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Abstract. The paper presents a new approach to deal with database preference

queries, where preferences are represented in the style of possibilistic logic, using

symbolic weights. The symbolic weights may be processed without the need of

a numerical assignment of priority. Still, it is possible to introduce a partial or-

dering among the symbolic weights if necessary. On this basis, four methods that

have an increasing discriminating power for ranking the answers to conjunctive

queries, are proposed. The approach is compared to different lines of research in

preference queries including skyline-based methods and fuzzy set-based queries.

With the four proposed ranking methods the first group of best answers is made

of non dominated items. The purely qualitative nature of the approach avoids the

commensurability requirement of elementary evaluations underlying the fuzzy

logic methods.

1 Introduction

Onemay consider that there are two main research trends in the preference queries liter-

ature, namely the fuzzy set-based approach [1,2] on the one hand, and skyline methods

[3,4,5] on the other hand. Besides, in artificial intelligence, CP-nets [6] for conditional

preference statements developed in the last decade have become a popular setting. It is

based on a graphical representation, and obeys the ceteris paribus principle. Its poten-

tial use for dealing with preference queries has even been stressed [7]. Besides, the use

of possibilistic logic for the modeling of preferences queries has been advocated more

recently [8,9].

Fuzzy sets have been often proposed for the modeling of flexible queries as it pro-

vides a basis for rank-ordering the retrieved items. However, this requires the specifi-

cation of membership functions, possibly of priority weights, and more importantly it

is based on the implicit assumption of the commensurability of the elementary evalua-

tions. Skyline methods single out non dominated elements, but do not rank-order them

(if the query is not iterated on the remaining items), up to a few exceptions [10]. In

this paper, we investigate the use of a possibilistic logic approach to the handling of

data base (conditional) preference queries, which remains as symbolic as possible, but

preserves a capability for rank-ordering the answers.

The paper is organized as follows. First, a short background on possibilistic logic,

and the use of symbolic weights is provided in Section 2. Then, a running example is
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proposed, that will be used for comparing the different methods discussed in the pa-

per. Section 3 presents four methods for rank-ordering query answers, with an increas-

ing discriminating power. The first method handles preferences as conditional possi-

bility constraints. The second method, which proves to be more refined, relies on an

inclusion-based ordering. In the third and fourth methods, additional constraints are

added between the symbolic weights of the possibilistic logic encoding, in the spirit of

CP-nets and CP-theories [11] (a generalization of CP-nets) respectively. Then Section

4 briefly compares our proposal to related work on skyline and fuzzy set approaches.

2 Technical Prerequisites and Running Example

We consider a propositional language where formulas are denoted by p1, ..., pn, and Ω

denotes its set of interpretations.The logical conjunctions, disjunctions and negations

are denoted by ∧, ∨ and ¬, respectively.

2.1 Possibilistic Logic

Let BN = {(pj, αj) | j = 1, . . . ,m} be a possibilistic logic base where αj ∈ L ⊆
[0, 1] is a priority level attached to formula pi [12]. Each formula (pj , αj) means that

N(pj) ≥ αj , where N is a necessity measure, i.e., a set function satisfying the prop-

erty N(p ∧ q) = min(N(p), N(q)). A necessity measure is associated to a possibility

distribution π on the set of interpretations, as follows:

N(p) = min
ω 6∈M(p)

(1− π(ω)) = 1−Π(¬p),

where Π is the possibility measure associated to N and M(p) is the set of models

induced by the underlying propositional language for which p is true.

The base BN is associated to the possibility distribution on interpretations:

πN
B (ω) = min

j=1,...,m
π(pj ,αj)(ω) (1)

where π(pj ,αj)(ω) = 1 if ω ∈ M(pj), and π(pj ,αj)(ω) = 1 − αj if ω 6∈ M(pj). An

interpretation ω is all the more possible as it does not violate any formula pj having a

higher priority level αj . So, if ω 6∈M(pj), π
N
B (ω) ≤ 1−αj, and if ω ∈

⋂
j∈J M(¬pj),

then πN
B (ω) ≤ minj∈J(1 − αj). It is a description “from above" of πN

B , which is the

least specific possibility distribution in agreement with the knowledge base BN .

2.2 Symbolic Weights

The weights associated to possibilistic logic formulas, which can be understood as pri-

ority or certainty levels, may be processed symbolically. By that, we mean that we are

not assigning a value to the weights. So doing, we in general lose the benefit of the

total ordering existing between values in a scale. Still, a partial ordering remains be-

tween symbolic expressions, e.g., we do know that min(α, β) ≤ α whatever the values

of α and β. Moreover, one may introduce some further constraints between symbolic
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weights, when available, e.g., α > β, and exploit them. This includes the particular case

where one knows the complete ordering between all the symbolic weights introduced.

Generally speaking, when several constraints are introduced, it is important to make

sure that they are consistent.

Since one may not know precisely how imperative preferences are in general, it is

convenient to handle weights in a symbolic manner, without having to assign precise

values. Having symbolic weights still allows us to construct a vector for each outcome

that will serve in their rank-ordering. Indeed, a query will be viewed as a (weighted)

conjunction of logical formulas, and items in the database are then rank-ordered ac-

cording to the level to which they satisfy this conjunction. Then, the vector components

are nothing but the arguments of the min in equation (1) defining the semantics of a

possibilistic base made of formulas (pj , αj) expressing goals and their importance. In

this paper we explain how these vectors are obtained, and discuss how vectors can be

ordered on this basis.

2.3 Running Example

Throughout the paper, we will use the following running example in order to illus-

trate the proposed approach to preference queries. This example is implemented on

an experimental platform in information processing developed at IRIT in Toulouse

(http:/www.irit.fr/PRETI) (see [13]). The data base stores pieces of information about

houses to let that are described in terms of 25 attributes.

Example 1. We want to express the following preferences:

– The number of persons accommodated should be more than 10, imperatively;
– It is preferred to have a house where animals are allowed,
– It is preferred to be close to the sea by a distance between 1 and 20 km;
– If the house is far from the sea by more than 20 km, it is preferred to have a tennis

court at less than 4 km
– If moreover the distance of the house to the tennis court is more than 4 km, it is

desirable to have a swimming pool be at a distance less than 6 km

These preference constraints can be encoded by the following possibilistic logic formu-

las. Indeed, in our approach any query is represented by a possibilistic logic base. Here

there is one imperative constraint, the other constraints being soft.

- Hard preference constraint

- φ0 = (Accomod. ≥ 10, 1)
- Soft preference constraints

- φ1 = (Animal, α1)
- φ2 = (1 ≤ Sea ≤ 20, α2)
- φ3 = (¬(Sea > 20) ∨ Tennis ≤ 4, α3)
- φ4 = (¬(Sea > 20) ∨ ¬(Tennis ≤ 4) ∨ Pool ≤ 5, α4)

3 Handling Preference Queries

What makes the possibilistic logic setting particularly appealing for the representation

of preferences is not only the fact that the language incorporates priority levels explic-

itly, but the existence of different representation formats [14,15], equally expressive
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[16,17], even if more or less natural or suitable for expressing preferences. Namely,

preferences can be represented as prioritized goals, i.e. possibilistic formulas, or in

terms of conditionals (i.e. statements of the form if p is true then having q true is pre-

ferred to having it false), or even as a Bayesian-like networks, since a possibilistic logic

base can be encoded either as a qualitative or a quantitative possibilistic network and

vice-versa [18]. In the next subsection, we recall how conditional preferences are repre-

sented in possibilistic logic with symbolic weights. Then in the three next subsections,

different ways of handling symbolic priorities for processing the queries are discussed.

3.1 Preference Encoding in Possibilistic Logic

The unconditional preference of the form “q is preferred to ¬q” may be understood

in the possibility theory setting as the constraint Π(q) > Π(¬q), which expresses

that at least one model of q is preferred to any interpretation that makes q false. More

generally, the possibilistic encoding of conditional preferences of the form “in context

p, q is preferred to ¬q" is a constraint of the form Π(p ∧ q) > Π(p ∧ ¬q). This
includes the previous case where p is a tautology. Using conditioning, this constraint is

still equivalent to ∃α s. t. N(q|p) ≥ α > 0, where N(q|p) = 1 − Π(¬q|p), such that

Π(r|p) = 1 ifΠ(p ∧ r) ≥ Π(p ∧ ¬r) andΠ(r|p) = Π(p ∧ r) otherwise.

This constraint can be encoded by the possibilistic formula (¬p ∨ q, α), which ex-

presses the requirement N(¬p ∨ q) ≥ α, which is itself equivalent here to the above

constraint on the conditional necessity measure N(q|p) ≥ α (see, e.g., [12]).

More generally, if we need to considermore than twomutually exclusive alternatives,

this can be encoded by means of several possibilistic formulas. For instance, the two

weighted formulas {(¬p∨ q∨ r, 1), (¬p∨ q, α)} state that if p is true, it is imperative to

have q ∨ r, and that q is preferred to r ∧¬q since α > 0. This extends to n alternatives.

For instance, {(¬p ∨ q ∨ r ∨ s, 1), (¬p ∨ q ∨ r, α), (¬p ∨ q, β)} with β < α < 1 says

that in context p, one wants to have q true, or at least r true, or at least s true; see [9] for

further discussions.

In the next subsections, we shall exhibit different methods to rank-order outcomes

based on a possibilistic logic base encoding preferences, but we first discuss the direct

exploitation of constraints of the formΠ(p ∧ q) > Π(p ∧ ¬q).

3.2 Weak Comparative Preferences

The handling of a set of possibilistic constraints φi of the form Π(pi ∧ qj) > Π(pi ∧
¬qj) amounts here to looking for the largest possibility distribution π compatible with

these constraints applying the minimum specificity principle, see, e.g., [14]. The largest

solution π, which always exists if the set of constraints is consistent, can be computed

using Algorithm 1 below, and represents a preference profile that rank-orders interpreta-

tions, in agreement with the preference requirements. The minimal specificity principle

ensures that all the constraints are satisfied, but only these constraints are (in other

words, no extra preferences are introduced). In the algorithm, the possibility distribu-

tion π is represented as a well-ordered partition (E1, ..., Em) of Ω, associated with the

ordering≻WCP such that: ∀ω, ω′ ∈ Ω, ω ≻WCP ω′ iff ω ∈ Ei, ω
′ ∈ Ej and i < j.



The well-ordered partition given in Algorithm 1 satisfies the minimum specificity

principle. The most satisfactory set E1 is made of the interpretations that satisfy some

L(φi), and do not satisfy anyR(φj). Then the set of constraints whose left part is satis-

fied by an interpretation ofE1 are deleted, and the procedure is iterated on the remaining

constraints as long as there are some. This procedure yields a possibility distribution

Algorithm 1. Minimal specificity ranking algorithm

Require: Φ a set of constraints φi of the form: Π(L(φi)) > Π(R(φi))
Ei a set of interpretations classified at the ith rank

Ω the set of all interpretations

m=1;

while Φ 6= ∅ do

Put in Em any interpretation ωl that satisfies some L(φi), and does not satisfy any R(φj)
if Em = ∅ then

The preference base is inconsistent

else

Delete Em from Ω
Delete all pairs (L(φi),R(φi)) from Φ such that L(φi) is satisfied by at least one ele-

ment of Em

m=m+1;

end if

end while

return {E1, · · · , Em}

whose number of values is at most n+ 1 where n is the number of constraints. Indeed,

it is clear that at least one constraint is deleted at each iteration step.

Proposition 1. Let a query Q composed of n preference constraints. The number of

elements of the well-ordered partition {E1, · · · , Em} produced by Algorithm 1 is at

most m = n+ 1.

Example 2. Let 4 preference constraints be given as follows (L(φi),R(φi) are replaced

by sets of interpretations): φ1 = ({t1, t2, t3}, {t4, t5, t6, t7, t8}); φ2 = ({t4, t5},

{t6, t7, t8}); φ3 = ({t6}, {t7}); φ4 = ({t7}, {t8}). Applying Algorithm 1 gives 5

preference levels: E1 = {t1, t2, t3}, E2 = {t4, t5}, E3 = {t6}, E4 = {t7} and

E5 = {t8}.

Example 1 (continued). The imperative preference constraint (φ1) restricts the list to

15 houses. Considering the preference constraints in the running example the result of

applying Algorithm 1 to constraints of the form Π(φi) > Π(¬φi), i = 1, . . . , 4 is

given in Table 1 wherem = 2 and E1 = {539}. As there is no conflict detected by the

algorithm, there are only two classes of outcomes.

3.3 Lexicographic Comparaison

We now consider a possibilistic logic encoding of the preference requirements, i.e., a

possibilistic logic base Σ. For each interpretation ω, we can build a vector ω(Σ) in the

following way, for each preference constraint φi for i = 1, · · · , n:



Table 1. Weak comparison preference ranking

Id Sea Animal Tennis Rank

539 4.00 1 3.00 1

119 100 0 0.50 2

191 100 1 0.60 2

261 83.00 1 4.50 2

320 23.00 1 1.50 2

339 100 1 8.50 2

366 100 0 0.50 2

434 100 0 3.50 2

435 89.00 1 6.50 2

507 83.00 1 4.00 2

519 58.00 0 1.50 2

530 100 1 0.50 2

536 83.00 0 1.50 2

Table 2. Lexicographic ranking

Id φ0 φ1 φ2 φ3 φ4 Rank

539 1 1 1 1 1 1

191 1 1 1-α2 1 1 2

320 1 1 1-α2 1 1 2

530 1 1 1-α2 1 1 2

119 1 1-α1 1-α2 1 1 3

261 1 1 1-α2 1-α3 1 3

339 1 1 1-α2 1 1-α4 3

366 1 1-α1 1-α2 1 1 3

434 1 1-α1 1-α2 1 1 3

435 1 1 1-α2 1-α3 1 3

507 1 1 1-α2 1-α3 1 3

519 1 1-α1 1-α2 1 1 3

536 1 1-α1 1-α2 1 1 3

– if ω satisfies φi we put ‘1’ in the ith component of the vector;

– otherwise, we put 1− αi (αi is the weight associated to preference constraint φi).

in agreement with the minimally specific possibility distribution π associated with Σ

(see Section 2). Indeed, since we are dealing with symbolic weights, we cannot compute

the result of the min operator aggregation of the vector components. So, we keep the

vectors as they are, and order them using the classical lexicographic ordering, see, e.g.,

[12], thus defining an order denoted≻leximin between vectors.

In the standard case of a totally ordered scale, the leximin order is defined by first

reordering the vectors in an increasing way, and then applying the min order to the

subparts of the reordered vectors without identical components. Since we deal with

a partial order over the priority weights (at least, we know that 1 > 1 − αi, ∀i, and
1−αi ≥ min(1−αi, 1−αj) and so on), the reordering of vectors is no longer unique,

and we have to generalize the definition in the following way:

Definition 1 (leximin). Let v and v
′ be two vectors having the same number of com-

ponents. First, delete all pairs (vi, v
′
j) such that vi = v′j in v and v

′ (each deleted

component can be used only one time in the deletion process). Thus, we get two non

overlapping sets r(v) and r(v′) of remaining components, namely r(v) ∩ r(v′) = ∅.

Then, v ≻leximin v
′ iff min(r(v) ∪ r(v′)) ⊆ r(v′) (where min here returns the set of

minimal elements of the partial order between the priority weights).

Example 1 (continued). When applying the possibilistic logic semantics to query eval-

uation, we deal not only with interpretations, but also with items (several items may

correspond to the same interpretation of the requirement). Thus, considering the house

with id 339, its associated vector is v(339) = (1, 1, 1−α2, 1, 1−α4) (see Table 2). The
house satisfies the two first preference constraints (number of people accommodated

and animals allowance) and also satisfies the 5th preference concerning the distance to

a swimming pool. But it falsifies the preference about distance to the sea (it is 10 km
far), and it falsifies the preference about the distance to a tennis court. Now let us com-

pare this house with the house with id 292 and vector v(292) = (1, 1, 1 − α2, 1, 1),



applying the leximin order. Then, the reduced associated vectors have one compo-

nent here: r(292) = (1) and r(339) = (1 − α4). Then, we have min(r(292) ∪
r(339)) = {1 − α4} ⊆ r(339). So, v(292) ≻leximin v(339), and by extension, we

write house292 ≻leximin house339.

Considering all the items in the running example, the result of the lexicographic

comparison over the 15 houses is given in Table 2.

One can observe that ≻leximin may induce up to n + 1 layers, since an item may

violate 0, 1, · · · , or n preference constraints. Indeed, items are ranked according to the

number of preferences violated.

Proposition 2. If a query Q is composed of n preference constraints, then the maximal

number of levels generated by ≻leximin is n+ 1.

Contrary to what Tables 1 and 2 suggest, ≻leximin does not refine ≻WCP as the lat-

ter generally introduces constraints between weights that are not present in the method

of this section. However in the running example, the WCP is equivalent to applying

classical logic, ending up in two classes of interpretations only. In that special case,

≻leximin trivially refines ≻WCP , since then the latter separates outcomes ω that sat-

isfy all constraints from those that violate at least one of them, while ≻leximin always

classifies outcomes in terms of the number of violated constraints. However, ≻leximin

does not use priorities induced by the WCP approach (Algorithm 1). Of course it is

also possible to refine the ordering of outcomes induced by WCP using ≻leximin, or

equivalently to refine the ≻leximin with symbolic weights, by exploiting the priorities

found by Algorithm 1.

4 Adding Constraints between Symbolic Weights

In the previous subsection, the partial order between priority weights, underlying the

use of the lexicographic comparison, was not requiring any information on the relative

values of the symbolic weights associated with the preference requirements. It should be

clear that the lexicographic ordering between vectors (and thus between interpretations,

and between items) will be refined by the knowledge of some additional information on

the relative importance of requirements. For instance, if being not too far from a tennis

court is less important than being somewhat close to the sea, then we can enforce in

comparisons that αi > αj , where αi, αj are the respective weights associated to the

tennis and sea requirements. However, it is important to keep in mind that when we

consider two possibilistic logic formulas (ϕ, α) and (ψ, β) such that ϕ � ψ then we

should have β ≥ α. This is in agreement with the fact that if one requires ϕ = ¬p ∨ q
and ψ = ¬p∨q∨r (i.e. in context p, q must be true, or at least r), satisfying ϕ cannot be

more important than satisfying ψ if we do not want to trivialize the latter requirement

ψ (since satisfying ϕ entails satisfying ψ). To ensure this kind of coherence property,

one may compute the degree to which each requirement is entailed by the other ones

(which may result in attaching to formulas symbolic expressions involving max and

min of other symbolic weights).

If no extra information is available between priorities, one may apply some general

principle for introducing inequalities between symbolic weights. In the following we



discuss two options that enable us to obtain a more refined leximin-based ordering. The

first option is inspired from the CP-net representation of preferences [6], and the second

one from its refinement in terms of CP-theories [11].

4.1 Constraints between Weights in CP-net Style

This method is inspired from CP-nets, a well-known framework for representing pref-

erences in AI [6]. It is a graphical representation that exploits conditional preferential

independence in structuring the preferences provided by a user. These preferences take

the form u : xi > ¬xi, i.e., x is preferred to ¬x in context u, (u can be tautological).

CP-nets are underlain by a ceteris paribus principle that amounts to giving priority to

preferences attached to parent nodes over preferences attached to children nodes in the

CP-net structure. Besides, it has been noticed that a CP-net ordering can be approxi-

mated by a possibilistic logic representation with symbolic weights [19,8]. The priority

in favor of father nodes carries over to the possibilistic setting in the following way.

For each pair of formulas of the form (¬u ∨ xi, αi) and (¬u ∨ ¬xi ∨ xj , αj), xi plays
the role of the father of xj in a CP-net. Indeed, the first formula expresses a prefer-

ence in favor of having xi true (in context u), while in the second formula the context

is refined from u to u ∧ xi, which establishes a particular type of links between the

two formulas where the second formula is in some sense a descendant of the first one.

Then, the following constraint between the corresponding weights is applied αi > αj ,

in a CP-net spirit. These constraints between symbolic weights can be obtained system-

atically by Algorithm 2, which computes the partial order between symbolic weights

from a possibilistic logic base. Applying this procedure allows us to add constraints

among symbolic weights and to get a more refined ranking of items, as we notice in the

following example.

Algorithm 2. Relative importance between possibilistic formulas in a CP-net spirit

Require: C a set of constraints of the form (pi, αi)

CBW=∅: the set of constraints between weights

for cj in C do

if cj is of the form (ui, αj) then

for ck in C do

if ck is of the form (¬ui ∨ xi, αk) then

CBW← CBW ∪{αj > αk}
end if

end for

end if

end for

return CBW

Example 1 (continued). Considering the preference constraints in the running exam-

ple, the result of the lexicographic comparison of vectors adding the CP-nets-like con-

straints between weights, namely here α2 > α3 and α3 > α4, is given in Table 3, where

a more refined ranking is obtained. In particular, house 339 is preferred to house 261,



Table 3. Lexicographic ranking with additional

CP-net constraints

Id Sea Animal Tennis Weights Rank

539 4.00 1 3.00 1 1

191 100 1 0.60 1-α2 2

320 23.00 1 1.50 1-α2 2

530 100 1 0.50 1-α2 2

119 100 0 0.50 1-α1,1-α2 3

339 100 1 8.50 1-α2,1-α4 3

366 100 0 0.50 1-α1,1-α2 3

434 100 0 3.50 1-α1,1-α2 3

519 58.00 0 1.50 1-α1,1-α2 3

536 83.00 0 1.50 1-α1,1-α2 3

261 83.00 1 4.50 1-α2,1-α3 4

435 89.00 1 6.50 1-α2,1-α3 4

507 83.00 1 4.00 1-α2,1-α3 4

Table 4. Lexicographic ranking with addi-

tional CP-theory constraints

Id Sea Animal Tennis Weights Rank

539 4.00 1 3.00 1 1

191 100 1 0.60 1-α2 2

320 23.00 1 1.50 1-α2 2

530 100 1 0.50 1-α2 2

339 100 1 8.50 1-α2,1-α4 3

261 83.00 1 4.50 1-α2,1-α3 4

435 89.00 1 6.50 1-α2,1-α3 4

507 83.00 1 4.00 1-α2,1-α3 4

119 100 0 0.50 1-α1,1-α2 4

366 100 0 0.50 1-α1,1-α2 5

434 100 0 3.50 1-α1,1-α2 5

519 58.00 0 1.50 1-α1,1-α2 5

536 83.00 0 1.50 1-α1,1-α2 5

435, and 507 since 1 − α4 > 1 − α3. Houses 119, 366, 434, 519, 536 are clearly not

as good as houses 539, 191, 320, and 530; moreover they can be compared with neither

house 339, nor with houses 261, 435, and 507 (since α1 cannot be compared with α4

or α3); this is why houses 119, 366, 434, 519, 536 are put in the highest possible layer:

i.e., below the lowest one where houses are preferred to them and in the highest one

where there is an incomparable item.

4.2 Constraints between Weights in CP-Theories Style

CP-theories as introduced in [11], are a generalization of CP-nets. Also based on a

graphical representation, CP-theories offer a more expressive language where prefer-

ence priority can be made explicit between the preference constraints. Thus, such con-

straints have the same form as in CP-nets u : x > ¬x [W ]; in addition we have the

set of variables (attributes) W for which it is known that the preference associated to

x does not depend on any value assignment of an attribute in W (i.e., the preference

attached to the concerned attribute holds irrespective of values of attributes in W ). It

has been suggested that possibilistic logic is able to approximate this representation by

adding more priority constraints over the symbolic weights [20]. Formally, a possibilis-

tic preference constraint of the form u : x > ¬x [W ], with an irrespective requirement

w. r. t. variables in W is encoded by a possibilistic preference statement (¬u ∨ x, αi),
to which we shall add the constraint αi > αj for any αj over symbolic weights, such

that (¬u ∨ w,αj) is a possibilistic preference statement, with the same context u, over

one variable (or more) w ∈ W . These constraints over weights can be obtained by

Algorithm 3.

Example 1 (continued). We consider the preference constraints in the running exam-

ple. In addition, it is natural to assume the preference for animals allowance holds

irrespectively of the preference concerning the distance to the sea (⊤ : Animals >
¬Animals [Sea]). Then, Algorithm 3 yields α1 > α2 > α3 > α4 and the result of

applying lexicographic comparison over the 15 houses, is given in Table 4, which leads



here to an even more refined ranking. We can establish that the different ranking pro-

cedures discussed so far agree on the best selected items. Besides, we can show that

the maximal number of layers induced by the lexicographic ordering may be greatly

increased by the presence of additional constraints:

Proposition 3. Let E1 denote the set of non dominated models of a consistent possi-

bilistic base. This set remains unchanged under the weak comparative preference or-

dering and the lexicographic ordering (in the presence of additional constraints or not).

E1
≻WCP

= E1
≻leximin

Proof of Proposition 3: Let E1
≻WCP

be the set of non dominated interpretations ob-

tained by the weak comparative preferences method.We know that ω ∈ E1
≻WCP

if only

if ω satisfies all preference constraints. Let ω(Σ)(1, · · · , 1) be the vector associated to

ω. It is clear that any item that has an associated vector only made of ‘1’ components

is preferred to any other vector containing at least one component 6=‘1’ according to

leximin order. So ω ∈ E1
≻leximin

. ✷

Algorithm 3. Relative importance between possibilistic formulas in a CP-theories spirit

Require: C a set of constraints of the form (Pi, αi)

for ci ∈ C a preference constraint associated with an irrespective requirement do

if Wi=∅ then

CBW← CBW ∪ Algorithm 2

else

for cj in C do

if cj is of the form (¬ui ∨ ¬xi ∨ v, αj) or (¬ui ∨ z, αj)/z ∈ Wi, v ∈ {V − U}
then

CBW← CBW ∪ (αi > αj)
end if

end for

end if

end for

return CBW

4.3 Hybridizing Weak Comparative Preferences and Lexicographic Methods

As shown in the previous subsections, the above three leximin-based methods lead to

different, but compatible rankings of items, with increasing discrimination. The re-

spective complexities of the comparative preferences and lexicographic methods are

Polynomial and ΠP
2 − complete [21,22]. Indeed, it can be observed in practice that

the lexicographic method is more costly from a computational point of view:

Proposition 4. Let Q be a query made of n preference constraints, then the maximal

number of levels generated by ≻leximin with additional constraints over weights is 2n.

Indeed, this number of layers is obtained by refining the ordering of items violating

the same number of preferences in case of a total ordering of the weights. Since the



Table 5. Comparative Table of different approaches dealing with preference queries

Formulation Context Ranking

Qualitat. Quantitat. Uncond. req. Cond. req. Skyli. Top-k

Lacroix Lavency [24] X X X

Chomicki 2002 [4] X X X X

Kießling 2002 [5] X X X X

Fagin et al 2001 [2] X X X

Fuzzy logic [13] X X X X

Symbolic weight possibilistic logic X X X X X

lexicographic method leads to a more refined rank-ordering, one may think of first

using the weak comparative preferences method to stratify items, and then, each layer

(except the top one because of Proposition 3) may be refined by one of the lexicographic

methods by considering each level as a new intermediate database. This hybrid method

may be of interest for computing a rank-ordering for top k items (when k is larger than

|E1| !). However, for refining the ranking of items inside a layer, we need to process it

as a whole, even if it leads to considering more than k items in the ranking.

5 Related Work

Different types of approaches for handling preference queries have been proposed in

the literature. Table 5 (whose evaluation criteria are taken from [23]) provides a com-

parative assessment of the possibilistic approach along with a representative subset of

other approaches.

As for other qualitative methods, the approach presented is capable of expressing

preference between attribute values or between tuples of attribute values, since we use

general logical formulas (e.g., considering only the two attributes ‘Price’ and ‘Distance

to sea’ with values low, medium and high for a house to let, a query may express that one

prefers low price and low distance, or at least low price and medium distance or at least

medium price and medium distance). As can be noticed, only the Kießling approach [5]

can express both qualitative and quantitative preferences. Besides, only the possibilistic

and the Chomicki [4] approaches can deal with conditional preferences. It can be seen

that the advantages of this approach and of the fuzzy logic one [25] are complementary,

which suggests to try and hybridize them in the future. To this end, it would be necessary

to compare vectors including both symbolic and numerical weights.

6 Conclusion

The interest for preference representation in the possibilistic logic framework first stems

from the logical nature of the representation. Moreover, the possibilistic representation

can express preferences of the form “or at least”, or “and if possible”(see [20] for an in-

troductory survey), and can handle partial orders thanks to the use of symbolic weights,

without enforcing implicit preferences (as it is the case for father node preferences in

CP nets). We have proposed three types of methods in order to rank-order items, which



are characterized by an increasing refinement power with manageable complexity, es-

pecially using the hybrid method explained in Subsection 4.3. Still, much remains to be

done. First, the use of symbolic weights is really advantageous but we still miss some

properties of numerical weights. One may think of combining these two formats to be

as much expressive as possible. Moreover, this approach should be able to deal with

null values, which create specific difficulties in preference queries.
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