm was investigated too in [28], 
[29]. It seems that the focus should be on transient signal 
processing techniques. In this work, it is therefore proposed to 
assess two non-stationary signal processing techniques based 
on Kalman filter and Hilbert transform.  

 

A. Kalman Filter 

 

The Kalman filtering has been mostly applied in system 
control applications; it is also the basis of a large variety of 
power system methods such as amplitude and phase tracking 
even in noisy signals [4], [27]. In this section we are concerned 
with its application to power system signals for voltage 
amplitude and phase estimation.  

For this purpose let us consider the voltage 
i

v (i = a, b or 

c), since this signal is sampled, it can be expressed by [24]:   
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Fig. 5. Scheme for temporal to symmetrical components representation. 
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Where h is the harmonic component, k is the harmonic number 
in the model and δ represents the noise. 
So, for the sample (n+1)th  (7) can be written as follow: 
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The state equation is then: 

[ ] [ ] [ ]1h hS n AS n nδ+ = +                                                (13) 

Where A is a 2 2k k× matrix expressed by: 
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Finally the estimated amplitude and phase are: 
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and finally, 
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Since the principal interest in phasor measurement is to 
calculate the fundamental component [23], this yields to 

express the phasor of [ ]V n denoted [ ]V n  as fellow: 

[ ] [ ] [ ]ˆ j n
V n S n e

ϕ
= ⋅                                                       (17) 

 

B. Hilbert Transform 

 

Hilbert transform has been extensively applied to estimate 
the instantaneous amplitude and the instantaneous phase. It is 
usually more robust against noise. In this section, we are 
concerned with its application to power system for phasor 
voltage amplitude and phase estimation.  

Let us consider the temporal description of three phase 
voltages given by (1). 
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The Hilbert transform of the instantaneous voltages 
i

v  is given 

by (19) [30]:  
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That yields to represent the real function ( )
i

v t  by its 

analytical signal ( )S t expressed by ( ( )S t can be any voltage or 

current function): 
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Since voltages are sampled, the application of HT requires the 
use of Discret Hilbert transform (DHT) given by: 
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Where N is the data sample number. 

Using (21), the instantaneous amplitude and instantaneous 
phase in discrete formulation are given by: 
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Finally the frequency deviation can be estimated using the 
relation: 
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Where sF corresponds to the sampling frequency and 0f the 

rated frequency (50 Hz for the European grid, 60 Hz for 
American grid). 
 

IV. SIMULATION AND RESULTS 

To assess the ability of the two approaches for phasor 
estimation, a simulated system was investigated. The concerned 
system is depicted in Fig. 6.    

Figuire 6 case, described in [24], allows steady-state 
operation of wind Farm and its dynamic response to voltage sag 
resulting from a remote fault on the 120-kV system.  

Figure 7 depicts therefore the three phase voltages ( )
a

v t ,

( )
b

v t and ( )
c

v t respectively, measured on bus bar D during a 

voltage drop of 30% in one phase in bus A side. A key aspect 
in power systems is which parameters should be measured and 
analyzed in order to get the best characterization.  
 

Wind 
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Measurment 
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Fig. 6. Simulated system for voltage sag detection. 
 

 
Fig. 7: Three phase voltages during a sag voltage in both sides of 

transmission line. 



Figure 7 clearly shows that due to transmission line 
impedance and transformers impedance, the sag voltage has not 
the same effect on both sides of the grid.  In this context, and to 
ensure that the grid will have islanding capabilities it is more 
convenient to track voltages variations in wind turbine side.  
After applying the proposed approaches to each phase (i.e,

( )
a

v t , ( )
b

v t and ( )
c

v t ) in their sampled representation, phasors 

are extracted according to (14, 15) and (24, 25).  
Figures (8a, 8b, 8c and 8d) illustrate estimated phasors 

(amplitude and phase) at given time, and the corresponding 
symmetrical components. These results agree with the theory of 
symmetrical components. In order to assess the error of both 
methods, the instantaneous amplitudes and instantaneous 

phases of phasors, 
a

V ,
b

V and 
c

V are presented in Fig. 9 and Fig. 

10 respectively. Errors are calculated assuming that the real 
frequency is 60 Hz and the real amplitude is one in p.u.. Results 
are reported in Table 1. 
 

 
                     a)                                           b)  

 

 
                      c)                                           d)  

Fig. 8. Phasors representation and the corresponding symmetrical component.  
        

                    
 

Fig.9. Amplitude variation of phasors. 

 
 

Fig.10. Instantaneous phases and frequency estimation. 
 

 Table 1 : ESTIMATION ERRORS 
  

 Kalman filter Hilbert transform 
max( )(%)a∆  0.0409 0.0632 

max( )(%)f∆  0.4165 0.2513 

 
Hence, to characterize the voltage sag, amplitudes of 

positive, negative, and zero components are depicted in Fig. 11. 
It shows that both methods can estimate the voltage phasor in 
order to extract the symmetrical components, and present some 
drawbacks. Kalman filter requires a knowledge about the 
fundamental frequency and it needs a convergence time. Since 
Hilbert transform needs no knowledge about voltage 
parameters, but it requires a large window (more cycles) to 
estimate phasor parameters and presents the edge effect 
problem.  

 

 
 

Fig.11. Amplitude variation of symmetrical components. 
 

V. CONCLUSION 

This paper dealt with the assessment of signal processing 
tools, namely the Hilbert transform and the Kalman Filter, for 
phasor estimation in order to detect voltage sags in a context of 
smart grids. The performance of both methods has been 
evaluated for a simulated grid. The usefulness of these methods 
is their low complexity. The achieved results clearly show that 
Hilbert Transform and linear Kalman filter can be used for 
voltage sag detection. However, further investigations are 
required to evaluate their performance of these methods 
regarding other electrical parameters.  
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