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Introduction

In the sequel we shall use the following notations. Let K be a field, A be a set of n natural numbers A = {a 1 , . . . , a n } ⊂ N. S the numerical semigroup generated by a 1 , . . . , a n , that is S = {k 1 a 1 + . . . k n a n |k i ∈ N}. We consider the one-dimensional toric affine ring

A = K[t a 1 , . . . , t an ] ⊂ K[t], that is A = K[t k |k ∈ S] := K[S].
The ring A = K[t a 1 , . . . , t an ] ⊂ K[t] has a presentation as a quotient of the polynomial ring K[x 1 , . . . , x n ], as follows: Let ϕ : K[x 1 , . . . , x n ] → K[t a 1 , . . . , t an ] defined by

x 1 → t a 1
. . .

x n → t an

Let I(S) be the kernel of ϕ, that is the ideal ideal formed by all polynomials of K[x 1 , . . . , x n ] such that P (t a 1 , . . . , t an ) = 0. The ideal I(S) has a system of generators formed by binomials which are differences of two monomials with coefficient 1. Note that if we grade the polynomial ring K[x 1 , . . . , x n ] by setting deg(x i ) = a i , the morphism ϕ is homogeneous, and the ideal I(S) is homogeneous.

The following theorem is well known, we give here a short proof for the commodity of the reader.

Theorem 0.1. Suppose that a 1 , . . . , a n are relatively prime numbers then any large integer belongs to S.

Proof. Suppose that n = 2, By Bézout'theorem there exist relative integer numbers s 1 , s 2 such that s 1 a 1 + s 2 a 2 = 1. We can assume that s 1 > 0, s 2 < 0. Let k > 0 big enough we can write k = qa 2 +r with 0 ≤ r < a 2 , which implies k = qa 2 +r(s 1 a 1 +s 2 a 2 ) = rs 1 a 1 +(q+rs 2 )a 2 . Since k is large enough (q + rs 2 ) > 0, hence k ∈ S.

A similar argument works for n > 2.

Definition 0.2. Suppose that a 1 , . . . , a n are relatively prime numbers, the biggest integer number in N \ S is called the Frobenius number, we denote it by g(S). More generally if gcd(a 1 , . . . , a n ) = λ then the biggest integer in λN \ S is called the Frobenius number, we denote it by g(S).

Suppose that gcd(a 1 , . . . , a n ) = λ, let S be the semigroup generated by a 1 λ , . . . , an λ . We have that g(S) = λg( S). The problem of computing the Frobenius number is open since the end of 19th Century, for n = 2 there is a formula (see section 1), for n = 3 a formula using Euclide's algorithm for gcd was given in [START_REF] Rodseth | On a linear Diophantine problem of Frobenius[END_REF]. In 1987, in [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF] the first author translate for the first time the Frobenius problem into an algebraic setting, showing that the Frobenius number is the degree of the Hilbert-Poincaré series written as a rational fraction, moreover By using [START_REF] Rodseth | On a linear Diophantine problem of Frobenius[END_REF], in the case n = 3 the Hilbert-Poincaré series is completely described by an algorithm using only Euclide's algorithm for gcd, that is of complexity ln(a). An implementation in Pascal was done by the first author to compute a system of generators of the affine monomial curve K[t a , t b , t c ] and its projective closure, which computed the Frobenius number for three natural numbers. In recent works [START_REF] Einstein | Frobenius numbers by lattice point enumeration[END_REF] and [START_REF] Roune | Solving Thousand Digit Frobenius Problems Using Grobner Bases[END_REF], the computation of Frobenius number, is related to the computation of the Hilbert-Poincaré series. More precisely, in [START_REF] Roune | Solving Thousand Digit Frobenius Problems Using Grobner Bases[END_REF] the author deduces the Frobenius number from a Gröbner basis of the ideal I(S). We recall that the computation of a Gröbner basis is double exponential complexity by using the Buchberger algorithm.

In this paper we study the Frobenius problem from algebraic point of view, this allows us to give a conceptual frame to our algorithm. As a consequence of our study we get a very fast and simple algorithm to compute the Frobenius number, determine completely the semigroup S and solve the knapsack integer problem, that is to decide if an integer number belong to S. We have implemented for n ≤ 17. We need to solve the "multiplicative" integer knapsack problem: Find all positive integer solutions (k 1 , . . . , k n ) of the inequality n i=2 (k i + 1) ≤ a 1 + 1. Moreover let G(S) be a Gröbner basis for the degree reverse lexicographic order to x n , . . . , x 1 . ≺ revlex and in(I(S)) be its initial ideal. As an extension we find several algorithms :

1. The set of monomials {x k 2 2 . . . x kn n / ∈ in(I(S))}.

2. The system of monomial generators of in (I).

3. The Gröbner basis G(S) of I, without using Buchberger's algorithm.

They are extensions of the previous work and algorithm by the first author in [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF], [START_REF] Morales | Équations des variétés monomiales en codimension deux[END_REF]. The algorithm presented here is implemented and can be downloaded in https://wwwfourier.ujf-grenoble.fr/ morales/. Note that because of the limitation of the Compiler for the moment the software works only for numbers less than 10000, but an implementation in Mathematica should allow to compute with any number of digits.

In the first section we introduce the Apéry set and we prove some known results.

In the second section we present the connection between Hilbert-Poincaré series and the Frobenius number. This connection was established by the first author for the first time in [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF].

In the third section we introduce Noether normalization and we prove the connection between Apéry sets and Noether normalization.

In the last section we develop our algorithm.

In our work in progress, we will extend the above algorithm to compute Gröbner basis of any simplicial monomial ideal.

Frobenius number, Apéry set

For a survey on the Frobenius number we refer to [START_REF] Ramírez Alfonsín | The Diophantine Frobenius Problem[END_REF].

Definition 1.1. Suppose that a 1 is the smallest among a 1 , . . . , a n . The Apéry set Ap(S, a 1 ) of the semigroup S with respect to a 1 is the set Ap(S, a 1 ) := {s ∈ S|sa 1 / ∈ S}.

Remark 1.2. The definition of Apéry set makes sense even if the numbers a 1 , . . . , a n are not relatively prime numbers. Suppose that gcd(a 1 , . . . , a n ) = λ, let S be the semigroup generated by a 1 λ , . . . , an λ . We have that Ap(S, a 1 ) is obtained from Ap( S, a 1 λ ) by multiplication by λ.

Theorem 1.3. (Apéry [START_REF] Apéry | Sur les branches superlinéaires des courbes algébriques[END_REF])Suppose that a 1 , . . . , a n are natural numbers such that gcd(a 1 , . . . , a n ) = λ.

1. Ap(S, a 1 ) := {λw 0 , . . . , λw a 1 λ -1 }, where w i is the smallest element is S congruent to i mod a 1 λ . 2. g(S) = max {sa 1 |s ∈ Ap(S, a 1 )}.

Proof.

1. We can assume that a 1 , . . . , a n are relatively prime numbers. First we prove that for all i = 0, . . . , a 1 -1, w i belongs to Ap(S, a 1 ). Suppose that it is not true, that is w ia 1 ∈ S for some i = 0, . . . , a 1 -1. It follows that w ia 1 < w i and both w ia 1 , w i ∈ S are congruent to i mod a 1 . This is a contradiction with the definition of w i . As a consequence Ap(S, a 1 ) has at least a 1 elements in order to prove the claim it will be enough to show that Ap(S, a 1 ) has exactly a 1 elements. Suppose that card(Ap(S, a 1 )) > a 1 , then there exists two elements s 1 < s 2 in Ap(S, a 1 ) such that both s 1 < s 2 are congruent to i mod a 1 for some i = 0, . . . , a 1 -1, that is s 2 = s 1 + ka 1 with k > 0 a natural integer, hence s 2 ∈ Ap(S, a 1 ), a contradiction.

2. Let h ∈ N such that h > max {sa 1 |s ∈ Ap(S, a 1 )}, since h is congruent to i mod a 1 for some i = 0, . . . , a 1 -1, we can write h = w i + αa 1 , with α ∈ Z, hence h = (w ia 1 ) + (α + 1)a 1 , since h > (w ia 1 ) we have (α + 1) > 0, hence α ≥ 0, which implies that h ∈ S.

Corollary 1.4. Let n = 2 suppose that a 1 , a 2 are relatively prime numbers then g(S) = (a 1 -1)(a 2 -1) -1.

Proof. We give a combinatorial proof using Apéry sets. Since a 1 , a 2 are relatively prime numbers, we have Ap(S, a 1 ) := {0, a 2 , . . . , (a 1 -1)a 2 },

hence g(S) = (a 1 -1)(a 2 ) -a 1 = (a 1 -1)(a 2 -1) -1
For n = 2, we will give an algebraic proof later.

Corollary 1.5. For i = 0, . . . , a 1 -1 let S i = {s ∈ S|s ≡ i mod a 1 }. Then S is the disjoint union of S 0 , . . . S a 1 -1 .

2 Frobenius number and Hilbert-Poincaré series 

P B (u) = l∈Z H B (l)u l .
We recall the following Theorem from [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF] Theorem 2.1. Let R := K[x 1 , . . . , x n ] be the polynomial ring graded by the weights deg

x 1 = a 1 , . . . , deg x n = a n , I ⊂ K[x 1 , . . . ,
x n ] be a graded ideal and B := R/I. Then 1. The Hilbert-Poincaré series of B is a rational function:

P B (u) = Q B (u) (1 -u a 1 )(1 -u a 2 ) . . . (1 -u an )
,

where Q B (u) is a polynomial on u.

2.

There exists h polynomials with integer coefficients Φ H B ,0 (l), . . . , Φ H B ,h (l) such that H B (lh + i) = Φ H B ,i (l) for 0 ≤ i ≤ h -1 and l large enough. We recall that the index of regularity of the Hilbert function is the biggest integer l such that H B (l) = Φ H B ,i (l), for any i.

3. The index of regularity of the Hilbert function equals the degree of the rational fraction defining the Poincaré series.

Corollary 2.2. [START_REF] Morales | Fonctions de Hilbert, genre géométrique d'une singularité quasihomogène Cohen-Macaulay[END_REF] Let S be the semigroup generated by a 1 , . . . , a n , and

A = K[t a 1 , . . . , t an ] ⊂ K[t]
. The Frobenius number g(S) coincides with the degree of the rational fraction defining the Poincaré series P A (u) by the theorem 2.1.

Proof. The Hilbert function of A is given by

H A (l) = 1 if l ∈ S 0 if l / ∈ S.
In particular if a 1 , . . . , a n are relatively prime, H A (l) = 1 for l large enough, and the Frobenius number coincides with the index of regularity of the Hilbert function H A (l), so it is the degree of the rational fraction defining the Poincaré series P A (u).

Gröbner basis

Let a 1 , . . . , a n be natural numbers, λ = gcd(a 1 , . . . , a n ). We denote by S (resp. S) the semigroup generated by a 1 , . . . , a n (resp. by a 1 /λ, . . . , a n /λ). Note that the semigroup rings K[S], K[ S] are isomorphic. Let R := K[x 1 , . . . , x n ] be the polynomial ring graded by the weights deg x 1 = a 1 , . . . , deg x n = a n . We consider ≺ degrevlex the degree reverse lexicographical order with x n , . . . , x 1 , but all results are valuable for any monomial order such that the variable x 1 never appears in a minimal system of generators of the initial ideal in(I(S)). The first statement of the following theorem is an extension to the quasi-homogeneous case of [START_REF]Effectivité des calculs polynomiaux, Courd de DEA 1984-1985[END_REF].

Theorem 3.1. Let A := K[t a 1 , . . . , t an ] ≃ R/I(S).

1. The polynomial ring K[x 1 ] ⊂ A is a Noether normalization. Moreover let G(S) be a Gröbner basis for ≺ revlex and in(I(S)) be the initial ideal then

A ≃ ⊕ x k 2 2 ...x kn n / ∈in(I(S)) K[t a 1 ][t k 2 a 2 +...+knan ].
2. The Hilbert-Poincaré series is given by: 1. We have that for any i = 2, . . . , n, (t a i ) a 1 -(t a 1 ) a i = 0, so K[t a 1 , . . . , t an ] is integral over K[t a 1 ], both rings have dimension one so K[t a 1 ] ⊂ K[t a 1 , . . . , t an ] is a Noether normalization, also both rings are Cohen-Macaulay. By the Auslander-Buschsbaum formula we get that K[t a 1 , . . . , t an ] is a free K[t a 1 ]-module. This is the same to say that R/I(S) is a free K[x 1 ]-module. Since R/I(S) is a graded K[x 1 ]module, we can use Nakayama's lemma, hence any K-basis of R/(I(S), x 1 ) gives us a basis of R/I(S) as a free K[x 1 ]-module. Let G(S) be a Gröbner basis for ≺ revlex and in(I(S)) be the initial ideal, by definition of ≺ degrevlex , x 1 does not divides any of the elements in in(I(S)). On the other hand Macaulay's theorem [START_REF] Eisenbud | Commutative algebra with a view toward algebraic geometry[END_REF][Theorem 15.3]says us that the set of monomials not in in(I(S)) is a basis of R/I(S) as a free K[x 1 ]-module.

P A (t) = x k 2 2 ...x kn n / ∈in(I(S)) t k 2 a 2 +...+knan 1 -t a 1

It is clear that the

Hilbert-Poincaré series of K[t a 1 ] is 1 1-t a 1
, the Hilbert-Poincaré series is an additive function, hence we have the formula for the Hilbert-Poincaré series of A.

By 2.1

The Frobenius number of S is the degree of the Hilbert-Poincaré series of A.

We have the following consequence which will be important for our algorithm: Corollary 3.2. We have that 

s i ∈ H, l ∈ N such that s -a 1 = s i + la 1 that is s = s i + (l + 1
)a 1 a contradiction to the direct sum decomposition. Reciprocally, let s ∈ Ap(S, a 1 ), then there exists unique

s i ∈ H, l ∈ N such that s = s i + la 1 , if l > 0 then s -a 1 ∈ S a contradiction , hence s = s i ∈ H. 2. If s = l 2 a 2 + . . . + l n a n with (k 1 , . . . , k n ) = (l 1 , . . . , l n ) and x l 2 2 . . . x ln n ≺ revlex x k 2 2 . . . x kn n then x k 2 2 .
. . x kn n ∈ in(I(S)), a contradiction.

Example 3.3. Let n = 2, and a 1 , a 2 be natural numbers, λ = gcd(a 1 , a 2 ), we have that

K[t a 1 , t a 2 ] ≃ K[x 1 , x 2 ]/(x a 1 /λ 2 -x a 2 /λ 1
) it is clear that that x

a 1 /λ 2 -x a 2 /λ 1
is a Gröbner basis of the ideal (x

a 1 /λ 2 -x a 2 /λ 1
) for ≺ revlex . We have in(x

a 1 /λ 2 -x a 2 /λ 1 ) = (x a 1 /λ 2 ), hence K[t a 1 , t a 2 ] =≃ ⊕ a 1 /λ-1 k=0 K[t a 1 ][t ka 2 ]
, the Poincaré series is given by: P A (t) =

a 1 /λ-1 k=0 t ka 2 1 -t a 1 .
if a 1 , a 2 are coprime then the Frobenius number is (a

1 -1)a 2 -a 1 = (a 1 -1)(a 2 -1) -1.
4 Frobenius number, Hilbert-Poincaré series, the case n = 3

This section is a short version of [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF] and [START_REF] Morales | Équations des variétés monomiales en codimension deux[END_REF].

Let consider three natural numbers a, b, c and S be the semigroup generated by a, b, c. First, remark that any solution α := (u, v, w) of the Diophantine equation ua + vb + wc = 0 gives rise to a binomial in the ideal I(S) in the following way: we write the vector α = α +α -, where the components of both α + , α -are nonnegative then x α +x α -∈ I(S), where

x α + = x α + 1 1 x α + 2 2 x α + 3 3
. Reciprocally if x αx β ∈ I(S) and x α , x β have not common factors then (u, v, w) := αβ is a solution of the equation ua + vb + wc = 0. Second, it is clear that find solutions (u, v, w) of the Diophantine equation ua + vb + wc = 0 is equivalent to find solutions (s, p, r) of the Diophantine equation sbpc = ra. Let s 0 be the smallest natural number such that (s 0 , 0, r 0 ) is solution of the equation sb-pc = ra. We set p 0 = 0. Let p 1 be the smallest natural number such that (s 1 , p 1 , r 1 ) is solution of the equation sbpc = ra, with 0 ≤ s 1 < s 0 . Note that s 0 = a gcd(a,b) and p 1 = gcd (a,b) gcd(a,b,c) . The numbers s 1 can be got from the extended Euclide's algorithm for the computation of the greatest common divisor of a, b.

Let consider the Euclides' algorithm with negative rest:

           s 0 = q 2 s 1 -s 2 s 1 = q 3 s 2 -s 3 . . . = . . . s m-1 = q m+1 s m s m+1 = 0 q i ≥ 2 , s i ≥ 0 ∀i.
Let define the sequences: p i , r i (0 ≤ i ≤ m + 1) , by:

p i+1 = p i q i+1 -p i-1 , r i+1 = r i q i+1 -r i-1 , (1 ≤ i ≤ m).
Note that from [START_REF] Morales | Équations des variétés monomiales en codimension deux[END_REF] we have for i = 0, . . . , m that s i p i+1s i+1 p i = s 0 p 1 = a gcd(a,b,c) . Let µ the unique integer such that r µ > 0 ≥ r µ+1 . Theorem 4.1. ( [START_REF] Morales | Fonctions de Hilbert, genre géométrique d'une singularité quasihomogène Cohen-Macaulay[END_REF], [START_REF] Morales | Syzygies of monomial curves and a linear diophantine problem of Frobenius[END_REF] and [START_REF] Morales | Équations des variétés monomiales en codimension deux[END_REF]) The set

x sµ 2 -x rµ 1 x pµ 3 , x p µ+1 3 -x -r µ+1 1 x s µ+1 2 , x sµ-s µ+1 2 x p µ+1 -pµ 3 -x rµ-r µ+1 1
is a Gröbner basis of I(S) for ≺ revlex with x 3 , x 2 , x 1 . In particular in(I(S) = (x sµ 2 , x

p µ+1 3 , x sµ-s µ+1 2 x p µ+1 3
), and

N 2 \ exp(in(I(S)) = {(k, l) ∈ N 2 |0 ≤ k < s µ -s µ+1 , 0 ≤ l < p µ+1 }∪ {(k, l) ∈ N 2 |s µ -s µ+1 ≤ k < s µ , 0 ≤ l < p µ+1 -p µ }. K[t a , t b , t c ] ≃ ⊕ (k,l)∈N 2 \exp(in(I(S)) K[t a ][t kb+lc ].
In particular the Poincaré series is given by:

P A (t) = (k,l)∈N 2 \exp(in(I(S)) t kb+lc 1 -t a
and if the numbers a, b, c are relatively prime the Frobenius number is

g(S) = max {kb + lc|(k, l) ∈ N 2 \ exp(in(I(S))} -a 1 .
Proof. we can give a new and shorter proof than the one given in the general case in [START_REF] Morales | Équations des variétés monomiales en codimension deux[END_REF]. We can assume that the numbers a, b, c are relatively prime. Let consider the three elements of I(S):

x sµ 2 -x rµ 1 x pµ 3 , x p µ+1 3 -x -r µ+1 1 x s µ+1 2 , x sµ-s µ+1 2 x p µ+1 -pµ 3 -x rµ-r µ+1 1 
. It then follows that

J := (x sµ 2 , x p µ+1 3 , x sµ-s µ+1 2 x p µ+1 3
) ⊂ in(I(S). Now we count the numbers of monomial not in J,

card(N 2 \ exp(J)) = (s µ -s µ+1 )p µ+1 + s µ+1 (p µ+1 -p µ ) = s µ p µ+1 -s µ+1 p µ = a.
On the other hand by Corollary 3.2, card(N 2 \ exp(in(I(S))) = a this implies in(I(S) = J, hence the set

x sµ 2 -x rµ 1 x pµ 3 , x p µ+1 3 -x -r µ+1 1 x s µ+1 2 , x sµ-s µ+1 2 x p µ+1 -pµ 3 -x rµ-r µ+1 1
is a Gröbner basis of I(S) for ≺ revlex with x 3 , x 2 , x 1 . The other claims follows from the Theorem 3.1 5 Algorithm for the case n ≥ 4

For n = 3, we have seen that the algorithm use only Euclide's algorithm. Let n ≥ 4. Let a 1 , . . . , a n be relatively prime natural numbers, S the semigroup generated by a 1 , . . . , a n . Let R := K[x 1 , . . . , x n ] be the polynomial ring graded by the weights deg x 1 = a 1 , . . . , deg x n = a n . We consider ≺ degrevlex the degree reverse lexicographical order with x n , . . . , x 1 , A = K[t a 1 , . . . , t an ] ≃ R/I(S). 2 . . . x kn n . that is we have (k 2 + 1) × . . . × (k n + 1) -1 monomials not in in(I(S), hence (k 2 + 1) × . . . × (k n + 1) -1 ≤ a 1 , which implies S n-1 + S n-2 + . . . + S 2 + S 1 ≤ a 1 , where S i is the symmetric polynomial of degree i in the variables k 2 , . . . , k n . In particular k 2 + . . . + k n ≤ a 1 .

We have the following algorithm for the Frobenius number: End (of the algorithm).

In the following example we compute the Gröbner basis by my software and by Cocoa, it runs in above 7 seconds in both softwares. The Gröbner basis has 571 generators. If we compute only the Apéry number our algorithm is much faster than Cocoa. In this example the Apéry number is 5145.

  Let R := K[x 1 , . . . , x n ] be the polynomial ring graded by the weights deg x 1 = a 1 , . . . , deg x n = a n , and I ⊂ K[x 1 , . . . , x n ] be a graded ideal. Let B = R/I, the Hilbert-function of B is defined by H B (l) = dim K B l , for all l ∈ Z, and the Hilbert-Poincaré series of B:

3 .

 3 The Frobenius number g( S) = max {k 2 a 2 +...+knan|x

Remark 5 . 1 .

 51 If x k 2 2 . . . x kn n ∈ in(I(S) is part of a minimal generating system of in(I(S), then all the monomials with exponents in the cube [0; k 2 ] × . . . × [0; k n ] are not in in(I(S) except x k 2

Algorithm 5 . 2 .

 52 Frobenius MM-DD: Input: a 1 , . . . , a n Ouput: the Apéry set of S with respect to a 1 . The Frobenius number of S. Begin 1. sum = 1; test=false,testsum=false, Ap = {0}, Apmod = {0}. 2. while (sum ≤ a 1 ) and (testsum=false) do (a) for each monomial x k 2 2 . . . x kn n with k 2 + . . . + k n = sum

Example 5 . 5 .

 55 (a 1 = 1030, a 2 = 1031, a 3 =, 1034, a 4 = 1039, a 5 = 1046, a 6 = 1055, a 7 = 1066, a 8 = 1079, a 9 = 1094, a 10 = 1111, a 11 = 1130, a 12 = 1151, a 13 = 1373, a 14 = 1393, a 15 = 1423, a 16 = 1433, a 17 = 1493).

1 .

 1 Ap(S, a 1 ) = {k 2 a 2 + . . . + k n a n |x k 2 Ap(S, a 1 ), such that s = k 2 a 2 + . . . + k n a n and x k 2 2 . . . x kn n / ∈ in(I(S)). Suppose that s = l 2 a 2 + . . . + l n a n for some natural numbers l 2 , . . . , l n , then x k 2 2 . . . x kn n ≺ revlex x l 2 2 . . . x ln n .

	2 . . . x kn n / ∈ in(I(S))}. In particular
	card{x k 2 2 . . . x kn n / ∈ in(I(S))} =	a 1 gcd(a 1 , . . . , a n )	.
	2. Let s ∈		

Proof. We can assume that gcd(a 1 , . . . , a n ) = 1.

1. By the above theorem

K[t a 1 , . . . , t an ] ≃ ⊕ s i ∈H K[t a 1 ][t s i ] where H = {k 2 a 2 + . . . + k n a n |x k 2 2 . . . x kn n /

∈ in(I(S))}, now we prove that H = Ap(S, a 1 ). Let s ∈ H suppose that s / ∈ Ap(S, a 1 ), hence sa 1 ∈ S, by the above decomposition there exists unique

(b) if n i=2 (k i + 1) ≤ a 1 + 1 then i. compute qsum := k 2 a 2 + . . . + k n a n and the congruence class mod a 1 , that is k 2 a 2 + . . . + k n a n mod a 1 ii. If qsum mod a 1 doesn't belongs to Apmod then Ap = Ap∪{qsum}, Apmod = Apmod ∪ {qsum mod a 1 }. iii. If qsum mod a 1 belongs to Apmod, let h ∈ Ap such that h = qsum mod a

. . x kn n with k 2 + . . . + k n = sum, we have that test=true then testsum=true.

(e) Otherwise testsum=false. sum = sum + 1.

f rob

End (of the algorithm).

The knapsack integer problem: Let b ∈ N, in order to know if b ∈ S we run the above algorithm, let h ∈ Ap such that b = h mod a 1 ,then b ∈ S if and only if b ≥ h.

Algorithm 5.3. Frobenius NoINI MM-DD:

Input: a 1 , . . . , a n Ouput: the Apéry set of S with respect to a 1 . The Frobenius number of S. The set of monomials in the variables x 2 , ..., x n not in the ideal in(I(S). Sumnoini the least upper bound for the usual degree of a minimal system of monomial generators of the ideal in(I(S) Begin

2. while (sum ≤ a 1 ) and (testsum=false) do (a) for each monomial x k 2 2 . . . x kn n with k 2 + . . .