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Abstract. This paper studies the structure of qualitative capacities, that is, mono-

tonic set-functions, when they range on a finite totally ordered scale equipped

with an order-reversing map. These set-functions correspond to general represen-

tations of uncertainty, as well as importance levels of groups of criteria in multi-

criteria decision-making. More specifically, we investigate the question whether

these qualitative set-functions can be viewed as classes of simpler set-functions,

typically possibility measures, paralleling the situation of quantitative capacities

with respect to imprecise probability theory. We show that any capacity is char-

acterized by a non-empty class of possibility measures having the structure of

an upper semi-lattice. The lower bounds of this class are enough to reconstruct

the capacity, and their number is characteristic of its complexity. We introduce a

sequence of axioms generalizing the maxitivity property of possibility measures,

and related to the number of possibility measures needed for this reconstruction.

In the Boolean case, capacities are closely related to non-regular multi-source

modal logics and their neighborhood semantics can be described in terms of qual-

itative Moebius transforms.

1 Introduction

A fuzzy measure (or a capacity) is a set-function that is monotonic under inclusion. If

its range is a finite totally ordered scale, the capacity is said to be qualitative. Then, the

connection with probability measures is lost as well, and a number of notions, mean-

ingful in the quantitative setting, are lost, like the Möebius transform, the conjugate,

nor can any qualitative capacity be viewed as encoding a family of probability distribu-

tions. Yet it seems that qualitative counterparts of many such quantitative notions can

be defined if we replace probability measures by possibility measures. For instance the

process of generation of belief functions, introduced by Dempster [6], was applied to

possibility measures by Dubois and Prade [11,12] so as to define upper and lower pos-

sibilities and necessities. It was noticed that upper possibilities and lower necessities

are still possibility and necessity measures respectively, but upper necessities and lower

possibilities are not. This study was pursued by Tsiporkova and De Baets [21] in a more

general setting. More recently in [18], it was shown that qualitative capacities can be

viewed as counterparts of belief functions, using the possibilistic counterpart of a ba-

sic probability assignment. In [5] it was proved that the upper envelope of the possible

extensions of a probability is a possibility measure.



A natural question is then whether a qualitative capacity can be viewed as a family

of possibility measures as in Walley’s theory of imprecise probability [22]. A recent

paper [7] addressed this issue, taking up a pioneering work by Banon [2]. It is shown

that in the case of qualitative information, special subsets of possibility measures play

a role similar to convex sets of probability measures. This should not come as a sur-

prise. Indeed, it has been shown that possibility measures can be refined by probability

measures using a lexicographic refinement of the basic axiom of possibility measures,

and that capacities on a finite set can be refined by belief functions [9,10]. The aim

of this paper is to show that the maxitivity and minitivity axiom of possibility theory

can be generalized to define families of qualitative capacities of increasing complexity.

This property enables qualitative capacities to be seen as necessity modalities in a non-

regular class of modal logics, extending the links between possibility theory and modal

logic.

2 Capacities as Imprecise Possibilities and Necessities

Consider a finite set S and a finite totally ordered scale L with top 1 and bottom 0. A

capacity (or fuzzy measure) is a mapping γ : 2S → L such that γ(∅) = 0; γ(S) = 1;
and if A ⊆ B then γ(A) ≤ γ(B). A special case of capacity is a possibility measure.

In possibility theory, the available information is represented by means of a possibility

distribution. This is a function, usually denoted π, from the universe of discourse S to

the scale L. The function π is supposed to rank-order potential values of (some aspect

of) the state of the world - according to their plausibility. The value π(s) is understood as

the possibility that s be the actual state of the world. Precise information corresponds to

the situation where ∃s∗, π(s∗) = 1, and ∀s 6= s∗, π(s) = 0, while complete ignorance

is represented by the vacuous possibility distribution π? such that ∀s ∈ S, π?(s) = 1.

The possibility measure is defined by Π(A) = maxs∈A π(s).
A possibility distribution π is said to be more specific than another possibility dis-

tribution ρ if ∀s ∈ S, π(s) ≤ ρ(s). Denote by γc the conjugate of γ, defined as

γc(A) = ν(γ(Ac)), ∀A ⊆ S, where Ac is the complement of set A, and ν the order-

reversing map on L. The conjugate of a possibility measure is called a necessity mea-

sure. The conjugate necessity measure is then of the formN(A) = ν(maxs6∈A π(s)) =
mins6∈AN(S \ {s}).

It is well-known that in the numerical setting some capacities g can be equiva-

lently represented by a convex set of probabilities of the form P(g) = {P, P (A) ≥
g(A), ∀A ⊆ S}. For instance, g can be a convex capacity (g(A∪B) ≥ g(A) + g(B)−
g(A∩B)) or a belief function. Then it holds that g(A) = min{P (A) : P ∈ P(g)}. This

is one example of a coherent lower probability in the sense of Walley [22] (exact capac-

ity after Schmeidler [20]). In the qualitative case this construction is impossible. The

natural question is then whether a similar construction may make sense with qualitative

possibility measures replacing probability measures.

2.1 Imprecise Possibility and Necessity

There is always at least one possibility measure that dominates any capacity: the vacu-

ous possibility measure, based on the distribution π? expressing ignorance, since then



∀A 6= ∅ ⊂ S,Π(A) = 1 ≥ γ(A), ∀ capacity γ, and Π(∅) = γ(∅) = 0. Let

R(γ) = {π : Π(A) ≥ γ(A), ∀A ⊆ S}

be the set of possibility distributions whose corresponding set-functionsΠ dominate γ.

We call R(γ) the possibilistic credal set induced by the capacity γ. In this section we

recall some results on the structure of this set of possibility distributions.

Let σ be a permutation of the n = |S| elements in S. The ith element of the permu-

tation is denoted by sσ(i). Moreover let Si
σ = {sσ(i), . . . , sσ(n)}. Define the possibility

distribution πγ
σ as follows:

∀i = 1 . . . , n, πγ
σ(sσ(i)) = γ(Si

σ) (1)

There are at most n! (number of permutations) such possibility distributions. It can be

checked that the possibility measure Πγ
σ induced by πγ

σ lies in R(γ) and that the n!
such possibility distributions enable γ to be reconstructed (already in [2]):

Proposition 1. For each permutation σ : ∀A ⊆ S,Πγ
σ (A) ≥ γ(A).

Moreover, ∀A ⊆ S, γ(A) = minσΠ
γ
σ (A)

As a consequence,

Proposition 2. ∀π ∈ R(γ), π(s) ≥ πγ
σ(s), ∀s ∈ S for some permutation σ of S.

Proof: Just consider a permutation σ induced by π, that is σ(i) ≥ σ(j) ⇐⇒ π(si) ≤
π(sj). For this permutation,Π(Si

σ) = π(si) ≥ γ(Si
σ) = πγ

σ(si), ∀i = 1, . . . , n. �

This result says that the possibility distributions πγ
σ (we call the marginals of γ) include

the least elements of R(γ) in the sense of fuzzy set inclusion, i.e., the most specific

possibility distributions dominating γ. In other terms, R(γ) = {π, ∃σ, π ≥ πγ
σ}. Of

course the maximal element of R(γ) is the vacuous possibility distribution π?. In the

qualitative case, R(γ) is closed under the qualitative counterpart of a convex combi-

nation: if π1, π2 ∈ R(γ), then ∀α, β ∈ L, such that max(α, β) = 1, it holds that

max(min(α, π1), (min(β, π2)) ∈ R(γ). In fact R(γ) is an upper semi-lattice. Not all

the n! possibility distributions πγ
σ are least elements of R(γ). As a trivial example, if

γ = Π , this least element is unique and is precisely π. But other permutations yield

other less specific possibility distributions.

Conversely, for any set T of possibility distributions, the set-function γ(A) =
minπ∈T Π(A) is a capacity. It is easy to see that T ⊆ R(γ) and that if T contains only

possibility distributions that are not comparable with respect to specificity, T forms the

most specific elements of R(γ). Note that the set-function γ(A) = maxπ∈T Π(A) is

not only a capacity, but also a possibility measure with possibility distributionπmax(s)=
maxπ∈T π(s) [13].

We denote by R∗(γ) the set of minimal elements in R(γ). They are by construction

a finite set of possibility distributions none of which is more specific that another. It is

clear that the complexity of a qualitative capacity is clearly measured by the number

of elements in R∗(γ). These findings also show that any capacity can be viewed as a

lower possibility measure:

γ(A) = min{Π(A), π ∈ R∗(γ)}.



This is similar to the case of a convex capacity g understood as a lower probabil-

ity with respect to a (probabilistic) credal set P(g) [22]. This probability set forms a

convex polyhedron whose vertices are among probability assignments P γ
σ of the form

pγσ(sσ(i)) = g(Si
σ)− g(Si+1

σ ), and P(g) is the convex hull of these probabilities.

Dually, though, we can describe capacities as upper necessities by means of a family

of necessity functions that stem from the lower possibility description of their conju-

gates. Then we can define two sets of possibility functions from γ:

– The set R(γ) of possibility measures that dominate γ;

– The set R(γc) of possibility measures that dominate its conjugate γc.

Clearly, possibility measures that dominate γc are conjugates of necessity measures

dominated by γ. In other words γ is also an upper necessity measure in the sense that

γ(A) = max{N(A), π ∈ R∗(γ
c)}.

We can denote the set of minimal possibility distributions generating maximal necessity

measures dominated by γ by R∗(γ) = R∗(γ
c). One representation of γ (by means

of R∗(γ) or R∗(γ
c)) may be simpler than the other. For instance, if γ is a necessity

measure based on possibility distribution π, then R∗(γ) = {π} while R∗(γ) contains

several possibility distributions including π. Note that Π(A) ≥ N(A) = Πc(A), so

that it looks more natural to reach N from below and Π from above. More generally if

a capacity γ is such that γ(A) ≥ γc(A), ∀A ⊆ S, (γ is an upper capacity) then it is clear

that R∗(γ) is more natural than R∗(γ
c) for representing γ by a family of possibility

measures that dominate it.

2.2 Generalized Minitivity and Maxitivity Axioms

For each capacity γ, there is a least integer n along with n necessity measures such that

γ(A) = maxni=1Ni(A). We now show that this property can be described by means of

an axiom of the form:

n-adjunction: ∀Ai, i = 1, . . . n+ 1,minn+1
i=1 γ(Ai) ≤ max1≤i<j≤n+1 γ(Ai ∩ Aj)

that generalizes the minitivity axiom of necessity measures. Indeed, When n = 1, this

is the usual adjunction property min(γ(A), γ(B)) ≤ γ(A ∩B). It is then equivalent to

the minitivity axiom of necessity measures: N(A ∩ B) = min(N(A), N(B)) since γ

is inclusion-monotonic: 1-adjunctive capacities are necessity measures. Let us consider

the next step: 2-adjunction.

Proposition 3. min(γ(A), γ(B), γ(C)) ≤ max(γ(A∩B), γ(B ∩C), γ(A∩C)), ∀A,
B,C, if and only if there exist two necessity measures such that ∀A, γ(A)=max(N1(A),
N2(A)).

Proof:

⇐: Suppose γ(A) = max(N1(A), N2(A)). We can assume without loss of general-

ity that N1(A) ≥ N2(A), N1(B) ≥ N2(B), N2(C) ≥ N1(C) with one strict inequal-

ity, for some A,B,C (otherwise γ is a necessity measure) and then

min(γ(A), γ(B), γ(C)) = min(N1(A), N1(B), N2(C))



follows. Now consider γ(A ∩B). We have

γ(A ∩B) = max(min(N1(A), N1(B)),min(N2(A), N2(B)).

Developing: γ(A ∩B) = min(max(N1(A), N2(A)),max(N1(A), N2(B)),
max(N1(B), N2(A)),max(N1(B), N2(B))).
Now since by constructionN1(A) ≥ N2(A), N1(B) ≥ N2(B), it follows that

γ(A ∩B) = min(N1(A),max(N1(A), N2(B)),max(N1(B), N2(A)), N1(B))

= min(N1(A), N1(B)) = min(γ(A), γ(B)) ≥ min(γ(A), γ(B), γ(C))

Hence max(γ(A ∩B), γ(B ∩C), γ(B ∩ C)) ≥ min(γ(A), γ(B), γ(C)).
⇒: To get the converse, suppose that non trivially, γ(A) = max3i=1Ni(A). Then

one may find distinct sets A,B,C such that

min(γ(A), γ(B), γ(C)) = min(N1(A), N2(B), N3(C)).

It is easy to find an example for whichmin(γ(A), γ(B), γ(C)) > max(γ(A∩B), γ(B∩
C), γ(B ∩ C)). For instance,we can choose the three distinct sets A,B,C such that

γ(A) = N1(A) and γ(A′) = 0, ∀A′ ⊂ A, γ(B) = N2(B) and γ(B′) = 0, ∀B′ ⊂ B,

γ(C) = N3(C) and γ(C′) = 0, ∀C′ ⊂ C. These are the least elements of the family :

{D, γ(D) > 0} that forms a union of three filters exactly (they are the cores of the pos-

sibility distributions inducing necessity functions Ni, i = 1, 2, 3). It is then clear that

A,B,C are not included into one another, so that max(γ(A ∩ B), γ(B ∩ C), γ(A ∩
C)) = 0. Indeed, for instance A ∩ B ⊂ A and A ∩ B ⊂ B (strict inclusion), and

γ(A ∩B) = 0 by construction. The same reasoning holds for B ∩ C,A ∩ C. �

Note that in general, if γ(A) = max(N1(A), N2(A)), there can be a strict inequal-

ity min(γ(A), γ(B), γ(C)) < max(γ(A ∩ B), γ(B ∩ C), γ(B ∩ C)). Indeed it is

enough that γ(C) < γ(A ∩ B). It contrasts with the case of n = 1 that comes down

to γ(A ∩ B) ≥ min(γ(A), γ(B)) and implies γ(A ∩ B) = min(γ(A), γ(B)), due to

monotonicity of γ.

In the general case, it holds that

Proposition 4. ∀Ai, i = 1, . . . n+1,minn+1
i=1 γ(Ai) ≤ maxi6=j γ(Ai ∩Aj) if and only

if there exist n necessity measures such that ∀A, γ(A) = maxnj=1Nj(A).

Proof

⇐: Suppose ∀A, γ(A) = maxnj=1Nj(A). As a consequence:

n+1
min
i=1

γ(Ai) =
n+1
min
i=1

n
max
j=1

Nj(Ai) =
n+1
min
i=1

Nji(Ai)

where Nji(Ai) ≥ Nk(Ai), ∀k 6= ji, k = 1, . . . n, i = 1, . . . n + 1. It is clear that at

least two among indices ji, i = 1, n+1 are equal, since there are only n distinct values

of j. Suppose they are j1 = 1 = j2 without loss of generality, that is, minn+1
i=1 γ(Ai) =

min(N1(A1), N1(A2),minn+1
i=3 Nji(Ai)).



Now γ(A1 ∩A2) = maxni=1Ni(A1 ∩A2) = maxni=1 min(Ni(A1), Ni(A2)). How-

ever by assumption N1(A1) ≥ Nk(A1), k = 2, . . . n and N1(A2) ≥ Nk(A2), k =
2, . . . n, somin(N1(A1), N1(A2)) ≥ min(Nk(A1), Nk(A2)), k = 2, . . . n.As a conse-

quence, γ(A1∩A2) = min(N1(A1), N1(A2)) = min(γ(A1), γ(A2)) ≥ minn+1
i=1 γ(Ai).

⇒: For the converse, the proof is the same as for the case n = 3: suppose that non

trivially, γ(A) = maxn+1
i=1 Ni(A). Then one may find a family of n+ 1 distinct sets Ai

such that γ(Ai) = Ni(Ai), i = 1, . . . , n+ 1 and also choose them such that

n+1
min
i=1

γ(Ai) > max
1≤i<j≤n+1

γ(Ai ∩ Aj).

Indeed, choose the n + 1 distinct sets Ai with γ(Ai) = Ni(Ai) and γ(A) = 0, ∀A ⊂
Ai, i = 1, . . . , n+1. These are the least elements of the family: {D, γ(D) > 0} that is

formed by a union of n+ 1 filters exactly (they are the cores of the possibility distribu-

tions inducing Ni, i = 1, n+ 1). It is then clear that none of the A′
is are included into

one another, so that ∀i < j,Ai ∩ Aj ⊂ Ai and Ai ∩ Aj ⊂ Aj (strict inclusion) hence

γ(Ai ∩ Aj) = 0 by construction; so, max1≤i<j≤n+1 γ(Ai ∩Aj) = 0. �

Note that if a capacity possesses n-adjunction it provides an upper bound on the number

of its focal sets having a given weight. Indeed, if γλ denotes the Boolean capacity ob-

tained as γλ(A) = 1 if γ(A) ≥ λ, and 0 otherwise, then since γ(A) = maxni=1Ni(A),
it follows that the set of focal sets of γλ is made of the n subsets Ei such that Ni(A) ≥
λ ⇐⇒ Ei ⊆ A.

In fact, if E is a focal set of γ, i.e. E ∈ Fγ , define the necessity measure NE

by ∀A 6= S,NE(A) = γ#(E) if E ⊆ A and 0 otherwise. It is clear that γ(A) =
maxE∈Fγ NE(A). This is not the minimal form of course. To get the minimal form

one may consider all chains of nested subsets in Fγ : each such chain i defines a ne-

cessity measure Ni whose nested focal sets form the chain. If a capacity possesses

n-adjunction, it means that there are exactly n chains of focal sets in Fγ .

Note that in the extreme case where the focal sets in Fγ are singletons, each necessity

measure NE is also a possibility measure (it is a Dirac measure based on E = {sE}),

hence γ is a possibility measure.

Of course the above results can be adapted, replacing necessity measures by possi-

bility measures, thus weakening the notion of maxitivity. We can consider the following

axiom, dual to n-adjunction:

n-max-dominance: maxn+1
i=1 γ(Ai) ≥ min1≤i<j≤n+1 γ(Ai ∪ Aj)

∀Ai, i = 1, . . . n+ 1, and prove the counterpart to the above proposition:

Proposition 5. maxn+1
i=1 γ(Ai) ≥ mini6=j γ(Ai ∪ Aj) if and only if if there exist n

possibility measures such that γ(A) = minni=1Πi(A).

Comment: In the numerical setting, the n-superadditivity of a capacity is implied by

but does not imply its (n + 1)-superadditivity. The above concept of n-minitivity (in

fact n-adjunction) seems to play a similar role: we can generalize necessity functions

by steps since n-minitivity implies, but is not implied by (n+ 1)-minitivity.



2.3 Qualitative Focal Sets, n-Adjunction and k-Maxitivity

The inner (qualitative) Moebius transform of a capacity γ is a mapping γ# : 2S → L

defined by

γ#(E) = γ(E) if γ(E) > max
B(E

γ(B) (2)

and 0 otherwise. In the above definition, due to the monotonicity property, the condition

γ(E) > maxB(E γ(B) can be replaced by maxx∈E γ(E \ {x}). It is easy to check

that

– γ#(∅) = 0; maxA⊆S γ#(A) = 1;
– If A ⊂ B, and γ#(A) > 0, γ#(B) > 0, then γ#(A) < γ#(B).

Let Fγ = {E, γ#(E) > 0} be the family of focal sets associated to γ. The last prop-

erty says that the inner qualitative Moebius transform of γ is strictly monotonic with

inclusion on Fγ . It is clear that the inner qualitative Moebius transform of a possibility

measure coincides with its possibility distribution: Π#(A) = π(s) if A = {s} and

0 otherwise. This property makes it clear that γ# generalizes the notion of possibility

distribution to the power set of S.

The inner (qualitative) Moebius transform contains the minimal information needed

to reconstruct the capacity γ since, by construction [14,9]:

γ(A) = max
E⊆A

γ#(E) (3)

The reader can check that if one of the values γ#(E) is changed, the corresponding

capacity will be different, namely the values γ(A) such that γ(A) = γ#(E). In a pre-

vious paper [7], it was shown that the qualitative Moebius transform is instrumental in

finding the most specific possibility distributions dominating γ, via a selection process

picking an element in each focal set.

The similarity between capacities and belief functions [19] is striking on the above

equation: max replaces the sum in the expression of a belief function, and γ# plays the

role of the mass assignment, which is the Moebius transform of the belief function [15].

The subsets E in Fγ receive positive support and play the same role as the focal sets in

Dempster-Shafer’s theory: they are the primitive items of knowledge.

A capacity is said to be k-maxitive if and only if its focal sets have at most k el-

ements. This notion was introduced by Mesiar [17] and Grabisch [14] as a class of

simpler capacities. We show here a connection between the k-adjunction of capaci-

ties and the notion of k-maxitivity. The minitivity (1-adjunction) of necessity measures

N go along with the fact that the focal elements of the conjugate possibility measure

Π(A) = ν(N(Ac)) are obviously the singletons {s} such that s ∈ A (1-maxitivity).

This construction can be generalized first to any qualitative capacity γ that ranges on

{0, 1}. Let Fγ be its focal sets (γ#(E) = 1), and γc is its conjugate. Then obviously,

γ(A) = 1 ⇐⇒ ∃E ∈ Fγ , E ⊂ A (4)

Lemma 1. Suppose Fγ = {E1, . . . Ek} for a Boolean capacity γ. Then γc(A) = 1 if

only if A contains a set the form {s1, . . . sk}, si ∈ Ei, i = 1 . . . , k.



Proof: Indeed: γc(A) = 1 ⇐⇒ γ(Ac) = 0 ⇐⇒ ∀E ∈ Fγ , E 6⊆ Ac

hence: γc(A) = 1 ⇐⇒ ∀E ∈ Fγ , E ∩ A 6= ∅. We can write this as follows:

γc(A) = 1 ⇐⇒ ∀E ∈ Fγ , ∃sE ∈ E ∩ A ⇐⇒ ∃F = {sE : E ∈ Fγ}, F ⊆ A,

where for each focal set E of γ, sE is picked in E. �

Proposition 6. The set of focal sets of γc is Fγc

= min⊆{{s1, . . . sk}, si ∈ Ei, i =
1 . . . , k}, where min⊆ picks the smallest subsets for inclusion.

Proof: Note that Fγc

= min⊆{A, γc(A) = 1}. The result follows from Lemma 1. �

Clearly, the elements sE picked in focal sets E need not be distinct, in case the fo-

cal sets overlap. For instance, if Fγ = {E1, E2} with E1 = {s0, s1, s3}, E2 =
{s0, s2, s4}, then the focal elements of the conjugate are the least elements among the

family {{s0}}∪ {{s0, si}, i = 1, . . . , 4}∪ {{s1, s2}, {s1, s4}, {s3, s2}, {s3, s4}}, that

is Fγc

= {{s0}{s1, s2}, {s1, s4}, {s3, s2}, {s3, s4}}.

Denoting by c(Fγ) the transformation from Fγ to Fγc

, we can prove:

Proposition 7. c(c(Fγ)) = Fγ

Proof: It is obvious because (γc)c = γ. A direct proof is far less obvious.

For instance, if Fγ = {A,B}. Then Fγc

= {{s} : s ∈ A ∩ B} ∪ {{sA, sB} : sA ∈
A \ B, sB ∈ B \ A}. To build dual focal sets from the latter family, each such focal

set must contain A ∩ B. Then suppose we pick sA ∈ {sA, sB}. Clearly, this choice

covers all focal sets {sA, s}, s ∈ B \ A. It thus prevents us from picking the next

element in B \A. So the next elements to be picked lie in A. In fact, the focal sets left

{s, sB}, s 6= sA can be deprived of sB since there is a focal set of the form {sA, sB}
that forbids sB from further consideration. So this process reconstructs the focal set A.

From Prop. 6, it is clear that if a Boolean capacity is k-adjunctive (it has k focal

sets), then its conjugate is k-maxitive, since the focal sets of its conjugate will have not

more than k elements. In the next section, we shall see that the computation of the focal

sets of a capacity from the ones of its conjugate corresponds in the modal logic setting

to the swapping of modalities. In the following, we denote by Fγ
β the set of the focal

elements A of a capacity γ such that γ(A) = β

Proposition 8. For a general capacity γ, suppose Fγ = {E1, . . . Ek}. Then, γc(A) =

1 if and only if ∀i = 1 · · · , k : Ei ∩ A 6= ∅. Moreover, Fγc

1 = min⊆{{s1, . . . sk}, si ∈
Ei, i = 1 . . . , k}.

Proof: It is like the proof of Lemma 1 and the subsequent proposition.

Lemma 2. γc(A) = ν(α) 6= 0, 1 if and only if ∀E, γ#(E) > α implies E ∩ A 6= ∅
and ∃E,E ∩ A = ∅ such that γ#(E) = α.

Proof: γc(A) ≥ ν(α) if and only if γ(Ac) ≤ α if and only if ∀E, γ#(E) > α implies

E 6⊆ Ac. Besides, the equality γc(A) = ν(α) is attained if moreover there is a focal set

E ⊆ Ac such that γ#(E) = α.



Proposition 9. A is a focal element of γc such that γc#(A) = ν(α) > 0 if and only if

it is a minimal element of the family {E = {sE : γ#(E) > α}, E ∩ F = ∅ for some

F ∈ Fγ
α}, where sE ∈ E.

Proof: A direct consequence of the lemma, since by construction γc#(A) = ν(α) means

that A is a minimal set such that γc(A) = ν(α).
These results show how the inner qualitative Moebius transform of a capacity can

be computed from the one of its conjugate. It is easy to see that also in the general

case, if a capacity has k weighted focal sets, its conjugate will be k-maxitive, since

the largest focal elements of γc (they have weight equal to 1) are obtained by picking

one element in each focal set of γ. Another issue is now to compute the n possibility

distributions such that γ is n-adjunctive in terms of the m possibility distributions such

that γ is m-max-dominant. For instance, while a necessity measure N is 1-adjunctive

w.r.t. its associated possibility distribution π, it is also n-max-dominant with respect to

n possibility measures, where n is the number of (nested) focal sets of the necessity

measure N . They are all distinct sets Aαi
= {s : π(s) ≥ αi} such that N#(Aαi

) =
ν(αi+1), where α1 = 1 > α2 > · · · > αn > αn+1 = 0. Then N = minn

i=1Πi, where

πi(s) = ν(αi+1), ∀s ∈ Aαi
and 1 otherwise.

3 The Modal Logic View of Capacities

In this section, we show that our previous results suggest a new semantics for general

modal logics. Consider a propositional language L with Boolean variables {a, b, c...}
and standard connectives ∧,∨,¬,→. Let S be the set of interpretations of this language

(assigning 1 or 0 to all variables). Given a proposition p ∈ L, necessity measure N on

S based on possibility distribution π, we denote by �p the statement N(A) ≥ λ > 0,

whereA = [p] is the set of models of p. �p corresponds to a Boolean necessity measure

based on a possibility distribution that is the characteristic function of E = {s|π(s) >
ν(λ)}. Consider a higher level propositional language L� defined by: ∀p ∈ L,�p ∈
L�, and if φ, ψ ∈ L�, then ¬φ ∈ L�, and φ ∧ ψ ∈ L�. The variables of L� are thus

{�p : p ∈ L}. Let ♦p be short for ¬�¬p. Then |= ♦p stands for Π(A) ≥ ν(λ) where

Π is the conjugate of N . It defines a very elementary fragment of a KD modal logic

known as MEL [1]. Indeed, the following KD axioms are valid

– (K) : �(p→ q) → (�p→ �q)
– (N) : �⊤
– (D) : �p→ ♦p

and imply axiom (C) : �(p ∧ q) ≡ (�p ∧ �q), which is the Boolean form of the

minitivity axiom.

A “model” of a formula in φ ∈ L� is a nonempty subset E ⊆ S of propositional

models. The set E is understood as an epistemic state (a meta-model). The satisfaction

of MEL-formulae is then defined recursively given φ, ψ ∈ L�:

– E |= �p , if and only if E ⊆ [p]
– E |= ¬φ, if and only if E 6|= φ,
– E |= φ ∧ ψ, if and only if E |= φ and E |= ψ,
– So, E |= ♦p if and only if E ∩ [p] 6= ∅



For any set Γ ∪{φ} of L�-formulae, φ is a semantic consequence of Γ , written Γ |= φ,

provided for every epistemic stateE,E |= Γ impliesE |= φ. This Boolean possibilistic

logic, equipped with modus ponens, (the L�-fragment of KD) is sound and complete

w.r.t. this semantics [1]. In fact, if N is the Boolean necessity measure induced by E,

it defines precisely a classical interpretation of L�, of the form
∧

p∈L:N([p])=1 �p ∧∧
p∈L:N([p])=0 ¬�p obeying axioms K, D, N. In particular the semantics does not rely

on the use of accessibility relations.

Using the same language, denote now |= �p as standing for γ([p]) ≥ λ > 0 for any

qualitative capacity γ.�p now corresponds to a Boolean capacity defined by γλ(A) = 1
if γ([p]) ≥ λ > 0 and 0 otherwise. The following axioms are then verified [8]:

– (RE) : �p ≡ �q whenever ⊢ p ≡ q.

– (RM) : �p→ �q, whenever ⊢ p→ q.

– (N) : �⊤; (P ) : ♦⊤.

It is a non-regular modal logic. It is a fragment of the monotonic modal logic EMN,

Chellas [4], where modalities only apply to propositions. Its usual semantics is based

on so-called neighborhoods (families of subsets of possible worlds having some prop-

erties). This logic no longer satisfies axioms K, C nor D. This modal logic is the natural

logical account of qualitative capacities. Indeed, any classical interpretation of L� that

satisfies the above axioms defines and is defined by a Boolean capacity β and is of the

form
∧

p∈L:β([p])=1�p ∧
∧

p∈L:β([p])=0 ¬�p.

Interestingly, we can capture the n-adjunction axiom in the modal setting (see [8]

for n = 2). Let n be the smallest integer for which γ(A) = maxni=1Ni(A). Denoting

by �ip the statement Ni([p]) ≥ λ > 0, it is clear that γ([p]) ≥ λ > 0 stands for

�p ≡ ∨n
i=1�ip, where �i are KD modalities. By duality we can define ♦p as short for

¬�¬p, that is, ♦p ≡ ∧n
i=1♦ip. So, applying the characterisation of n-minitivity to the

restriction of the modal logic EMN yields the axiom

(n-C) : ⊢ (∧n+1
i=1 �pi) → ∨n+1

i6=j=1�(pi ∧ pj)

It implies that if pi, i = 1 . . . , n+1 are mutually inconsistent, then ⊢ ¬∧n+1
i=1 �pi. This

property claims that we cannot have γ([pi]) ≥ λ > 0 for all i = 1 . . . , n+ 1.

The semantics of the EMNP+n-C logic can be expressed in two ways:

– In terms of n-tuple of epistemic states (subsets of S) : (E1, . . . , En) |= �p if ∃i ∈
[1, n], Ei |= �ip. By construction, E1, . . . , En are the focal sets of the Boolean

capacity defined by γλ(A) = 1 if γ([p]) ≥ λ > 0 and 0 otherwise.

– More classically, in terms of neigborhoods: they are non-empty subsets N of 2S

such that N |= �p if and only if [p] ∈ N and N |= ♦p if and only if [¬p] 6∈ N .

For a KD modality, it is obvious that N = {A,N(A) ≥ λ} = {A|A ⊇ E} for some

non-empty E ⊆ S (N is a proper filter). For an EMNP modality N = {A, γ(A) ≥
λ > 0} 6= 2S is closed under inclusion and not empty). For an EMNP+n-C modality,

N = {A, γ(A) ≥ λ > 0} is the union of n proper filters of the form {A,Ni(A) ≥
λ} = {A|A ⊇ Ei}.

In the extreme case when the sets (E1, . . . , En) are singletons (i.e., fully informed

conflicting sources), the necessity modality �p satisfies distributivity w.r.t. disjunction:

⊢ �(p ∨ q) ≡ �p ∨ �q (but no longer w.r.t. conjunction !) and the opposite of axiom

D : ⊢ ♦p → �p. In other words, necessity and possibility modalities are exchanged.



We go back to the MEL logic exchanging the basic modalities � and ♦. In fact, the

swapping of modalities is a simple instance of the more general question, considered

in the previous section, of computing the focal sets of a capacity from the ones of its

conjugate. It comes down at the semantic level to the transformation of a logic based

on the epistemic states of k agents into the dual situation of multiple source epistemic

logic underlying a set of agents whose knowledge has limited imprecision (i.e., each

epistemic state involves at most k possible worlds).

4 Conclusion

We have studied the representation of capacities having values on a finite totally ordered

scale by families of qualitative possibility distributions. It turns out that any capacity

can be viewed either as a lower possibility measure or as an upper necessity measure

with respect to two distinct families of possibility distributions. This remark has led

to propose a generalisation of maxitivity and minitivity properties of possibility the-

ory, thus offering a classification of qualitative capacities in terms of increasing levels

of complexity and generality, based on the minimal number of possibility distributions

needed to represent them. In particular, it has been shown that a Sugeno integral is a

lower possibility integral [7]. Then the computation of Sugeno integral can be reduced

for k-adjunctive or k-max dominant capacities. Moreover, the study of relationships

between the focal sets of a capacity and the focal sets of its conjugate has shown the

links between k-adjunction and k-maxitive capacities. We have finally shown a con-

nection between qualitative capacities and non-regular modal logics, which generalize

KD-style modal logics in the same sense as capacities generalize necessity measures.

Numerous alleys of research are opened by the above results:

– On the logical side, we may reconsider the study of non-regular modal logics in

the light of capacity-based semantics. The fact that they lead to disjunctions of KD

necessity operators is clearly reminding of Belnap epistemic set-up [3], and para-

consistent logics. The fact that an extreme case of the EMN logic comes down to a

modal logic similar to a KD one where possibility and necessity are exchanged re-

flects the fact that in Belnap bilattices, the epistemic values representing conficting

information and absence thereof play symmetric roles

– One may also wish to evaluate the quantity of information (or uncertainty) con-

tained in a qualitative capacity [16]. In [7], the maximal specific possibility distri-

bution dominating a capacity was studied and shown to be the counterpart of the

contour function of belief functions for qualitative capacities. This notion could

suggest one approach based on the comparison of contour functions.

– The analogy between belief functions and qualitative capacities was discussed in

[18] and a qualitative counterpart of information ordering based on specialisation

(inclusion of focal sets) was also proposed, as well as counterparts to Dempster rule

of combination. These lines should be pursued in the scope of qualitative informa-

tion fusion techniques going beyond those based on possibility theory.
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