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Ockhamist Propositional Dynamic Logic:

A Natural Link between PDL and CTL
∗

Philippe Balbiani and Emiliano Lorini

Université de Toulouse, IRIT-CNRS, France

Abstract. We present a new logic called Ockhamist Propositional Dynamic Logic,

OPDL, which provides a natural link between PDL and CTL
∗
. We show that both

PDL and CTL
∗

can be polynomially embedded into OPDL in a rather simple and

direct way. More generally, the semantics on which OPDL is based provides a

unifying framework for making the dynamic logic family and the temporal logic

family converge in a single logical framework. Decidability of the satisfiability

problem for OPDL is studied in the paper.

1 Introduction

Different logical systems are traditionally used in theoretical computer science and in

artificial intelligence for the verification of programs and for modelling reactive sys-

tems and multi-agent systems. Among them we should mention Propositional Dynamic

Logic PDL [12], Propositional Linear Temporal Logic PLTL [20], Computation Tree

Logic CTL [11], Full Computation Tree Logic CTL
∗

[22] and Alternating-time Tem-

poral Logic ATL [1]. Some relationships between these different logical systems have

been studied. For instance, it is well-known that PLTL and CTL are fragments of CTL
∗

and that CTL is a fragment of ATL [13]. However, at the current stage, the general

picture remains incomplete. For example, it is clear (and well-known) that the logic of

programs PDL can express properties that Full Computation Tree Logic CTL
∗

cannot

and vice-versa. Moreover, there are no clear relationships between PDL and logics of

strategic reasoning such as ATL. More precisely, it is not known whether there exists

natural embeddings of PDL into ATL or of ATL in PDL. Even more importantly, there

is still no logical system that can be said to be more general than the others. For in-

stance, there is no logic that embeds in a natural and simple way both PDL and CTL
∗
.

Indeed, although there exist some logics that embed both PDL and CTL
∗
, they do it

in a rather complicated and unnatural way. For example, it is well-known that PDL

and CTL
∗

can be embedded in modal µ-calculus. However, although the embedding of

PDL into modal µ-calculus is simple and direct, the embedding of CTL
∗

into modal µ-

calculus is rather complicated and doubly exponential in the length of the input formula

[7]. Another logic that links PDL with CTL
∗

is the extension of PDL with a repeti-

tion construct (PDL-∆) by [26]. But again, the embedding of CTL
∗

into PDL-∆ too



is rather complicated and doubly exponential in the length of the input formula [29].1

For this reason, a challenge arises of making the previous competing logical systems

converge into a single logical system. The aim of this paper is to make a step into this

direction by proposing an Ockhamist variant of Propositional Dynamic Logic, OPDL,

that provides a natural link between PDL and CTL
∗
. Specifically, we show that both

PDL and CTL
∗

can be polynomially embedded into OPDL in a rather simple and di-

rect way. More generally, the Ockhamist semantics on which OPDL is based provides a

unifying framework for making the dynamic logic family and the temporal logic family

converge into a single logical framework. Ockhamist semantics for temporal logic have

been widely studied in the 80ies and in the 90ies [27,30,5]. The logic of agency STIT

(the logic of “seeing to it that”) by Belnap et al. [4] is based on such semantics. Accord-

ing to the Ockhamist conception of time (also called indeterminist actualist, see [30])

the truth of statements is evaluated with respect to a moment and to a particular actual

linear history passing through that moment, and the temporal operators are relativized

to the actual history of the evaluation.

The rest of the paper is organized as follows. We first present the syntax and the

semantics of OPDL and provide a decidability result for this logic (Section 2). Then, we

discuss, in Section 3, about the relationship of OPDL with PDL and CTL
∗

(Section 3).

In particular, we provide polynomial reductions of PDL and CTL
∗

to OPDL. In Section

4 we present a variant of OPDL whose semantics is based on the notion of labeled

transition system (LTS). In Section 5 we conclude by discussing some perspectives for

future work.2

2 Ockhamist Propositional Dynamic Logic

The distinction between the ‘Ockhamist’ semantics and the ‘Peircean’ semantics for

branching-time temporal logic was proposed by Prior in his seminal work on the logic

of time [21] (see also [27]). According to the ‘Peircean’ view the truth of a temporal

formula should be evaluated with respect either to some history or all histories starting

in a given state. In the ‘Ockhamist’ semantics for branching time a notion of actual

course of events is given. In particular, according to the ‘Ockhamist’ view, the truth

of a temporal formula should be evaluated with respect to a particular actual history

starting in a given state. While the branching-time temporal logic CTL
∗

is compatible

with the Ockhamist conception of time, the semantics for PDL in terms of labelled

transition systems is closer to the Peircean view than to the Ockhamist view since it

does not consider a notion of actual history or actual path in a transition system. The

logic OPDL can be conceived as a variant of the logic of programs PDL based on the

1 It is worth noting that Axelsson et al. [2] have recently studied generic extensions of CTL in

which temporal operators are parameterized with different kinds of formal languages recog-

nized by different classes of automata (e.g., regular languages, visibly pushdown and context-

free languages). They compare the expressive power of these extensions of PDL to CTL, PDL

and extensions of PDL such as PDL-∆. However, they also show that CTL
∗

cannot be em-

bedded in any of these extensions of CTL, as the property of fairness is expressible in CTL
∗

but is not expressible is any of these logics (see [2, Theorem 4.3]).
2 An extended version of this paper containing detailed proofs is available at [3].



Ockhamist view of time. Specifically, OPDL is a variant of PDL in which the truth of a

formula is evaluated with respect to a given actual history. The syntax and the semantics

of this logic are presented in Sections 2.1 and 2.2.

2.1 Syntax

Assume a countable set Prop of atomic propositions (with typical members denoted

p, q, . . .) and a countable set Atm of atomic programs (or atomic actions) (with typical

members denoted a, b, . . .). Let 2Atm∗ = 2Atm \{∅}. The languageLOPDL(Prop,Atm)
of OPDL consists of a set Prg of programs and a set Fml of formulae. It is defined as

follows:

Prg : π ::= a |≡| (π1;π2) | (π1 ∪ π2) | π∗ | ϕ?
Fml : ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | [[π]]ϕ

where p ranges over Prop and a ranges over Atm. We adopt the standard definitions

for the remaining Boolean operations. The dual 〈〈π〉〉 of the operator [[π]] is defined in

the expected way: 〈〈π〉〉ϕ
def

= ¬[[π]]¬ϕ. We follow the usual rules for omission of the

parentheses. Given a formula ϕ, let FL(ϕ) denote its Fischer-Ladner closure. See [12,

Chapter 6] for details. It is a well-known fact that card(FL(ϕ)) is linear in the length

of ϕ.

Complex programs of sequential composition (π1;π2), non-deterministic choice (π1∪
π2), iteration (π∗) and test (ϕ?) are built from atomic programs in Atm, from the special

program ≡ and from formulae in Fml . The special program ≡ allows to move from a

history to an alternative history passing through the same moment. The behavior of this

program will become clearer in Section 2.2 when presenting the OPDL semantics.

The formula [[π]]ϕ has to be read “ϕ will be true at the end of all possible executions

of program π” whereas 〈〈π〉〉ϕ has to be read “ϕ will be true at the end of some possible

execution of program π”. As it is assumed that atomic programs in Atm are linear (i.e.,

all atomic programs in Atm occurring at a given state lead to the same successor state),

[[a]]ϕ can also be read “if the atomic program a occurs, ϕ will be true afterwards”.

Indeed, from the assumption of linearity, it follows that atomic programs in Atm are

deterministic (i.e., there is at most one possible execution of an atomic program a at a

given state). Finally, the formula [[≡]]ϕ has to be read “ϕ is true in all histories passing

through the current moment” or, more shortly, “ϕ is necessarily true in the current

moment”.

2.2 Semantics

OPDL frames are structures with two dimensions: a vertical dimension correspond-

ing to the concept of history, a horizontal dimension corresponding to the concept of

moment.

Definition 1 (OPDL frame). An OPDL frame is a tuple F = (W,Q,L,R≡) where:

– W is a nonempty set of states (or worlds),

– Q is a partial function Q :W −→W ,



– L is a mapping L : Z −→ 2Atm∗ from state transitions to non-empty sets of atomic

programs, Z = {(w, v) | w, v ∈ W and Q(w) = v} being the transition relation

induced by the successor state function Q,

– R≡ ⊆ W ×W is an equivalence relation between states in W such that for all

w, v, u ∈ W :

(C1) if Q(w) = v and (v, u) ∈ R≡ then there is z ∈W such that (w, z) ∈ R≡

and Q(z) = u and L(z, u) = L(w, v).

For every w, v ∈ W , Q(w) = v means that v is the successor state of w. If Q(w) = v
then we also say thatw is a predecessor of v. If L(w, v) = {a, b}, then the actions a and

b are responsible for the transition from the state w to the state v. In other words, the

function L labels every state transition with a set of atomic actions (viz. the actions that

are responsible for the transition). The assumption that the set L(w, v) should be non-

empty means that every state transition is due to the execution of at least one atomic

action.

R≡-equivalence classes are called moments. If w and v belong to the same moment

then they are called alternatives. A maximal sequence of states according to the tran-

sition relation Z starting at a given state w is called history starting in w. If w and v
belong to the same moment, then the history starting in w and the history starting in v
are alternative histories (viz. histories starting at the same moment).

Constraint (C1) corresponds to what in Ockhamist semantics is called property of

weak diagram completion [30]. This means that if two worlds v and u are in the same

moment and world w is a predecessor of v then, there exists a world z such that (i) w
and z are in the same moment, (ii) u is the successor of z, (iii) the transition from w to

v and the transition from z to u are labeled with the same set of action names.

Figure 1 is an example of OPDL frame. The R≡-equivalences classes {w1, w2, w3,
w4}, {w5, w6}, {w7, w8}, {w9}, {w10}, {w11}, {w12}, {w13}, {w14}, {w15} and

{w16} are the moments. The sequences of states (w1, w5, w9, w13), (w2, w6, w10, w14),
(w3, w7, w11, w15) and (w4, w8, w12, w16) are the alternative histories starting at the

same moment {w1, w2, w3, w4}. Actions a and c are responsible for the transition from

the state w1 to the state w5 and, because of Constraint (C1), actions a and c are also

responsible for the transition from the state w2 to the state w6. Moreover, actions b and

c are responsible for the transition from the state w3 to the state w7 and, because of

Constraint (C1), actions b and c are also responsible for the transition from the state w4

to the state w8.

Definition 2 (Atomic transitions). Given an OPDL frame F = (W,Q,L,R≡) and

an atomic program a ∈ Atm, let

Ra = {(w, v) | Q(w) = v and a ∈ L(w, v)}
be the set of a-transitions in the frame F .

An OPDL model is an OPDL frame supplemented with a valuation function mapping

each state to the set of propositional atoms which are true in it, under the assumption

that two states belonging to the same moment agree on the atoms. More precisely:

Definition 3 (OPDL model). An OPDL model is a tuple M = (W,Q,L,R≡,V)
where:
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Fig. 1. An OPDL frame

– (W,Q,L,R≡) is a OPDL frame and

– V : W −→ 2Prop is a valuation function for atomic propositions such that for all

w, v ∈W :
(C2) if (w, v) ∈ R≡ then V(w) = V(v).

The truth of a OPDL formula is evaluated with respect to a worldw in an OPDL model

M .

Definition 4 (π-transitions and truth conditions). Let M = (W,Q,L,R≡,V) be

an OPDL model. Given a program π, let us define a binary relation Rπ on W with

(w, v) ∈ Rπ (or wRπv) meaning that v is accessible from w by performing program

π. Let us also define a binary relation |= between worlds in M and formulae with

M,w |= ϕ meaning that formula ϕ is true at w in M . The rules inductively defining

Rπ and |= are:

Rπ1;π2
= Rπ1

◦ Rπ2

Rπ1∪π2
= Rπ1

∪Rπ2

Rπ∗ = (Rπ)
∗

Rϕ? = {(w,w) | w ∈ W and M,w |= ϕ}

and

M,w |= p⇐⇒ p ∈ V(w);

M,w |= ¬ϕ⇐⇒M,w 6|= ϕ;

M,w |= ϕ ∧ ψ ⇐⇒M,w |= ϕ AND M,w |= ψ;

M,w |= [[π]]ϕ ⇐⇒ ∀v ∈ Rπ(w) :M, v |= ϕ



with Rπ(w) = {v ∈W | (w, v) ∈ Rπ}.

An OPDL formulaϕ is said to be OPDL valid, denoted by |=OPDL ϕ, if and only if ϕ is

true in all OPDL models (i.e., for every OPDL model M and for every world w in M ,

we have M,w |= ϕ). An OPDL formula ϕ is said to be OPDL satisfiable if and only if

¬ϕ is not OPDL valid.

OPDL formulae can also be interpreted over standard Kripke structures.

Definition 5 (Kripke OPDL model). A Kripke OPDL model is a tupleM = (W, {Ra |
a ∈ Atm},R≡,V) where:

– W is a set of states (or worlds),

– R≡ is an equivalence relation on W and all Ra are binary relations on W satisfy-

ing the following two constraints for all w, v, u ∈ W :

(C1
∗) if (w, v) ∈ RX and (w, u) ∈ RX then u = v,

(C2
∗) if (w, v) ∈ RX and (v, u) ∈ R≡ then there is z ∈ W such that (w, z) ∈

R≡ and for all a ∈ Atm, (w, v) ∈ Ra if and only if (z, u) ∈ Ra,

with RX =
⋃

a∈Atm Ra,

– V : W −→ 2Prop is a valuation function for atomic propositions such that for all

w, v ∈W :

(C3
∗) if (w, v) ∈ R≡ then V(w) = V(v).

Constraints (C2∗) and (C3∗) are respectively the counterparts of Constraint (C1) and

Constraint (C2) in the definition of an OPDL model. Constraint (C1∗) forces the suc-

cessor relation RX to be deterministic (i.e., every state has at most one successor).

As stated by the following proposition, the notion of satisfiability with respect to the

class of OPDL models is equivalent to the notion of satisfiability with respect to the

class of Kripke OPDL models.

Proposition 1. Let ϕ be an OPDL formula. Then, there exists an OPDL model which

satisfies ϕ if and only if there exists a Kripke OPDL model which satisfies ϕ.

We shall say that ϕ is a global logical consequence of a finite set of global axioms

Γ = {χ1, . . . , χn}, denoted by Γ |=OPDL ϕ, if and only if for every OPDL model M ,

if Γ is true in M (i.e., for every world w in M , we haveM,w |= χ1 ∧ . . .∧ χn) then ϕ
is true in M too (i.e., for every world w in M , we have M,w |= ϕ).

As the following proposition highlights, when the set of atomic programs Atm is

finite, the problem of logical consequence in OPDL with a finite set of global axioms

is reducible to the validity problem for OPDL formulae.

Proposition 2. Let Γ = {χ1, . . . , χn} be a finite set of OPDL formulae. If Atm is

finite, Γ |=OPDL ϕ if and only if |=OPDL [[any∗]](χ1 ∧ . . . ∧ χn) → ϕ with any
def

=
(
⋃

a∈Atm ∪ ≡).

The model checking problem for OPDL is the following decision problem: given a fi-

nite OPDL modelM and an OPDL formulaϕ, is there a world inM such thatM,w |=
ϕ? With finite OPDL model, we mean a OPDL modelM = (W,Q,L,R≡,V) that sat-

isfies the following three conditions: (1)W is finite; (2) L associates to every transition

(w, v) ∈ Z = {(w, v) | w, v ∈ W and Q(w) = v} a non-empty finite set of atomic



actions in Atm; (3) V associates to every world w ∈ W a finite set of atomic for-

mulas in Prop . In order to determine whether there exists a world w in M such that

M,w |= ϕ, we can use the model checking algorithm for PDL showing that the model

checking problem for PDL is PTIME-complete with respect to the size of the input

model and the input formula. It follows that the model checking problem for OPDL is

PTIME-complete too with respect to size(M) + size(ϕ).

2.3 Decidability of OPDL

Using the “mosaic method”, a technique used in algebraic logic [18] to prove the de-

cidability of equational theories, we will prove the decidability of SAT , the following

decision problem: determine whether a given OPDL formula ϕ is satisfiable with re-

spect to the class of OPDL models.

Theorem 1. SAT is decidable.

Proof (Sketch). Let ϕ be a formula. In order to simplify the proof, we assume that at

most one atomic action, namely a, occurs in ϕ. A type for ϕ is a subset t of FL(ϕ). It

is normal iff it satisfies the conditions of atomicity considered in [14, Definition 2.2]. A

group for ϕ is a finite set G of normal types for ϕ. A mosaic for ϕ is a finite set M of

groups for ϕ. It is normal iff it satisfies the following conditions: (i) if p ∈ FL(ϕ) then

for allG ∈M , for all t ∈ G, if p ∈ t then for allH ∈M , for all u ∈ H , p ∈ u; (ii) if [[≡
]]ψ ∈ FL(ϕ) then for all G ∈M , for all t ∈ G, if [[≡]]ψ ∈ t then for all H ∈M , for all

u ∈ H , ψ ∈ u; (iii) if ¬[[≡]]ψ ∈ FL(ϕ) then for allG ∈M , for all t ∈ G, if ¬[[≡]]ψ ∈ t
then there exists H ∈ M , there exists u ∈ H such that ¬ψ ∈ u. A system for ϕ is a

finite set S of normal mosaics for ϕ. A context for S is a structure of the form (M,G, t)
where M ∈ S, G ∈ M and t ∈ G. Obviously, there exists finitely many types, groups,

mosaics and systems for ϕ. Since the normality conditions for types and mosaics are

decidable, the set of all contexts can be computed. LetΣ = {a,≡}∪{ψ?:ψ ∈ FL(ϕ)}.

For all α ∈ Σ, we define the transition relation −→S
α between contexts for S as follows:

(M,G, t) −→S
α (N,H, u) iff one of the following conditions is satisfied: (i) α = a and

there exists a bijection f : G → N such that (a) f(t) = u, (b) if [[a]]ψ ∈ FL(ϕ)
then for all v ∈ G, if [[a]]ψ ∈ v then ψ ∈ f(v), (c) if ¬[[a]]ψ ∈ FL(ϕ) then for

all v ∈ G, if ¬[[a]]ψ ∈ v then ¬ψ ∈ f(v); (ii) α =≡ and M = N ; (iii) α = ψ?,

M = N , G = H , t = u and ψ ∈ u. For all programs π, we inductively define the

transition relation −→S
π between contexts for S as follows: −→S

π1;π2
=−→S

π1
◦ −→S

π2
,

−→S
π1∪π2

= −→S
π1

∪ −→S
π2

, −→S
π⋆ = (−→S

π)
⋆. Since the set of all contexts can be

computed, the transition relations −→S
π are all decidable. A system S for ϕ is said to

be saturated iff it satisfies the following condition: if ¬[[π]]ψ ∈ FL(ϕ) then for all

contexts (M,G, t) for S, if ¬[[π]]ψ ∈ t then there exists a context (N,H, u) for S such

that (M,G, t) −→S
π (N,H, u) and ¬ψ ∈ u. Since the transition relations −→S

π are all

decidable, checking the saturation of a given system for ϕ is decidable. The proof of the

decidability of SAT proceeds in two steps. First, in Proposition 3, we prove that ϕ is

satisfiable iff there exists a saturated system S for ϕ and there exists a context (M,G, t)
in S such that ϕ ∈ t. Second, in Proposition 4, we prove the decidability of the decision

problem SY S defined as follows: determine whether there exists a saturated system S
for a given formula ϕ and there exists a context (M,G, t) in S such that ϕ ∈ t.



Proposition 3. Let ϕ be a formula. The following conditions are equivalent: (i) ϕ is

satisfiable; (ii) there exists a saturated system S for ϕ, there exists a context (M,G, t)
in S such that ϕ ∈ t.

Proposition 4. SY S is decidable.

As a result, SAT is decidable. ⊓⊔

3 Relationships between OPDL, PDL and CTL
∗

In this section we study the relationships between OPDL and PDL, and between OPDL

and CTL
∗
. In particular, we provide a polynomial embedding of PDL into OPDL and

a polynomial embedding of CTL
∗

into OPDL.

3.1 Relationships between OPDL and PDL

Propositional Dynamic Logic PDL [15] is the well-known logic of programs. Again

assume the countable set of atomic propositions Prop = {p, q, . . .} and the countable

set of atomic programs Atm = {a, b, . . .}. The language LPDL(Prop,Atm) of PDL is

defined by the following grammar in Backus-Naur Form (BNF):

Prg : π ::= a | (π1;π2) | (π1 ∪ π2) | π∗ | ϕ?
Fml : ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | [π]ϕ

where p ranges over Prop and a ranges over Atm.

PDL models are nothing but labeled transition systems, i.e., transition systems where

transitions between states are labeled with atomic programs.

Definition 6. PDL models are tuples M = (W, {Ra | a ∈ Atm},V) where:

– W is a nonempty set of possible worlds or states;

– {Ra | a ∈ Atm} is a set of binary relations on W ;

– V :W −→ 2Prop is a valuation function.

The accessibility relations for atomic programs are generalized to complex programs in

the usual way (see Definition 2).

The truth conditions of PDL formulae are standard for the Boolean constructions

plus the following one for the dynamic operators [π]:

M,w |= [π]ϕ⇐⇒ ∀v ∈ Rπ(w) :M, v |= ϕ

A PDL formula ϕ is said to be PDL valid if and only if ϕ is true in all PDL models.

We can embed PDL in OPDL. Consider the following polynomial translation tr1 :
LPDL(Prop,Atm) −→ LOPDL(Prop,Atm) from the language of PDL to the OPDL

language.

tr1(p) = p for all p ∈ Prop

tr1(¬ϕ) = ¬tr1(ϕ)
tr1(ϕ1 ∧ ϕ2) = tr1(ϕ1) ∧ tr1(ϕ2)
tr1([π]ϕ) = [[tr2(π)]]tr 1(ϕ)



where

tr2(a) = ≡; a for all a ∈ Atm

tr2(π1;π2) = tr2(π1); tr2(π2)
tr2(π1 ∪ π2) = tr2(π1) ∪ tr2(π2)
tr2(π

∗) = (tr2(π))
∗

tr2(ϕ?) = tr1(ϕ)?

As the following theorem shows, the preceding translation is a correct embedding.

Theorem 2. Let ϕ be a PDL formula. ϕ is PDL valid if and only if tr1(ϕ) is OPDL

valid.

3.2 Relationships between OPDL and CTL
∗

Full Computation Tree Logic CTL
∗

was first described in [10,9] as an extension of

Computation Tree Logic CTL [6] and Propositional Linear Temporal Logic PLTL [20].

The language of CTL
∗

is built recursively from the atomic propositions using the tem-

poral operators of PLTL, and the existential path switching operator of CTL as well as

classical connectives.

Again assume the countable set of atomic propositions Prop = {p, q, . . .}. The

language LCTL
∗(Prop) of CTL

∗
is defined by the following grammar in Backus-Naur

Form (BNF):

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | Xϕ | ϕ U ψ | Aϕ

where p ranges over Prop. The constructs X and U are respectively the operators next

and until of PLTL, the formulas Xϕ and ϕ U ψ being respectively read “ϕ will be true

in the next state along the current path” and “ψ will be true at some point in the future

along the current path and ϕ has to hold until ψ”. These two operators can be used to

express other kinds of temporal notions such as eventually Fψ
def

= ⊤ U ψ, henceforth

Gψ
def

= ¬F¬ψ and before ϕ B ψ
def

= ¬(¬ϕ U ψ). The construct A is a modal operator

quantifying over possible paths, the formula Aϕ being read “ϕ is true in all possible

paths”. The existential path-quantifier operator E, is defined by Eϕ
def

= ¬A¬ϕ.

Different semantics for CTL
∗

have been given in the literature. One of this semantics

is based on the notion of Ockhamist structure. Here we mainly follow the presentation

of the Ockhamist semantics for CTL
∗

given by Reynolds [22] who introduces a special

kind of Ockhamist structures called (N×W ) structures.

Definition 7. A (N×W ) structure is a tuple (W,∼, g) where:

– W is a set of points;

– ∼ is an equivalence relation over N ×W such that for all w, v ∈ W and for all

n,m ∈ N:

(S1) if (n,w) ∼ (m, v) then n = m,

(S2) if (n,w) ∼ (n, v) and m < n then (m,w) ∼ (m, v),
(S3) (0, w) ∼ (0, v);



– g : N×W −→ 2Prop is a valuation function mapping each integer and each point

into a set of atoms such that for all w, v ∈ W and for all n ∈ N:
(S4) if (n,w) ∼ (n, v) then g(n,w) = g(n, v).

Given a (N ×W ) structure (W,∼, g) and a CTL
∗

formula ϕ, (W,∼, g), (n,w) |= ϕ
means that ϕ is true at the index (n,w) in the (N ×W ) structure (W,∼, g). The rules
defining the truth conditions of CTL

∗
formulae are inductively defined as follows:

(W,∼, g), (n, w) |= p ⇐⇒ p ∈ g(n,w);

(W,∼, g), (n, w) |= ¬ϕ ⇐⇒ (W,∼, g), (n,w) 6|= ϕ;

(W,∼, g), (n,w) |= ϕ1 ∧ ϕ2 ⇐⇒ (W,∼, g), (n,w) |= ϕ1 AND (W,∼, g), (n,w) |= ϕ2;

(W,∼, g), (n, w) |= Xϕ ⇐⇒ (W,∼, g), (n+ 1, w) |= ϕ

(W,∼, g), (n,w) |= ϕ U ψ ⇐⇒ ∃m ∈ N : m ≥ n AND (W,∼, g), (m,w) |= ψ AND

∀k ∈ N : IF n ≤ k < m THEN (W,∼, g), (k,w) |= ϕ

(W,∼, g), (n, w) |= Aϕ ⇐⇒ ∀v ∈ W : IF (n,w) ∼ (n, v) THEN (W,∼, g), (n, v) |= ϕ

As shown by Reynolds [22] the CTL
∗

semantics in terms of (N × W ) structures is

equivalent to the CTL
∗

semantics in terms of bundled trees. However, it is more general

than the common CTL
∗

semantics in terms of R-generable models used by [9], i.e.,

Kripke structures with states, a total accessibility relation R between them and the set

of all paths which arise by moving from state to state along the accessibility relation.

The difference between the CTL
∗

semantics in terms of bundled trees and the CTL
∗

semantics in terms of R-generable models is that the latter quantifies over all paths in-

duced by the relation R whereas the former quantifies over a bundle of paths. Although

this bundle is suffix and fusion closed, it does not need to be be limit closed. For exam-

ple, it may be the case that all paths include a right branch even though at every world

there is a path where the next branch goes left, which violates the limit closure property.

In order to distinguish full computation tree logic interpreted over R-generable models

and full computation tree logic interpreted over bundled trees (and equivalently over

(N×W ) structures), some authors (see, e.g., [23,16,17]) use the term CTL
∗

to indicate

the former logic and the term BCTL
∗

(bundled CTL
∗
) to indicate the latter (in [25] it is

called ∀LTFC ).

It is well-known that CTL
∗

interpreted over R-generable models is 2-EXPTIME

complete: [10] provides a doubly exponential automaton based satisfiability checker,

and [28] gives a lowerbound. As pointed by [17], an argument for the 2-EXPTIME

hardness of the satisfiability problem could also be made for CTL
∗

interpreted over

bundled trees in a way similar to the argument for CTL
∗

interpreted over R-generable

models. Therefore, as the CTL
∗

semantics in terms of bundled trees is equivalent to the

CTL
∗

semantics in terms of (N ×W ) structures [22], it follows that the satisfiability

problem for CTL
∗

interpreted over (N×W ) structures is also 2-EXPTIME hard. There-

fore, CTL
∗

interpreted over bundled trees (or over (N×W ) structures) is not easier to

deal with than CTL
∗

interpreted over R-generable models. However, one interesting

aspect of the former kind of CTL
∗

is that it is closely connected to Ockhamist temporal

logics studied in the field of philosophical logic [30]. Moreover, one might argue that

reasoning in BCTL
∗

is relatively easier than reasoning in CTL
∗
. For example the speci-

fication for the tableau method for BCTL
∗

proposed by [23] was much simpler than the

CTL
∗

tableau that originated from it [24].



Consider the following translation tr3 : LCTL
∗(Prop) −→ LOPDL(Prop,Atm) from

the language of CTL
∗

to the OPDL language where x is an arbitrary atomic program

in Atm:

tr3(p) = p for all p ∈ Prop

tr3(¬ϕ) = ¬tr3(ϕ)
tr3(ϕ1 ∧ ϕ2) = tr3(ϕ1) ∧ tr3(ϕ2)
tr3(Xϕ) = 〈〈x〉〉tr 3(ϕ)
tr3(ϕ U ψ) = 〈〈(tr3(ϕ)?;x)∗〉〉tr 3(ψ)
tr3(Aϕ) = [[≡]]tr3(ϕ)

The preceding translation is polynomial and, as the following theorem shows, it pro-

vides an embedding of the variant of CTL
∗

interpreted over (N ×W ) structures into

OPDL.

Theorem 3. Let ϕ be a CTL
∗

formula. ϕ is valid with respect to the class of (N×W )
structures if and only if {〈〈x〉〉⊤} |=OPDL tr3(ϕ).

From Theorem 3 and Proposition 2 in Section 2.2, it follows that the satisfiability prob-

lem in the variant of CTL
∗

interpreted over (N ×W ) structures can be reduced to the

satisfiability problem in OPDL with a finite number of atomic programs.

Corollary 1. Let ϕ be a CTL
∗

formula and let Atm be finite. ϕ is valid with respect to

the class of (N×W ) structures if and only if |=OPDL [[any∗]]〈〈x〉〉⊤ → tr3(ϕ).

Since the satisfiability problem of (N×W ) structures is 2-EXPTIME-hard (see above),

the preceding polynomial embedding of CTL
∗

into OPDL provides an argument for the

2-EXPTIME-hardness of the satisfiability problem of our logic OPDL.

3.3 Relationships with Other Logics: Discussion

The logic OPDL has interesting connections with other logical systems proposed in

the field of theoretical computer science such as propositional linear time temporal

logic PLTL and Nishimura’s combination of PDL and PLTL (call it, NL) [19]. As for

PLTL, in the previous Section 3.2 we have provided a polynomial embedding of CTL
∗

into OPDL. As PLTL is nothing but the fragment of CTL
∗

without the path quantifier

operator A, the translation tr3 also provides a polynomial embedding of PLTL into

OPDL. As for NL, we just need to put together the translation tr1 from PDL to OPDL

given in Section 3.1 and the translation from PLTL to OPDL in order to provide a

polynomial reduction of Nishimura’s logic NL to OPDL. Another logic that is related

with OPDL is ACTL
∗
, the action based version of CTL

∗
proposed by [8]. ACTL

∗

extends CTL
∗

with temporal operators Xa indexed by atomic programs a in the set of

atomic programs Atm. The ACTL
∗

formula Xaϕ has to be read “the next transition

is labeled with the atomic program a and ϕ will be true in the next state along the

current path”. By adding the following item to the preceding translation tr3 from CTL
∗

to OPDL, we get a polynomial embedding of ACTL
∗

into OPDL:

tr3(Xaϕ) = 〈〈a〉〉tr3(ϕ) for all a ∈ Atm



4 A Variant of OPDL Interpreted over Labeled Transition

Systems

As we have shown in Section 3.2, the logic OPDL interpreted over OPDL models

(Definition 3) embeds the variant of CTL
∗

interpreted over (N ×W ) structures which

in turn is equivalent to the variant of CTL
∗

interpreted over bundled trees.

A second variant of CTL
∗
, first introduced by [9], is the one interpreted over R-

generable models of the formM = (W,R,V) whereW is a set of states, R ⊆ W ×W
is a total binary relation on W (i.e., for every w ∈ W , there is some v ∈ W such that

(w, v) ∈ R) and V :W −→ 2Prop is a valuation function for atomic propositions.3

Given a modelM = (W,R,V), a fullpath in M is defined to be an infinite sequence
(w1, w2, w3, . . .) of states of M such that for each i ≥ 1, (wi, wi+1) ∈ R. Given
a fullpath σ = (w1, w2, w3, . . .) and an integer i ≥ 1, the symbol σ≥i denotes the
fullpath (wi, wi+1, . . .). As usual, σ[1] denotes the first element of the sequence σ.
Truth of a CTL

∗
formula is evaluated with respect to a R-generable model M and a

fullpath σ in M . Specifically, the rules defining the truth conditions of CTL
∗

formulae
are inductively defined as follows:

M,σ |= p ⇐⇒ p ∈ V(σ[1]);

M,σ |= ¬ϕ ⇐⇒ M,σ 6|= ϕ;

M,σ |= ϕ1 ∧ ϕ2 ⇐⇒ M,σ |= ϕ1 AND M,σ |= ϕ2;

M,σ |= Xϕ ⇐⇒ M,σ≥2 |= ϕ

M,σ |= ϕ U ψ ⇐⇒ ∃i ≥ 1 :M,σ≥i |= ψ AND ∀j : IF 1 ≤ j < i THEN M,σ≥j |= ϕ

M,σ |= Aϕ ⇐⇒ ∀σ′ : IF σ[1] = σ
′[1] THEN M,σ

′ |= ϕ

Here we consider a variant of OPDL which embeds the preceding variant of CTL
∗

interpreted over R-generable models. We call OPDL
lts

this variant of OPDL, where

OPDL
lts

means ‘OPDL interpreted over labeled transition systems’. The semantics for

OPDL
lts

is given in terms of PDL models as defined in Section 3.1 (Definition 6),

which are nothing but labeled transition systems, i.e., transition systems where tran-

sitions between states are labeled with atomic programs. Given a PDL model M =
(W, {Ra | a ∈ Atm},V), let the successor state function succ be defined by succ(w) =⋃

a∈Atm{v ∈W | (w, v) ∈ Ra} for each w ∈ W . succ(w) identifies the successors of

world w in M . Moreover, for every w ∈W , let

PA ={(w1, . . . , wn) | w1, . . . , wn ∈W and wi+1 = succ(wi) for all 1 ≤ i < n}

be the set of all paths in M . For every w ∈ W , let MPAw be the set of all maximal

paths starting in w, also called histories starting in w. That is, σ ∈ MPAw if and only if

σ ∈ PA and σ[1] = w and there is no σ′ ∈ PA such that σ′[1] = w and σ ⊏ σ′ (i.e., σ is

a proper initial subsequence of σ′). Finally, let IN = {w/σ | w ∈W and σ ∈ MPAw}
be the set of all indexes in the model M .

3 It has been proved that the variant of CTL
∗

interpreted over (N×W ) structures is more general

than the variant of CTL
∗

interpreted R-generable models, in the sense that the former have

less validities than the latter. For instance, as shown by [22], the formula AG(p → EXp) →
(p→ EGp) is valid in the latter variant of CTL

∗
but is not valid in the former.



Truth of an OPDL formula is evaluated at a given index w/σ ∈ IN of a PDL model

M . The rules inductively defining the truth conditions of OPDL formulae are:

M,w/σ |= p⇐⇒ p ∈ V(w);

M,w/σ |= ¬ϕ⇐⇒M,w/σ 6|= ϕ;

M,w/σ |= ϕ ∧ ψ ⇐⇒M,w/σ |= ϕ AND M,w/σ |= ψ;

M,w/σ |= [[π]]ϕ ⇐⇒ ∀ v/σ′ ∈ ρπ(w/σ) :M, v/σ′ |= ϕ

where

ρa = {(w/σ, v/σ′) | w/σ, v/σ′ ∈ IN , (w, v) ∈ Ra and σ = (w, σ′)}
ρ≡ = {(w/σ, v/σ′) | w/σ, v/σ′ ∈ IN and w = v}
ρπ1;π2

= ρπ1
◦ ρπ2

ρπ1∪π2
= ρπ1

∪ ρπ2

ρπ∗ = (ρπ)
∗

ρϕ? = {(w/σ,w/σ) | w/σ ∈ IN and M,w/σ |= ϕ}

and ρπ(w/σ) = {v/σ′ | (w/σ, v/σ′) ∈ ρπ}.

A formula ϕ of the language LOPDL(Prop,Atm) is said to be OPDL
lts

valid, de-

noted by |=
OPDL

lts ϕ, if and only if ϕ is true in all PDL models. As usual, a formula ϕ

of the language LOPDL(Prop,Atm) is said to be OPDL
lts

satisfiable if and only if ¬ϕ

is not OPDL
lts

valid. We shall say that a formulaϕ of the languageLOPDL(Prop,Atm)

is a global logical consequence in OPDL
lts

of a finite set of global axioms Γ =
{χ1, . . . , χn}, denoted by Γ |=

OPDL
lts ϕ, if and only if for every PDL model M , if

Γ is true in M then ϕ is true in M too.

As the following theorem shows, the translation given in Section 3.2 provides an

embedding of the variant of CTL
∗

interpreted over R-generable models into OPDL
lts

.

Theorem 4. Let ϕ be a CTL
∗

formula. ϕ is valid with respect to the class of R-

generable models if and only if {〈〈x〉〉⊤} |=OPDLlts tr3(ϕ).

From Theorem 4 and the fact that, as in OPDL, the problem of global logical conse-

quence in OPDL
lts

with a finite number of global axioms is reducible to the problem

of OPDL
lts

validity, it follows that the satisfiability problem in the variant of CTL
∗

interpreted over R-generable models can be reduced to the satisfiability problem in

OPDL
lts

with a finite number of atomic programs.

Corollary 2. Let ϕ be a CTL
∗

formula and let Atm be finite. ϕ is valid with respect to

the class of R-generable models if and only if |=
OPDL

lts [[any∗]]〈〈x〉〉⊤ → tr3(ϕ).

5 Perspectives

We have presented a new logic called Ockhamist Propositional Dynamic Logic OPDL

and studied its relationship with PDL and CTL
∗
. An interesting issue for future research

is the study of the relationship between OPDL and PDL with intersections of programs.

Intersections of atomic programs can be simulated in OPDL as follows:

[[a ∩ b]]ϕ
def

= [[≡]](〈〈a〉〉⊤ → [[b]]ϕ)



However, it is not clear whether we can find a simple translation from PDL with inter-

section of (not necessarily atomic) programs to OPDL that preserves validity.

Another direction of future research is the study of the exact complexity of the sat-

isfiability problem for OPDL. The embedding of CTL
∗

into OPDL ensures that it is

2-EXPTIME hard. However, the construction based on the “mosaic method” given in

the Section 2.3 does not provide an optimal decision procedure for OPDL. Future work

will be devoted to find an optimal decision procedure for OPDL showing that its sat-

isfiability problem is in 2-EXPTIME. Indeed, at the current stage, we conjecture that

CTL
∗

is not easier to deal with than OPDL. We also plan to find a sound and complete

axiomatization for the logic OPDL.

As to the logic OPDL
lts

whose semantics has been sketched in Section 4, much work

remains to be done. First of all, we plan to study more in detail the differences between

OPDL and OPDL
lts

, taking inspiration from Reynolds’ work [22] on the comparison

between the CTL
∗

semantics in terms of R-generable models and the CTL
∗

semantics

in terms of (N ×W ) structures (or bundled trees). For instance, we plan to find some

interesting examples of formulae of the language LOPDL(Prop,Atm) which are valid

in OPDL
lts

but are not valid in OPDL. Secondly, we plan to adapt the proof of the

decidability of the satisfiability problem for OPDL given in the Section 2.3 in order

to prove the decidability of the satisfiability problem for OPDL
lts

. Another aspect of

the logic OPDL
lts

that we plan to investigate in the future is its relationship with the

extension of PDL with a repetition construct (PDL-∆) by [26]. PDL-∆ extends PDL

with constructions of the form ∆π meaning that “the program π can be repeatedly

executed infinitely many times”. We believe that the construction∆π can be simulated

in OPDL
lts

as follows:

∆π
def

= 〈〈≡〉〉[[π∗]]〈〈π〉〉⊤

We postpone to future work the definition of the exact translation from PDL-∆ formulae

to OPDL
lts

formulae and a theorem stating that, for every PDL-∆ formulaϕ,ϕ is PDL-

∆ valid if and only if the translation of ϕ in OPDL
lts

is OPDL
lts

valid.
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