H Fargier

P Marquis

N Schmidt
email: schmidt@irit.frmarquis@cril.fr

Compacité pratique des diagrammes de décision valués : normalisation, heuristiques et expérimentations *

Les diagrammes de décision valués (VDDs) sont particulièrement intéressants pour la compilation de problèmes de satisfaction de contraintes valuées (VCSPs). L'intérêt des différents langages de la famille VDD (en particulier, les langages ADD, SLDD, AADD) est qu'ils admettent des algorithmes en temps polynomial pour des traitements (comme l'optimisation) qui ne sont pas polynomiaux à partir des VCSPs de départ. Comme l'efficacité pratique de tels traitements dépend de la taille du VDD compilée obtenu, il est important d'obtenir une forme la plus compacte possible. Nous décrivons dans cet article quelques résultats issus de nos travaux sur la compacité expérimentale des VDDs. Nous présentons un compilateur ascendant de VCSPs en SLDD+ et SLDD×, un jeu d'heuristiques d'ordonnancement des variables, ainsi que des procédures de traduction des langages SLDD+ et SLDD× vers les langages ADD et AADD. Les différents langages cibles et les heuristiques ont été testés sur deux familles de jeux d'essai, des VCSPs additifs représentant des problèmes de configuration de voitures avec fonctions de coût, et des VCSPs multiplicatifs représentant des réseaux bayésiens. Il apparaît que, bien que le langage AADD soit strictement plus succinct en théorie que SLDD+ et SLDD×, ces deux langages conviennent bien en pratique quand il s'agit de compiler des problèmes de nature purement additive (respectivement purement multiplicative).

Introduction

Les diagrammes de décision -automates, diagrammes de décision binaires ordonnés (OBDD), diagrammes de décision multivalués (MDD) -sont particulièrement intéressants pour la compilation de problèmes de satisfaction de contraintes, et spécialement pour le type d'application qui nous intéresse, à savoir la compilation de problèmes de configuration de produit [START_REF] Amilhastre | Consistency restoration and explanations in dynamic CSPs application to configuration[END_REF][START_REF] Hadzic | A bdd-based approach to interactive configuration[END_REF][START_REF] Hadzic | Calculating valid domains for bdd-based interactive configuration[END_REF]. Cela dit, ces diagrammes ne permettent pas tels quels de représenter des fonctions de coût, ou plus généralement des fonctions associant une valuation (coût, degré de satisfaction, probabilité, etc.) aux affectations de variables -ils ne permettent pas la compilation de problèmes de satisfaction de contraintes valuées (VCSPs). Dans un tel cadre, les diagrammes de décision valués (VDDs) -diagrammes de décision algébriques (ADDs) [START_REF] Bahar | Algebraic decision diagrams and their applications[END_REF], diagrammes de décision à arcs valués (EVBDDs) [START_REF] Lai | Edge-valued binary decision diagrams for multi-level hierarchical verification[END_REF][START_REF] Lai | Formal verification using edge-valued binary decision diagrams[END_REF][START_REF] Amilhastre | Consistency restoration and explanations in dynamic CSPs application to configuration[END_REF], Semiring Labeled Decision Diagrams (SLDDs) [START_REF] Wilson | Decision diagrams for the computation of semiring valuations[END_REF], diagrammes de décision algébriques affines (AADDs) [START_REF] Tafertshofer | Factored edge-valued binary decision diagrams[END_REF] [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF] sont alors des langages cibles pertinents. Les ADDs par exemple ont été utilisés pour la compilation de problèmes de planification [START_REF] Hoey | SPUDD : Stochastic planning using decision diagrams[END_REF] ; des travaux en configuration de produit [START_REF] Amilhastre | Consistency restoration and explanations in dynamic CSPs application to configuration[END_REF][START_REF] Hadzic | A BDDbased polytime algorithm for cost-bounded interactive configuration[END_REF] ont proposé d'utiliser les EVBDDs (ou de manière équivalente, les SLDDs additifs -SLDD +) pour capturer des fonctions de coût ou de préférences fortement additives, c'est-à-dire des cas où la valuation associée à une affectation des variables s'exprime directement par un VCSP dont toutes les contraintes souples sont unaires : l'idée est alors de compiler les contraintes dures qui définissent le produit configurable par un MDD, puis d'ajouter les valuations définies par les contraintes unaires directement sur les arcs.

L'intérêt de ces langages de compilation est qu'ils permettent une manipulation efficace de l'ensemble des solutions du VCSP, une fois compilé. La résolution interactive (c'est-à-dire par l'utilisateur) d'un problème de configuration avec fonction coût par exemple se rénduit en effet à des opérations de conditionnement, de propagation et d'optimisation qui sont linéaires dans la taille de la structure compilée. Ce qui est donc important en pratique, c'est d'obtenir une forme compilée la plus compacte possible. Plusieurs facteurs influencent cette compacité :

-la compacité théorique (ou "succinctness") qui est relative (elle indique s'il est possible de séparer exponentiellement ou non un langage d'un autre) et qui se focalise sur le pire cas ; -la canonicité, c'est-à-dire la capacité de chaque langage à offrir pour chaque VCSP une forme canonique -ceci permet de reconnaître et de fusionner efficacement (par exemple, par un mécanisme de cache) les sous-diagrammes équivalents ; -les heuristiques d'ordonnancement des variables choisies pour construire le diagramme de décision. Les travaux de Sanner et Mc Allester ont montré que le langage AADD offre une forme canonique et est plus performant que le langage ADD du point de vue de la compacité théorique comme du point de vue pratique. Dans des travaux récents [?], nous avons montré que la propriété de canonicité à l'oeuvre dans les AADD pouvaient être étendue, algébriquement, au langage SLDD, et qu'en théorie au moins, le langage AADD est plus succinct que SLDD + (resp. SLDD ×), c'est-à-dire le langage des SLDDs fondé sur le semi-anneau commutatif R + ∪ {+∞}, 0, +∞, +, min (resp. sur le semi-anneau commutatif R + , 1, 0, ×, max).

Nous décrivons dans la suite quelques résultats issus de nos travaux sur la compacité expérimentale des VDDs. Nous présentons un compilateur ascendant de VCSPs en SLDD + et SLDD × , un jeu d'heuristiques d'ordonnancement des variables, ainsi que des procédures de traduction des langages SLDD + et SLDD × vers les langages ADD et AADD. Les différents langages cibles et les heuristiques ont été testés sur deux familles de jeux d'essai, des VCSPs additifs représentant des problèmes de configuration de voitures avec fonctions de coût, et des VCSPs multiplicatifs représentant des réseaux bayésiens. Il apparaît que, quoique le langage AADD soit strictement plus succinct en théorie que SLDD + et SLDD × , ces deux langages conviennent bien en pratique quand il s'agit de compiler des problèmes de nature purement additive (respectivement purement multiplicative).

Diagrammes de décision valués

Soit X = {x 1 , . . . , x n } un ensemble de variables où chaque x i ∈ X prend ses valeurs dans un domaine discret D x ; on note D X l'ensemble des affectations x de X. Un diagramme de décision α est une structure de données permettant de représenter une fonction f α qui associe à chaque affectation Les diagrammes de décision valués sont généralement ordonnés : un ordre total < sur X est choisi de manière à ce que la suite des variables associées aux noeuds rencontrés sur chaque chemin de la racine vers une feuille soit compatible avec cet ordre.

x = {(x i , d i) | d i ∈ D xi , i = 1, . . . ,
Un diagramme de décision valué est dit sous forme réduite s'il ne contient pas de noeuds isomorphes (deux noeuds étiquetés par la même variable et dont les arcs sortants sont identiques, c'est-à-dire pointent sur les mêmes noeuds en portant la même valeur du domaine de leur variable et la même valuation φ). Tout VDD possède une unique forme réduite, qu'il est possible d'obtenir en temps linéaire en sa taille, soit par une procédure de réduction remontant de la/des feuille/s vers la racine, soit simplement par un mécanisme de cache (une "unique table "). Dans la suite, nous supposons que les diagrammes de décision considérés sont sous forme réduite.

Les ADDs sont la généralisation aux valuations non booléennes des OBDDs, les deux noeuds terminaux true et false étant remplacés par autant de noeuds que de valeurs de E associées à une affectation au moins.

Définition 2 Un ADD est un VDD ordonné dont seuls les noeuds terminaux sont valués (les arcs ne le sont pas). Un ADD α associe à chaque affectation x ∈ D X la valeur f α (x) ∈ E définie par :

-si α est un noeud terminal N étiqueté par un élément φ(N) de E, alors f α (x) = φ(N) ; -sinon, la racine N de α est étiquetée par x ∈ X ; soient d la valeur de x dans x, a = (N, M) l'arc issu de N tel que v(a) = d, et β le ADD de racine M dans α ; on a pour tout x ∈ D X :

f α (x) = f β (x).
Les noeuds terminaux reprenant l'ensemble des valeurs possibles de la fonction représentée, le nombre de noeuds d'un ADD croît avec le cardinal de l'ensemble de ces valeurs (l'image de la fonction représentée). Ainsi, la fonction f (x 1 , . . . , x n) = Σ n i=1 2 i-1 x i sur {0, 1} n , qui est représentable en espace polynomial par un VCSP fortement additif, prend 2 n valeurs différentes, d'où une taille exponentielle pour les ADDs qui la représentent.

Dans les SLDDs (Semiring Labeled Decision Diagrams) tels que définis dans [START_REF] Wilson | Decision diagrams for the computation of semiring valuations[END_REF], la structure de valuation doit être un semi-anneau E = E, ⊗, ⊕, 1 s , 0 s -1 s dénotant l'élément neutre de l'opérateur ⊗ et 0 s dénotant l'élément neutre de l'opérateur ⊕, absorbant pour ⊗. L'opérateur ⊕ n'a aucune influence pour la définition d'un SLDD en tant que représentation d'une fonction de D X dans E (⊕ est utilisé lorsque l'on veut calculer une valuation optimale, ou lorsque l'on veut éliminer une ou plusieurs variables). Pour cette raison, nous utilisons dans la suite une définition un petit peu plus générale que celle de [START_REF] Wilson | Decision diagrams for the computation of semiring valuations[END_REF], exigeant simplement une structure de monoïde pour E = E, ⊗, 1 s : ⊗ est une loi interne à E, associative, et qui possède un élément neutre 1 s . Définition 3 Un SLDD α sur X est un VDD avec une unique racine et un unique noeud terminal, dont les arcs sont étiquetés par des éléments de E où E = E, ⊗, 1 s est un monoïde. Un SLDD associe à chaque affectation x ∈ D X la valeur f α (x) appartenant à E définie par :

-si α est le noeud terminal alors f α (x) = 1 s ; -sinon, la racine N de α est étiquetée par x ∈ X ; soient d ∈ D x la valeur de x dans x, a l'arc issu de N tel que v(a) = d, M son extrémité et β le SLDD de racine M dans α ; on a pour tout x ∈ D X : f α (x) = φ(a) ⊗ f β (x). À des fins de normalisation, on peut associer à α une valeur φ 0 ∈ E (son "offset"). La fonction "augmentée" que représente α est définie par, pour tout

x ∈ D X , f α,φ0 (x) = φ 0 ⊗ f α (x).
Deux monoïdes sont particulièrement intéressants : E = R + ∪ {+∞}, +, 0 pour tous les problèmes dont les valuations sont de nature additive (coûts) et E = R + , ×, 1 pour tous les problèmes dont les valuations sont de nature multiplicative (probabilités). Les langages associés sont notés respectivement SLDD + et SLDD × . Chacun admet un élément absorbant (0 pour SLDD × , +∞ pour les SLDD +), ce qui permet de compiler des VCSPs possédant des contraintes dures : dans un SLDD + par exemple, toute affectation x telle que f (α)(x) = +∞ est considérée comme non admissible car violant une contrainte dure.

Enfin, les diagrammes de décision algébriques affines introduits dans [START_REF] Tafertshofer | Factored edge-valued binary decision diagrams[END_REF][17] permettent d'utiliser conjointement les opérateurs × et + sur R + . Dans un SLDD, chaque arc a porte une valeur φ(a) ; dans un AADD, les arcs sont étiquetés par des couples de valeurs.

Définition 4 Un AADD α sur X est un VDD ordonné avec une unique racine et un unique noeud terminal, dont les arcs sont étiquetés par des couples d'éléments de R + . α associe à chaque affectation x ∈ D X la valeur f α (x) ∈ R + définie par :

-si α est le noeud terminal N , f α (x) = 1 ; -sinon, la racine N de α est étiquetée par x ∈ X ; soient d ∈ D x la valeur de x dans x, a l'arc issu de N tel que v(a) = d, M son extrémité, φ(a) = q, f le couple de valeurs associée à a et β le AADD de racine M dans α ; on a pour tout x ∈ D X : f α (x) = q + f × f β (x). À des fins de normalisation, on attache à α un couple q 0 , f 0 de R + × R + (son "offset"). La fonction "augmentée" que représente α est définie par, pour tout

x ∈ D X , f α, q0,f0 (x) = q 0 + f 0 × f α (x).

Normalisation

Le langage AADD est muni d'une procédure de normalisation qui permet de garantir, pour chaque fonction à représenter et étant donné un ordre des variables, une unique représentation réduite. Cette pro-

1. En étendant E à (R + ∪ {+∞}) × R + .
Algorithme 1 : normalizeAADD(α, q 0 , f 0) input : Un AADD α et son "offset" q 0 , f 0 output : Un AADD normalisé équivalent à α for each node N of α in inverse topological ordering do q min ← min a∈Out(N) q a ; range ← max a∈Out(N) (q a + f a) -q min ; for each a ∈ Out(N) do if range > 0 then q a ← (q a -q min)/range; f a ← f a /range; else // here, f a = 0 and q a = q min q a ← q a -q min ; for each a ∈ In(N) do q a ← q a + q min × range; f a ← f a × q range ; q 0 ← q 0 + q min × range; f 0 ← f 0 × range; return α;

priété joue un rôle important dans l'obtention de forme compacte, puisqu'elle permet de détecter, et donc de fusionner, les sous-diagrammes qui représentent la même sous-fonction.

Normalisation des AADD [17]

Soient un noeud N étiqueté par une variable x dont le domaine contient n valeurs, Out(N) = {a 1 , a 2 , . . . , a n } l'ensemble des arcs sortants de N , et pour chaque i ∈ 1, . . . , n, φ(a i) = q i , f i la valuation attachée à cet arc. N est normalisé ssi :

-min(q 1 , q 2 , ..., q n) = 0 ; -max (q 1 + f 1 , q 2 + f 2 , ..., q n + f n) = 1 ; -le sous-AADD β sur lequel pointe un a i est tel que si ∀ x, f (β)(x) = 0, alors f i = 0. Un AADD est normalisé ssi tous ses noeuds le sont.

Tout AADD peut être normalisé en temps linéaire (voir algorithme 1). Cette procédure normalise les noeuds du puits vers la racine ; pour chaque N , elle calcule un "offset interne" q min , range , qui permet de normaliser N et puis est reporté sur les parents de N , ou sur l'offset de l'AADD si N est sa racine. Appliquée depuis le puits vers la racine, cette procédure remonte sur l'offset du diagramme les valeurs minimum (q 0) et maximum (q 0 + f 0) de la fonction représentée par l'AADD.

Les SLDD + et SLDD × pouvant être vus comme des AADDs, nous pouvons nous appuyer sur l'existence d'une forme normalisée de ces structures pour proposer une définition similaire allégée de leur forme normalisée :

Algorithme 2 : normalizeSLDD(α, φ 0) input : Un SLDD α, et son "offset" φ 0 output : Un SLDD normalisé équivalent à α // For SLDD + let // ⊗ = +, ⊗ -1 = -, ⊕ = min, 1 s = 0 // For SLDD × let // ⊗ = ×, ⊗ -1 = ⊕ = max, 1 s = 1 for each node N of α in inverse topological ordering do φ m ← ⊕ a∈Out(N) φ(a); // Rem: when ⊕ = max, φ m = 0 iff // ∀a, φ(a) = 0 for each a ∈ Out(N) do if φ(a) = φ m then φ(a) ← 1 s ; else φ(a) ← φ(a) ⊗ -1 φ m ; for each a ∈ In(N) do φ(a) ← φ(a) ⊗ φ m ; φ 0 ← φ 0 ⊗
)) = 1.
De même, on peut utiliser une spécialisation de la procédure de [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF] pour normaliser un SLDD (voir algorithme 2). Dans un SLDD + (resp. SLDD ×) normalisé, le minimum (resp. le maximum) de la fonction représentée est ainsi remonté à la racine en offset.

Construction de diagrammes de décision valués

À des fins expérimentales, nous avons implémenté un compilateur de VDDs. Ce compilateur permet de compiler d'une part des VCSPs à valuations additives [START_REF] Bistarelli | Semiring-based csps and valued csps : Frameworks, properties, and comparison[END_REF] dont les contraintes sont exprimées par des tables tuple →valuation (selon le format XCSP 2.1 décrit dans [START_REF] Roussel | XML Representation of Constraint Networks : Format XCSP 2.1[END_REF]) sous la forme de SLDD + ; et d'autre part de compiler des réseaux bayésiens sous la forme de SLDD × (selon le format XML de [START_REF] Gagliardi | JavaBayes Version 0.347, Bayesian Networks in Java, User Manual[END_REF]). Pour permettre l'obtention de différents types de VDDs, nous avons également implémenté des traductions de SLDD + et SLDD × vers ADD et réciproquement, ainsi que des traductions de SLDD + et SLDD × vers AADD.

Compilation

Notre approche de la compilation d'un VCSP en SLDD suit un procédé ascendant classique pour la construction de diagrammes de décisions ordonnés, valués ou non [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF][6] [START_REF] Amilhastre | Représentation par automate d'ensemble de solutions de problèmes de satisfaction de contraintes[END_REF]. Nous décrivons ici la procédure d'ajout d'une contrainte valuée à un SLDD + . L'ajout d'une contrainte C à un SLDD × suit le même schéma, en remplaçant toute addition par une multiplication, toute soustraction par une division, et toute occurrence de l'élément neutre 0 par une occurrence de l'élément neutre 1.

On détermine tout d'abord un ordre total < des variables selon lesquels le SLDD à construire sera ordonné (la section suivante décrit et compare les heuristiques d'ordonnancement de variables). On crée ensuite un SLDD "blanc ", c'est-à-dire que l'on associe à chaque variable un noeud dont chacun des arcs sortants (il y en a un par valeur dans le domaine de la variable) pointe vers le noeud portant la variable suivante selon l'ordre < avec une valuation φ = 0 (ou φ = 1 pour un SLDD ×). Les contraintes sont ajoutées une à une au SLDD en construction.

Dans un premier temps, lorsque la contrainte à ajouter contient un φ 0 par défaut (à appliquer à toutes les affectations qui ne sont pas explicitement dans la table de la contrainte), on met à jour l'étiquette de tout arc a sortant d'un noeud étiqueté par la dernière variable de C (selon <) via φ(a) ← φ(a)+φ 0 (cf. algorithme 3). On ajoute ensuite chacun des tuples t de la table au SLDD courant, selon une procédure inspirée de la procédure Apply(+) décrite dans [START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF] MCF [START_REF] Amilhastre | Représentation par automate d'ensemble de solutions de problèmes de satisfaction de contraintes[END_REF] Afin de réduire la taille du diagramme de décision, il peut sembler intéressant de rencontrer les variables les plus contraintes (intervenant dans le plus de contraintes) le plus rapidement possible. On espère ainsi, lorsque le problème contient des contraintes dures, poster le plus tôt possible des arcs portant la valeur absorbante (n-uplet non admissible) -ces arcs joignant directement le puits, cela limite la taille de du VDD. L'heuristique MCF (pour Most Constrained First) trie les variables en fonction du nombre de contraintes dures dans lesquelles elles sont utilisées.

M CF (x) = |{c | x ∈ V ar(c)}|.
Band-Width [START_REF] Amilhastre | Représentation par automate d'ensemble de solutions de problèmes de satisfaction de contraintes[END_REF] a montré que la Band-Width du graphe de contraintes permet de borner la taille du meilleur MDD décrivant un CSP classique. Soit G = (X, C) un graphe de contraintes et O : {1, . . . , n} → X un ordre sur les n variables de X (O associe à chaque rang une variable). La Band-Width d'un ordre O est :

BW (O) = max {j -i t.q. i < j et ∃C, O[i], O[j] ∈ V ar(C)}.
Pour un O donné, on place en tête les variables de plus fort BW dans l'ordre.

Le calcul d'un ordre de Band-Width minimum pour un graphe quelconque étant un problème NP-complet, nous utilisons un algorithme glouton pour l'approcher. On choisit les variables de l'ordre itérativement : la première sélectionnée (celle qui sera en tête du VDD) est la variable la plus contrainte. Étant donnée une suite O de k variables sélectionnées, la variable suivante est la variable x non encore sélectionnée qui maximise la quantité :

H O (x) = max {|O| -i | O[i] voisine de x}.

MCS-Inv [19] MCS (pour Maximum Cardinal

Search) est une méthode introduite dans le cadre de reconnaissance de graphes triangulés. La méthode MCS-Inv reprend le même principe en inversant l'ordre final. Elle permet aux variables fortement contraintes d'être proches des variables avec lesquelles elles sont liées. Notre implémentation utilise un algorithme glouton. On choisit les variables de l'ordre itérativement : la première sélectionnée est la variable la plus contrainte. Étant donnée une suite O de k variables sélectionnées, la variable suivante est la variable x non encore sélectionnée qui maximise la quantité H O (x) = Σ i=1,...,k,O[i] voisine de x |S| -i.

Force [START_REF] Fadi | Force : a fast and easy-to-implement variable-ordering heuristic[END_REF] Le but de Force est de minimiser le span induit sur le graphe de contraintes, c'est-à-dire la somme (et non pas, comme pour l'heuristique Band-Width, le maximum) des distances séparant les variables appartenant à la même contrainte.

span(O) = Σ C (j -i/i < j et O[i], O[j] ∈ V ar(C)).
La méthode consiste à calculer, à partir d'un ordre quelconque, le "centre de gravité (COG)" de chacune des contraintes C (en fonction de la position des variables dans l'ordre).

COG(C) = Σ x∈V ar(C) P OS(x)

|V ar(C)| .

On remet à jour ensuite les positions de chacune des variables en fonction des centres de gravité de l'ensemble des contraintes auxquels elles appartiennent. De la même façon, on peut toujours transformer un ADD en SLDD + ou en SLDD × en reportant les valuations portées par les noeuds terminaux sur leurs arcs entrants (les autres arcs portant la valuation φ = 0 lorsque l'on veut construire un SLDD + , la valuation φ = 1 lorsque l'on veut construire un SLDD ×) ; les noeuds terminaux sont remplacés par le puits du nouveau SLDD. On normalise et réduit ensuite le diagramme obtenu selon les principes de normalisation des SLDD + (respectivement des SLDD ×).

P OS(x) =

La procédure est la même lorsqu'il s'agit de transformer un ADD en AADD, les valuations φ i des noeuds terminaux étant reportées sur leurs arcs entrants sous la forme d'un couple 0, φ i .

Traductions

SLDD →ADD, AADD →ADD, AADD →SLDD Transformer un SLDD en ADD revient à repousser les valuations φ vers les arcs du dernier niveau. En quelque sorte, il s'agit d'une normalisation assurant que pour tout a, φ(a) est égal à l'élément neutre (0 pour les SLDD + et 1 pour les SLDD ×) ; il faut alors, pour porter les valuations, dupliquer le puits en autant de noeuds finaux que de valuations différentes sur ses arcs entrants. La procédure de "normalisation" du Le même type de procédure est appliqué pour transformer un AADD en SLDD + , c'est-à-dire en AADD dont les valuations sont de la forme q, 1 : on crée autant de copies N 1 , . . ., N k de N que de facteurs multiplicatifs différents f 1 , . . ., f k sur les arcs a j entrant dans N . Chaque copie N i est liée aux prédécesseurs de N par des copies a ′ des arcs a entrant dans N et portant la valuation f i : chaque arc a ′ porte la même valeur du domaine de sa variable que a et sa valuation est q a , 1 ; le facteur multiplicatif de a est reporté sur les arcs suivants : pour chaque copie N i , et chaque arc a de N vers un noeud M , étiqueté par q, f , on crée un arc a ′ étiqueté V al(a) de N i vers M , prenant pour valeur

q ′ × f i , f ′ × f i .
Pour obtenir un SLDD × plutôt qu'un SLDD + , on "normalise" le diagramme affine de manière à assurer que toutes les valuations sont de la forme 0, f . Pour cela, on crée autant de copies N 1 , . . ., N k de N que de facteurs q 1 + f 1 , . . ., q k + f k différents sur les arcs a j entrant dans N . Chaque copie a ′ d'un a ∈ In(N) porte la valuation 0, f a ; le facteur additif est reporté sur les arcs suivants : pour chaque copie N i , et chaque arc a de N vers un noeud M , étiqueté par q, f , on crée un arc a ′ étiqueté V al(a) de N i vers M , prenant pour valeur q ′ + qi fi , f ′ . Finalement, les étiquettes des arcs entrant dans le puits sont mises sous la forme q+f, 0 .

Enfin, pour obtenir un ADD plutôt qu'un SLDD à partir d'un AADD, on crée autant de copies N i de N que de valeurs q i + f i différentes sur les arcs entrant dans N et le facteur q i + f i est repoussé sur les arcs sortant des N i : les étiquettes q ′ , f ′ des arcs a ′ deviennent

q i + f i × q ′ , f i × f ′ .
Notons que ces transformations peuvent faire "exploser" le diagramme, ce qui est inévitable dans le pire cas : la fonction f (x 1 , . . . , x n) = Σ n i=1 2 i-1 x i sur {0, 1} n par exemple, prend 2 n valeurs différentes ; sa représentation par un ADD posséde donc 2 n feuilles, alors qu'elle peut être représentée par un SLDD + (et donc par un AADD) à n + 1 noeuds et 2n arcs. On peut également montrer que cette fonction ne peut pas être représentée par un SLDD × de taille polynomiale. Formellement, le langage AADD est strictement plus succinct que celui des SLDD + , lui-même strictement plus succinct que ADD. Il est également strictement plus succinct que le langage SLDD × lui-même strictement plus succinct que ADD [START_REF] Fargier | Semiring labelled decision diagrams, revisited : Canonicity and spatial efficiency issues[END_REF]. Le nombre d'opérations effectuées lors de la transformation en AADD et d'un AADD vers un autre langage augmente le risque d'erreurs d'arrondis (on trouve en effet plus facilement dans les AADD des additions entre deux valeurs d'ordres de grandeur différents, dont le résultat sera nécessairement arrondi, oubliant la valeur la plus faible). C'est pourquoi dans les faits, nous évitons les traductions de AADD vers SLDD et ADD. Par exemple, transformer un SLDD + en SLDD × (ou inversement), on passe par le langage ADD et non AADD. Même si le passage en ADD n'est pas toujours possible (à cause de l'explosion en espace), cela évite d'obtenir un résultat erroné. Le pas-sage de SLDD × vers SLDD + (en passant par un ADD) peut aussi entraîner des erreurs d'arrondis s'il y a de trop gros écarts d'ordres de grandeur en sortie d'un SLDD × .

Résultats expérimentaux

Dans cette section, nous comparons expérimentalement, d'une part, l'efficacité des différentes heuristiques, et, d'autre part, la compacité pratique des différents types de VDDs décrits dans les sections précédentes.

Nous avons testé nos structures de données et heuristiques sur deux familles de jeux d'essai, des VCSP additifs (codant des problèmes de configuration de véhicule) et des VCSP multiplicatifs (codant des réseaux bayésiens). En ce qui concerne les réseaux bayésiens, nous avons utilisé des jeux d'essai standard au format XML [START_REF] Gagliardi | JavaBayes Version 0.347, Bayesian Networks in Java, User Manual[END_REF]. Les instances de CSP pondérés représentant des problèmes de configuration de voitures nous ont été fournies par Renault -elles sont disponibles via [?]. Ces instances sont composées de contraintes dures, définissant les modèles de voitures faisables (la diversité de la gamme, en termes automobiles) ainsi que de contraintes valuées représentant les coûts, le prix d'un véhicule étant la somme des coût spécifiés par les différentes contraintes valuées. Trois jeux d'essai nommés Small, Medium et Big représentent trois modèles différents de voitures (deux citadines et un utilitaire). Les caractéristiques des jeux d'essai sont les suivantes :

-Small : #variables=139 ; #taille du domaine max=16 ; #contraintes=176 (incluant 29 de coût) -Medium : #variables=148 ; #taille du domaine max=20 ; #contraintes=268 (incluant 94 de coût) -Big : #variables=268 ; #domaine max=324 ; #contraintes=2157 (incluant 1825 de coût) Enfin, les problèmes Small Price Only, Medium Price Only et Big Price Only sont constitués des seules contraintes de coût des instances Small, Medium et Big, respectivement (les contraintes dures sont omises).

Efficacité spatiale des heuristiques

Pour tester l'efficacité des différents heuristiques, nous avons mesuré, pour chacune d'elles, le temps de compilation de chaque instance en SLDD, ainsi que le nombre de noeuds et d'arcs du diagramme résultant. Les problèmes de configuration avec fonction de coût ont été compilés en SLDD + , les instances de réseaux bayésiens ont été compilés en SLDD × . Les résultats sont présentés à la table 1. Les notations t-o et m-o signifient respectivement time-out (>24h) et out of memory (>128Mb). Toutes les expérimentations ont été effectués sur un processeur de 800MHz.

Il apparaît que MCS-Inv est généralement l'heuristique la plus performante, tant du point de vue de la taille du diagramme généré que de celui du temps de calcul. Les résultats de MCF sont mauvais lorsqu'il n'y a que des contraintes souples (problèmes Price Only et réseaux bayésiens), car cette heuristique n'est intéressante qu'appliquée à des contraintes dures. Néanmoins, les performances de MCF sont supérieurs à ceux de Band-width (au moins pour la taille) sur les problèmes alliant contraintes souples et contraintes dures, et même supérieurs à ceux de MCS-Inv en taille sur le problème Medium. Notons également la faiblesse de Force en toutes circonstances. Au vu de ces résultats, nous avons choisi d'utiliser MCS-Inv pour la suite des expérimentations.

Efficacité spatiale des types de VDD

Nous avons voulu aussi comparer la taille des diagrammes obtenus selon les différents langages consi-dérés dans l'article. Les jeux d'essai ont été compilés sous la forme de SLDD (SLDD + pour les VCSP et SLDD × pour les réseaux bayésiens) puis traduits dans les autres langages. Les tables 2 et 3 indiquent les tailles obtenues pour la représentation des problèmes de configuration et des réseaux bayésiens sous la forme de ADD, SLDD + , SLDD × et AADD. Ces expérimentations confirment les hypothèses de compacité des différents langages. En effet, on retrouve bien que le langage ADD (le moins succinct) est toujours moins compact que SLDD + , SLDD × et AADD. À l'inverse, l'AADD est toujours au moins aussi compact que SLDD + , SLDD × et ADD. Il s'avère qu'un langage offre en pratique une bonne compacité si celuici intègre l'opérateur adéquat au type d'instance considéré. Ainsi les langages SLDD + et AADD qui intègrent l'addition sont plus efficaces spatialement pour la compilation de VCSP dont les contraintes sont de nature additive (portant sur un prix), alors que SLDD × et AADD sont plus compacts pour la compilation de réseaux bayésiens, où les contraintes sont de nature multiplicative (tables de probabilités) 3 . . À l'inverse, un opérateur non pertinent n'apporte que peu, voire pas, d'amélioration. Ainsi, la comparaison entre les différents langages de type SLDD et le langage AADD nous montre que l'utilisation d'un deuxième opérateur n'apporte pas, dans les problèmes purement additifs ou purement multiplicatifs, d'amélioration pratique en terme de compacité. L'utilisation d'un AADD par rapport à un SLDD + (resp. SLDD ×) n'apporte pas de réelle amélioration pour la compilation des problèmes de configuration avec coût (resp. réseaux bayésiens)

Conclusion

Dans cette article nous avons étudié la compilation vers et la traduction entre différents types de diagrammes de décision valués. Du point de vue théorique le langage AADD peut être vu comme une généralisation des langages SLDD + et SLDD × , langages qui généralisent eux-mêmes le langage ADD : AADD est donc, parmi eux, le langage de compilation le plus succinct. Les expérimentations montrent que, dans la pratique, pour la compilation de problèmes de nature purement additive (respectivement purement multiplicative), seul l'opérateur + (respectivement ×) est utile, et que l'utilisation de SLDD + (respectivement SLDD ×) suffit amplement à la compilation du problème original. Nous avons également étudié plusieurs heuristiques, et vérifié que les meilleures tendaient au regroupement des variables incluses dans un même groupe de contraintes. Dans nos travaux futurs, nous prévoyons d'étudier la complexité et d'implémenter des requêtes et des transformations de VDDs, afin de pouvoir utiliser ces structures de données pour traiter efficacement (et avec une garantie de temps de réponse) des problèmes de configuration en ligne avec maintien d'un indicateur de coût minimal.

Définition 1

 1 n} un élément d'un ensemble E de valuations. E est à la base d'une structure de valuation E qui peut être plus ou moins riche d'un point de vue algébrique. Dans le formalisme ADD, aucune hypothèse n'est faite sur E (bien que l'on considère généralement que E = R). Pour le langage AADD, E = R + . Un diagramme de décision valué (VDD) est un graphe orienté et acyclique avec une seule racine, où chaque noeud N est étiqueté par une variable x ∈ X : si D x = {d 1 , . . . , d k }, alors N a k arcs sortants a 1 , . . . , a k , tels que chaque a i est valué par val(a i) = d i . Les variables étiquetant les noeuds de tout chemin de la racine à une feuille sont toutes distinctes. Les noeuds N (resp. les arcs a) peuvent également être étiquetés par une valeur φ(N) (resp. φ(a)) de E. On note In(N) (respectivement Out(N)) les arcs entrants dans (respectivement issus de) N .

Figure 1 -

 1 Figure 1 -(a) : Exemple de ADD ; (b) Exemple de SLDD + ; (c) Exemple de AADD

Σ

 C,x∈V ar(C) COG(c) |{C,x∈V ar(C)}| .Cette procédure part d'un ordre quelconque sur les variable O : à l'initialisation, P OS(x) est le rang de x dans O. Elle est répétée autant de fois que nécessaire, jusqu'à arriver à un point fixe, où, d'une itération à l'autre, les estimations de centres de gravités des va-riables n'évoluent plus. On réordonne ensuite les variables par POS croissant. 4.3 Traductions ADD⇋SLDD⇋AADD Nous développons ici les principes qui fondent les traductions d'un type de VDD vers chacun des autres (en supposant que tous partagent le même domaine de valuation, typiquement E = R + ∪ {+∞}). Ces traductions peuvent souvent être vues comme l'application de procédures de normalisation. Traductions SLDD →AADD, ADD →SLDD, ADD →AADD La traduction la plus évidente est la traduction d'un SLDD + (ou d'un SLDD ×) en AADD : tout SLDD + peut être transformé en AADD en remplaçant, pour chaque arc a à destination du puits son étiquette φ(a) par le couple φ(a), 0 , et pour tout autre arc a ′ , son étiquette φ(a ′) par le couple φ(a ′), 1 . On normalise ensuite l'AADD obtenu, ce qui permet éventuellement de le réduire et d'obtenir une structure de plus faible taille. De la même façon, tout SLDD × peut être transformé en AADD en remplaçant, pour chaque arc a, son étiquette φ(a) par le couple 0, φ(a) . On normalise et réduit ensuite l'AADD obtenu, ce qui permet éventuellement d'obtenir une structure plus compacte que le diagramme original.

Figure 2 -

 2 Figure 2 -Exemple de traduction d'un ADD (a) en SLDD + : en (b) les poids sont remontés sur les arcs et les noeuds sont normalisés ; en (c) les noeuds isomorphes sont fusionnés

 2 -voir algorithme 4. Le SLDD résultant est normalisé et réduit, et devient le nouvel SLDD courant. + φ 0 y ← f irst(V ar(C)) //première var. de C selon < for (t, φ t) ∈ T able(C) do for noeud N ∈ α t.q. V ar(N) = y do AddT uple(t, φ t , N) Algorithme 4 : AddTuple(t, φ t , α) input : Un SLDD ordonné α, un n-uplet t, une valuation φ t output : Le SLDD α auquel on a ajouté le tuple t // ⊗ = × for SLDD × ;⊗ = + for SLDD +

	x ← V ar(N);
	if x ∈ V ar(t) then
	let a = (N, M) be the arc in Out(N)
	corresponding to value t[x];
	if x = last(V ar(t)) then
	φ(a) ← φ(a) ⊗ φ t ;
	else
	if M t = null then
	M t ← clone(M) // same successors
	// as those of M , reached by
	// copies of the arcs in Out(N)
	Out(a) ← M t ;
	AddT uple(t, φ 4.2
	La taille des diagrammes de décision classiques est
	évidemment très sensible à l'ordre dans lequel ses va-
	riables ont été ordonnées [2][8] -et c'est également le
	cas pour leurs versions valuées. Nous avons appliqué
	aux VDDs plusieurs heuristiques proposées pour les
	MDDs [2][8].
	Algorithme 3 : AddConstraint(C, φ 0 , α)
	input : Un SLDD ordonné α, une contraint C,
	une valuation par defautφ 0
	output : Le SLDD α auquel on a ajouté la
	contrainte C
	reduce(normalizeSLDD(α))

x ← last(V ar(C)) //dernière var. de C selon < for all a sortant d'un noeud étiqueté par x do φ(a) ← φ(a) t , M t);

else for a = (N, M) ∈ Out(N) do if M t = null then M t ← clone(M) ; Out(a) ← M t ; AddT uple(t, φ t , M t) ;

Table 1 -

 1 Comparaison des heuristiques MCF, Band-Width, MCS-Inv et Force

		MCF		Band-Width	MCS-Inv		Force	
	Instance	noeuds(arcs) tps(s)	noeuds(arcs)	tps(s)	noeuds(arcs)	tps(s)	noeuds(arcs)	tps(s)
	VCSP →SLDD+								
	SmallPriceOnly	105(239)	< 1	40(120)	< 1	36(108)	< 1	351(2946)	< 1
	MedPriceOnly	777(2009)	< 1	312(906)	< 1	169(499)	< 1	3362(40474)	1
	BigPriceOnly	-	t-o	97646(251594) 4002	3317(9687)	18	8873 (824180)	499
	Small	3100(7564)	1	4349(10451)	2	2344(5584)	1	4503 (12430)	2
	Medium	5660(19363)	11	11700(30835)	18	6234(17062)	7	13603(34263)	32
	Big	-	t-o	-	t-o	198001(925472) 79043	-	t-o
	Bayes →SLDD×								
	Cancer	13(25)	<1	13(25)	<1	13(25)	<1	13(25)	<1
	Asia	36(71)	<1	29(57)	<1	23(45)	<1	25(49)	<1
	Car-starts	77(157)	<1	41(83)	<1	41(83)	<1	49(99)	<1
	Alarm	-	t-o	5852(14899)	<1	1301(3993)	<1	7054(20134)	<1
	Hailfinder25	-	t-o	-	t-o	32718(108083)	8	m-o	-

Table 2 -

 2 Compilation de problèmes de configuration en SLDD + , ADD, SLDD × et AADD.

	VCSP	SLDD+		ADD	SLDD×	AADD
	Instance	noeuds (arcs)	temps (s)	noeuds (arcs)	noeuds (arcs)	noeuds (arcs)
	SmallPriceonly	36 (108)	< 1	4364 (7439)	3291 (7439)	36 (108)
	MediumPriceonly	169 (499)	< 1	37807 (99280)	33595 (99280)	168 (495)
	BigPriceonly	3317 (9687)	18	m-o	-	3317 (9687)
	Small	2344 (5584)	1	299960 (637319)	14686 (33639)	2344 (5584)
	Medium	6234 (17062)	6	752466 (2071474) 129803 (314648)	6234 (17062)
	Big	198001 (925472)	79043	m-o	-	198001 (925472)

Table 3 -

 3 Compilation de réseaux bayésiens en SLDD + , ADD, SLDD × et AADD.

	Réseaux bayésiens	SLDD×		ADD	SLDD+	AADD
	Instance	noeuds (arcs)	temps (s)	noeuds (arcs)	noeuds (arcs)	noeuds (arcs)
	Cancer	13 (25)	< 1	38 (45)	23 (45)	11 (21)
	Asia	23 (45)	< 1	415 (431)	216 (431)	23 (45)
	Car-starts	41 (83)	< 1	42741 (64029) 19632 (39265)	38 (77)
	Alarm	1301 (3993)	< 1	m-o	-	1301 (3993)
	Hailfinder25	32718 (108083)	8	m-o	-	32713 (108063)

Cette procédure étant elle-même une extension de la procédure de conjonction de OBDDs proposée dansr[START_REF] Bryant | Graph-based algorithms for boolean function manipulation[END_REF] au cas d'autres opérateurs (×, +, min, etc.) que la conjonction.

Lors de la compilation de réseaux bayésiens en ADD et AADD, nous obtenons des représentations nettement moins succinctes que celles décrites dans[START_REF] Sanner | Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference[END_REF]. Ceci s'explique par le choix que nous avons fait de représenter les valeurs réelles avec une précision plus importante. Dans le cas des ADDs, le nombre de valeurs finales possible explose clairement quand la précision augmente.