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Conditional Preference Nets and Possibilistic Logic

CP-nets (Conditional preference networks) are a well-known compact graphical representation of preferences in Artificial Intelligence, that can be viewed as a qualitative counterpart to Bayesian nets. In case of binary attributes it captures specific partial orderings over Boolean interpretations where strict preference statements are defined between interpretations which differ by a single flip of an attribute value. It respects preferential independence encoded by the ceteris paribus property. The popularity of this approach has motivated some comparison with other preference representation setting such as possibilistic logic. In this paper, we focus our discussion on the possibilistic representation of CPnets, and the question whether it is possible to capture the CP-net partial order over interpretations by means of a possibilistic knowledge base and a suitable semantics. We show that several results in the literature on the alleged faithful representation of CP-nets by possibilistic bases are questionable. To this aim we discuss some canonical examples of CP-net topologies where the considered possibilistic approach fails to exactly capture the partial order induced by CP-nets, thus shedding light on the difficulties encountered when trying to reconcile the two frameworks.

Introduction

The representation and the handling of preferences has been extensively studied in artificial intelligence (AI), operations research, and data bases; see [START_REF] Domshlak | Preferences in AI: An overview[END_REF] for an introductory survey. "CP-nets" [START_REF] Boutilier | CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] have been especially popular in AI as a framework for expressing conditional preferences, based on a graphical representation. CP-nets express that in a given context, a partially described situation is strictly preferred to another partially described situation, every other variable having the same value in both situations; this is the ceteris paribus condition.

However the systematic application of the ceteris paribus principle introduces restrictions in the expression of preferences. This has motivated the comparison between CP-nets and possibilistic logic [START_REF] Dubois | Possibilistic logic: a retrospective and prospective view[END_REF] since the latter provides another flexible setting for representing preferences [START_REF] Benferhat | Towards a possibilistic logic handling of preferences[END_REF][START_REF] Benferhat | Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions[END_REF]. In possibilistic logic, classical propositions state goals, and weights are priority levels that express how imperative are these goals. A merit of a logic-based representation of preferences is also the capability of reasoning about preferences and in particular to deal with their possible inconsistency. A series of publications [START_REF] Dubois | CP-nets and possibilistic logic: Two approaches to preference modeling. Steps towards a comparison[END_REF][START_REF] Dubois | Approximation of conditional preferences networks "CP-nets" in possibilistic logic[END_REF][START_REF] Kaci | Mastering the processing of preferences by using symbolic priorities[END_REF][START_REF] Kaci | Working With Preferences: Less Is More[END_REF][START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF] have dealt with the question of representing CP-nets by means of a possibilistic logic base. Since CP-nets may leave some interpretations non comparable, a possibilistic logic representation of them should use partially ordered symbolic weights [START_REF] Benferhat | Encoding formulas with partially constrained weights in a possibilistic-like many-sorted propositional logic[END_REF] that leave room for incomparability. It has been also noticed that CP-nets implicitly privilege the preference constraints associated with father nodes with respect to the ones associated to children nodes in the graphical representation.

However, the possibilistic logic representation of CP-nets advocated in [START_REF] Kaci | Mastering the processing of preferences by using symbolic priorities[END_REF][START_REF] Kaci | Working With Preferences: Less Is More[END_REF][START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF] is not always completely faithful and may remain locally approximate. The aim of this paper is to fully investigate this state of facts, also highlighting when the existing approach does provide an exact representation for CP-nets.

The paper is organized as follows. First, a short background on possibilistic logic, on CP-nets and its encoding with possibilistic logic formulas having symbolic weights is provided in Sections 2 and 3. Then in Section 4 we discuss the different partial orders that can be used for comparing the vectors of symbolic weights which reflect the violation of preferences and are associated with each interpretation. Used as such, each of the considered orders are successful for retrieving the CP-net ordering on specific graphical structures and fail on others, as shown in Section 5. Section 6 identifies on which particular structures the existing possibilistic representation is exact, and shows more generally how lower and upper representations can be obtained. Section 7 briefly discusses the related work and exhibits a final example that points out the difficulty of capturing the CP-net ordering exactly in a logical way.

Possibilistic Logic

We consider a propositional language where formulas are denoted by p 1 , ..., p n , and Ω is its set of interpretations. Let B N = {(p j , α j ) | j = 1, . . . , m} be a possibilistic logic base where p j is a propositional logic formula and α j ∈ L ⊆ [0, 1] is a priority level [START_REF] Dubois | Possibilistic logic: a retrospective and prospective view[END_REF]. The logical conjunctions and disjunctions are denoted ∧ and ∨. Each formula (p j , α j ) means that N (p j ) ≥ α j , where N is a necessity measure, i.e., a set function satisfying the property N (p ∧ q) = min(N (p), N (q)). A necessity measure is associated to a possibility distribution π (a mapping Ω → [0, 1] here expressing preference) as follows:

N (p) = min ω ∈M(p) (1 -π(ω)) = 1 -Π(¬p)
, where Π is the possibility measure associated to N and M (p) is the set of models induced by the underlying propositional language for which p is true.

The base B N is associated to the possibility distribution

π N B (ω) = min j=1,...,m π (pj ,αj ) (ω) on the set of interpretations, where π (pj ,αj ) (ω) = 1 if ω ∈ M (p j ), and π (pj ,αj ) (ω) = 1 -α j if ω ∈ M (p j ).
An interpretation ω is all the more possible as it does not violate any formula p j having a higher priority level

α j . So, if ω ∈ M (p j ), π N B (ω) ≤ 1 -α j , and if ω ∈ j∈J M (¬p j ), π N B (ω) ≤ min j∈J (1 -α j ).
It is a description "from above" of π N B , which is the least specific possibility distribution in agreement with the knowledge base B N . A possibilistic base B N can be transformed in a base where the formulas p i are clauses (without altering the distribution π N B ). We can still see B N as a conjunction of weighted clauses, i.e., as an extension of the conjunctive normal form.

A CP-net [START_REF] Boutilier | CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] is graphical in nature, and exploits conditional preferential independence in structuring the preferences provided by a user. The model is reminiscent of a Bayes net; however, the nature of the relation between nodes within a network is generally quite weak, compared with the probabilistic relations in Bayes nets. The aim in using the graph is to capture statements of qualitative conditional preferential independence.

Definition 1. A CP-net N over the set of Boolean variables V = {X 1 , • • • , X n } is a directed graph over the nodes X 1 , • • • , X n ,
and there is a directed edge from X i to X j if the preference over the value X j is conditioned on the value of X i . Each node X i ∈ V is associated with a conditional preference table CP T (X i ) that associates a strict preference (x i > ¬x i or ¬x i > x i ) with each possible instantiation u i of the parents of X i (if any).

A complete (preference) ordering of interpretations satisfies a CP-net N iff it satisfies each conditional preference expressed in N . In this case, the ordering is said to be consistent with N . We denote by P a(X) the set of direct parent variables of X, and by Ch(X) the set of direct successors (children) of X. The set of interpretations of a group of variables S ⊆ V is denoted by Ast(S), with Ω = Ast(V ). Given a CP-net N , for each node X i , i = 1, . . . , n, each entry in a conditional preference table CP T i is of the form φ = u : ⋆x i > ⋆¬x i , where u ∈ Ast(P a(X i )), ⋆ is blank if the preference is x i > ¬x i and is ¬ otherwise. This is encoded by a constraint of the form N (¬u∨⋆x i ) ≥ α i > 0, in possibility theory, where N is a necessity measure [START_REF] Dubois | Possibilistic logic: a retrospective and prospective view[END_REF]. The weight α i stands for the priority of the formula ¬u ∨ ⋆x i . Although valued on [0, 1] this priority is not instantiated, that is, α i is a variable attached to node i. It expresses that having ¬ ⋆ x i is somewhat not satisfactory in context u, as the possibility of ¬ ⋆ x i ∧ u is upper bounded by 1α i . Clearly, satisfying ¬ ⋆ x i ∧ u is all the more impossible as α i is large.

The encoding of a CP-net in possibilistic logic is performed as follows:

-According to the above conventions, each entry of the form u : ⋆x i > ⋆¬x i in the conditional preference table CP T i of each node X i , i = 1, . . . , n is encoded by the possibilistic logic clause (¬u ∨ ⋆x i , α i ), where α i > 0 is a symbolic weight. -Since the same weight is attached to each clause built from CP T i , the set of weighted clauses induced from CP T i is thus equivalent to the weighted conjunction φ i = ( u∈Ast(P a(Xi)) (¬u ∨ ⋆x i ), α i ), one per variable, or to the pair of weighted clauses (φ + i , φ - i ) of the form:

(¬(∨ u∈A + i u) ∨ x i , α i ), (¬(∨ u∈A - i u) ∨ ¬x i , α i ), where {A + i , A - i } is a partition of Ast(P a(X i )), such that x i > ¬x i on A + i and ¬x i > x i on A - i .
-Additional constraints over weights are added. The weight α i attached to each node X i , is supposed to be strictly smaller than the weight of each of its parents α * i (thus leading to constraints of the form max({α i }) < α * i ).

A partially ordered possibilistic base (Σ, Σ ) is built from a CP-net in this way, where Σ stands for the order relation over weights. Let us denote by F ω ⊆ Σ, the set of formulas falsified by the interpretation ω ∈ Ω. For each interpretation ω, we associate a vector ω(Σ) obtained as follows. For each weighted formula φ + i ∧ φ - i in the possibilistic base Σ satisfied by ω, we put 1 in the i th component of the vector, and 1-α i otherwise, in agreement with possibilistic logic semantics [START_REF] Dubois | Possibilistic logic: a retrospective and prospective view[END_REF]. By construction, L = {1, 1α i , i = 1 . . . , n}, with 1 > 1α i , ∀i. Vector ω(Σ) has a specific format. Namely its component v i (one per CP-net node) lies in {1, 1α i } for i = 1, . . . , n. We consider different possible partial orders for comparing such vectors in the next section. preferred color is black (b) rather than white (w) for J and P : P b > P w , which yields formula φ P = (P b , α), and J b > J w , which yields formula φ J = (J b , β). -the preference between the red and white shirts is conditioned on the combination of jacket and pants: if they have the same color, then a white shirt will make my outfit too colorless, thus a red shirt is preferred: P b ∧ J b : S r > S w ; P w ∧ J w : S r > S w , which yields formula φ - S = (¬(J = P ) ∨ S r , γ). -Otherwise, if the jacket and the pants are of different colors, then a red shirt will probably make the outfit too flashy, thus a white shirt is preferred. P b ∧J w : S w > S r ; P w ∧J b : S w > S r , which yields formula φ + S = ((J = P )∨S w , γ). Moreover, we assume α > γ and β > γ since P and S are father nodes of J.

Partial Order Relations over Vectors

In this section we will present a number of partial order relations with the purpose to use them to generate a particular ordering over interpretations.

In Section 3, we have shown how to encode a CP-net in a possibilistic logic format. Since we can associate a vector to each interpretation with respect to formulas in the possibilistic base, comparing two interpretations amounts to comparing their associated vectors. We first give definitions of some order relations over vectors, and then discuss how to capture CP-net orderings when we interpret possibilistic logic bases based on these vector comparison techniques. Let

v = (v 1 , ..., v k ), v ′ = (v ′ 1 , ..., v ′ k ) ∈ L k be two vectors,
where L is a scale partially ordered by >:

Definition 2 (Pareto). v ≻ P areto v ′ if and only if ∀i, v i ≥ v ′ i and ∃j, v j > v ′ j .
Definition 3 (symmetric Pareto). v ≻ SP v ′ if and only if there exists a permutation σ the components of v ′ , yielding vector v ′σ , such that v ≻ P areto v ′σ .

The discrimin order, denoted by ≻ discrimin is defined for totally ordered scales in the following way: identical vector components are discarded, and the minimum of the remaining components for each vector are compared. Since here the minimum does not always correspond to a single value, but to subsets of L k , we propose the following procedure for comparing the vectors:

Definition 4 (discrimin). Let D(v, v ′ ) = {j|v j = v ′ j } be the set of component indices where the two vectors v and v ′ differ. Then v ≻ discrimin v ′ iff min({v i |i ∈ D(v, v ′ )} ∪ {v ′ i |i ∈ D(v, v ′ )}) ⊆ {v ′ i |i ∈ D(v, v ′ )} \ {v i |i ∈ D(v, v ′ )}.
where min here returns the subset of the smallest incomparable values (wrt >).

In the standard case of a totally ordered scale, the leximin order is defined by first reordering the vectors in an increasing way and then applying the discrimin order to the reordered vectors. Since we deal with a partial order, the reordering of vectors is no longer unique, and we have to generalize the definition: Definition 5 (leximin). First, delete all pairs (v i , v ′ j ) such that v i = v ′ j in v and v ′ (each deleted component can be used only one time in the deletion process). Thus, we get two non overlapping sets r(v) and r(v

′ ) of remaining components, namely r(v) ∩ r(v ′ ) = ∅. Then, v ≻ lex v ′ iff min(r(v) ∪ r(v ′ )) ⊆ r(v ′ ).
In the following, we shall apply these relations to the particular vectors associated to the possibilistic encoding of CP-nets, as explained in Section 3, where the possible values of a vector component i are either 1 or 1α i (the α i being distinct variables), and

L = {1, 1 -α i , i = 1, . . . , n} such that 1 > 1 -α i .
Proposition 1. Leximin and discrimin orders coincide on these particular vectors.

Proof. Indeed, since the value of a vector component is either '1' or '1α i ', and since each possibilistic formula attached to a node in the CP-net is associated with a different weight α i , we are sure that a given '1α i ' is present only in one component position. With these hypotheses, the difference between leximin and discrimin procedures is that leximin deletes some components with value '1' because it is the only component value that can be in different ranks. But we know that '1' is the greatest component value, so this cannot affect the result of the final application of min operator in each case. Thus, leximin and discrimin orders coincide on these particular vectors.

These relations have been previously used for capturing the CP-nets ordering: symmetric Pareto (SP), discrimin in [START_REF] Kaci | Mastering the processing of preferences by using symbolic priorities[END_REF][START_REF] Kaci | Working With Preferences: Less Is More[END_REF], or leximin in [START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF] or min order in [START_REF] Dubois | CP-nets and possibilistic logic: Two approaches to preference modeling. Steps towards a comparison[END_REF][START_REF] Dubois | Approximation of conditional preferences networks "CP-nets" in possibilistic logic[END_REF]. In the next section, we provide a comparative discussion of these proposals and we point out when each ordering fails to exactly retrieve the CP-net ordering.

CP-Nets vs. Possibilistic Logic: Counterexamples

It has been claimed that CP-net orderings can be captured by using the encoding explained in Section 3 and applying the symmetric Pareto order [START_REF] Kaci | Mastering the processing of preferences by using symbolic priorities[END_REF][START_REF] Kaci | Working With Preferences: Less Is More[END_REF] recalled in Section 4, or the leximin order [START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF], to vectors ω(Σ). This is in fact true only for special families of CP-nets, as shown in the example below. But the possibilistic encoding of CP-nets together with the use of one of the previously cited orders do not always lead to an exact representation of CP-nets in the general case, as we shall see on further examples.

Considering Ex. 1 again, Table 2 gives the satisfaction levels for the possibilistic clauses encoding the 3 elementary preferences, and the 8 possible interpretations (choices), where α, β, γ are the weights of nodes J, P, S respectively. 

Ω φP φJ φS P b J b Sr 1 1 1 P b J b Sw 1 1 1-γ P b JwSw 1 1-β 1 PwJ b Sw 1-α 1 1 P b JwSr 1 1-β 1-γ PwJ b Sr 1-α 1 1-γ PwJwSr 1-α 1-β 1-γ PwJwSw 1-α 1-β 1
We introduce the following constraints, α > γ and β > γ between the symbolic weights, which give priority to the constraint associated to father nodes J, P over the ones corresponding to the child node S. Then, the application of symmetric Pareto order or leximin order, allows us to rank-order interpretations. It can be checked that the ordering of interpretations obtained by these two orders applied to vectors ω(Σ) coincide with the ordering ≻ N induced by the CP-net N , as indicated in Fig. 1(b) (for short, P b J b S r is denoted bbr, etc.):

-bbr ≻ N bbw ≻ N bww ≻ N bwr ≻ N bwr ≻ N wwr ≻ N www. -bbr ≻ N bbw ≻ N wbw ≻ N wbr ≻ N wwr ≻ N www.
In order to provide a clear discussion about the possibilistic logic representation, we first establish that a preference between interpretation vectors differing by a single variable flip only depends on the instantiations of the corresponding variable and its children: Proposition 2. Let X i be a node in a CP-net N and Y i = V \{{X i } ∪ P a(X i )}. Let (Σ, Σ ) be the partially ordered possibilistic base associated with N using the procedure of Section 3. If the CP-net contains the statement u : x i > ¬x i (resp: u : ¬x i > x i ), the preference only depends on the instantiations of variable x i and its children nodes.

Proof: Let ω + = u i x i y i and ω -= u i ¬x i y i , u i ∈ A + i . Since they share the same assignment of variables in P a(X i ), both models satisfy either φ + j or φ - j , ∀X j ∈ P a(X). We denote by F P a the set of formulas φ + j , φ - j , X j ∈ P a(X i ) falsified by ω + , ω -(they are the same); and by F Y the set of formulas φ + j , φ - j , X j ∈ Y i \ Ch(X i ), (i.e. X j is a neither a direct descendant of X i nor one of its parents) and falsified by ω + , ω -; and by F Ch ω + the set of formulas φ + j , φ - j , X j ∈ Ch(X i ) falsified by ω + and F Ch ωthe set of formulas falsified by ω -. Then,

F ω + = F P a ∪ F Y ∪ F Ch ω + and F ω -= F P a ∪ {φ + i } ∪ F Y ∪ F Ch ω -. So we have F ω \ F ω ′ = F Ch ω + and F ω ′ \ F ω = {φ + i } ∪ F Ch ω -.
Following the construction of (Σ, Σ ) we have that φ + i is strictly preferred to all formulas in - -

F Ch ω + ∪ F Ch ω -. Then ∀φ ∈ F ω \ F ω ′ , φ + i ≻ Σ φ. Let X k be a child of X i .
either ω + |= u k and ω -|= ¬u k (then φ - k ∈ F Ch ω + , but φ + k ∈ F Ch ω + ); -or ω + |= ¬u k and ω -|= u k (then φ + k ∈ F Ch ω -, but φ - k ∈ F Ch ω -); -or ω + |= ¬u
Σ a = {φ 1 , φ 2 , φ 3 }: φ 1 = (x, α 1 ), φ 2 = (y, α 2 ), φ 3 = (((¬(x ∧ y) ∧ ¬(¬x ∧ ¬y)) ∨ z) ∧ (¬(x ∧ ¬y) ∧ ¬(¬x ∧ y)) ∨ ¬z), α 3 ), and min(α 1 , α 2 ) ≻ Σa α 3 , -Σ b = {φ 1 , φ 4 , φ 5 } with φ 4 = ((¬x ∨ z) ∧ (x ∨ ¬z), α 4 ), φ 5 = ((¬x ∨ y) ∧ (x ∨ ¬y), α 5 ), and is such that α 1 ≻ Σ b max(α 4 , α 5 ), -Σ c = {φ 1 , φ 5 , φ 6 } with φ 6 = ((¬y ∨ z) ∧ (y ∨ ¬z), α 6 ) and α 1 ≻ Σc α 5 ≻ Σc α 6 .
Table 2. Possible alternative choices in Example 2

Ω φ1 φ2 φ3 φ1 φ4 φ5 φ1 φ5 φ6 xyz 1 1 1 1 1 1 1 1 1 xyz 1 1 1-α3 1 1-α4 1 1 1 1-α6 xȳz 1 1-α2 1-α3 1 1 1-α5 1 1-α5 1-α6 xȳz 1 1-α2 1 1 1-α4 1-α5 1 1-α5 1 xyz 1-α1 1 1-α3 1-α1 1-α4 1-α5 1-α1 1-α5 1 xyz 1-α1 1 1 1-α1 1 1-α5 1-α1 1-α5 1-α6 xȳz 1-α1 1-α2 1 1-α1 1-α4 1 1-α1 1 1-α6 xȳz 1-α1 1-α2 1-α3 1-α1 1 1 1-α1 1 1
Results are as follows:

- 

(Σ) = (1, 1 -α 4 , 1 -α 5 ) and ω ′ (Σ) = (1 -α 1 , 1, 1) are not comparable by symmetric Pareto. In- deed ∄ σ s.t. ω(Σ) ≻ SP ω ′σ (Σ), since 1 -α 1 < min(1 -α 4 , 1 -α 5 ) while 1 > max(1 -α 4 , 1 -α 5 ).
Otherwise, the min order is able to compare these two interpretations xȳ z ≻ min xȳ z, but it fails to distinguish between the interpretations {xyz, xy z, xȳz, xȳ z} and between {xȳ z, xyz}. But leximin is able here to capture the CP-net ordering exactly. -In the 3rd case (N c ), both leximin and min orders fail to capture the CP-net ordering: the two interpretations ω = xȳz and ω ′ = xȳz become comparable while the CP-net cannot compare them. Since ω(Σ) = (1, 1α 5 , 1α 6 ) and

ω ′ (Σ) = (1 -α 1 , 1, 1), with min(ω(Σ)) = 1 -α 5 , min(ω ′ (Σ)) = 1 -α 1 and 1 -α 1 < 1 -α 5 ,
we have ω ≻ lex ω ′ and ω ≻ min ω ′ . But symmetric Pareto can capture the CP-net ordering exactly in this case.

To summarize, as observed in the Example, the symmetric Pareto order fails to compare two interpretations when the concerned variable has more than one child node as in Case b (Fig. 2 (b)). Besides, in Case c (Fig. 2 (c)) leximin and min break the incomparability of some interpretations in the CP-net.

Approaching CP-Net Preferences by Possibilistic Logic

As seen in Ex. 2 of Section 5, the symmetric Pareto relation is not fine-grained enough to capture the CP-net partial order in general, while the lexi-min order may make some CP-net-incomparable interpretations comparable. In this Section, we point out a class of CP-nets for which possibilistic logic with symbolic weights can capture the CP-net partial order exactly. First, we prove that any strict comparison obtained by symmetric Pareto is true for the CP-net order.

Proposition 3. Let N be an acyclic CP-net and (Σ, Σ ) be its associated partially ordered base. Let SP be the partial order associated to (Σ, Σ ).

∀ω, ω ′ ∈ Ω, ω ≻ SP ω ′ ⇒ ω ≻ N ω ′

Proof of Proposition 3

Suppose that ω ≻ SP ω ′ . This means that there exists a permutation σ of ω ′ (Σ) such that when comparing the result of this permutation with ω(Σ), the second vector is greater than or equal to, componentwise, the reordered one. There are two cases: either for any component, where there is no equality, the comparison between the two vectors is of the form 1 > 1α σ(i) , or there is at least one component where the comparison takes the form 1α j > 1α σ(k) . This corresponds respectively to two different situations: i) ω ′ falsifies more formulas in Σ than ω, and F ω ⊂ F ω ′ , where F ω (resp. F ′ ω ) denotes the set of nodes falsified by interpretation ω (resp. ω ′ ). This corresponds to the first case above, where F ω ′ \ F ω corresponds precisely to the violated formulas whose priority α σ(i) is involved in the observed inequalities 1 > 1α σ(i) ; it is known that F ω ⊂ F ω ′ entails ω ≻ N ω ′ . ii) ω ′ falsifies at least one formula whose priority is greater than the one of another formula violated by ω, namely 1α j > 1α σ(k) , equivalent to α j < α σ(k) . In fact, there is at least one component in ω ′ (Σ) of the form 1α σ(r) which is a minimal component among those in the two subvectors on which ω(Σ) and ω ′ (Σ) differ. It corresponds to a formula having maximal priority (α σ(r) ) violated by ω ′ and not by ω. Now, the constraints α j < α σ(k) ≤ α σ(r) reveal that the nodes corresponding in the CP-nets to these priorities are related by a path in the CP-net linking an ancestor X σ(r) (having maximal priority) to a descendent X j . The set of such paths can be associated with a chain of improving flips from ω ′ to ω, and thus ω ≻ N ω ′ .

We have noticed that there are cases where the symmetric Pareto order together with the possibilistic logic encoding does capture the CP-net ordering exactly.

The following proposition indicates a class of CP-nets where it is indeed the case.

Proposition 4. Let N be an acyclic CP-net with every node have at most one child node. Let (Σ, Σ ) be its associated partially ordered base. Let SP be the partial order associated to (Σ, Σ ). Then, ∀ω,

ω ′ ∈ Ω, ω ≻ SP ω ′ iff ω ≻ N ω ′ .
Proof of Proposition 4 i) Suppose that ω ≻ N ω ′ . We know that ω dominates ω' (i.e. ω ≻ N ω ′ ) if and only if there is a chain of worsening flips which consists of a change of the instantiation of one variable each time. This means that there exists a sequence

ω 0 , • • • , ω k such that ω ≻ ω 0 ≻ • • • ≻ ω k ≻ ω ′ ,
where ω ≻ ω 0 , . . . , ω k ≻ ω ′ are ceteris paribus preferences. We have shown in Proposition 1 that such preference statements are related to the concerned variable (which corresponds here to the flip) and its children. Since we have supposed that each node has at most one child node, the associated evaluation vectors for every two interpretations in a chain of worsening flips differ on at most two components corresponding to the flipped variable and its child node. Since we give the priority to father node over the child node, the two interpretations are ordered by ≻ SP . So we have ω

≻ SP ω 0 ≻ SP • • • ≻ SP ω k ≻ SP ω ′ , and finally ω ≻ SP ω ′ by transitivity. ii) By Proposition 3, we have: if ω ≻ SP ω ′ then ω ≻ N ω ′ .
We have also noticed on some examples that leximin order is more refined than the order induced by the considered CP-net. The following proposition establishes that any strict comparison obtained by a CP-net is also true in its possibilistic logic counterpart using leximin order: Proposition 5. Let N be an acyclic CP-net. Let (Σ, Σ ) be its associated partially ordered base. Then: ∀ω,

ω ′ ∈ Ω, ω ≻ N ω ′ ⇒ ω(Σ) ≻ lex ω ′ (Σ)

Proof of Proposition 5

Since ≻ N is transitive, it is enough to prove that this is true for ω ≻ N ω ′ where there is one worsening flip which consists in a change of the instantiation of one variable, in the ceteris paribus preference style. By transitivity we get the general case where there is a chain of worsening flips since leximin order is also transitive. We have shown in Proposition 2 that such a ceteris paribus preference pertains to the concerned variable and its children. So for ω and ω

′ , min({v i ∈ ω(Σ)} ∪ {v i ∈ ω ′ (Σ)}) ⊆ {v j ∈ (ω ′ (Σ)} \ {v j ∈ (ω(Σ)})
. Indeed the evaluation associated to the father node is smaller than any other evaluation associated with its children, and then the min will downrank the interpretation that violates the father node. So we have ω ≻ lex ω ′ .

Related Work and Final Discussion

Possibilistic logic for preferences representation has been first advocated in [START_REF] Benferhat | Towards a possibilistic logic handling of preferences[END_REF][START_REF] Benferhat | Possibilistic logic representation of preferences: relating prioritized goals and satisfaction levels expressions[END_REF]. Its use with symbolic weights for approximating acyclic Boolean CP-nets [START_REF] Boutilier | CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF] and TCP-nets [START_REF] Wilson | Extending CP-nets with stronger conditional preference statements[END_REF], has been discussed in [START_REF] Dubois | CP-nets and possibilistic logic: Two approaches to preference modeling. Steps towards a comparison[END_REF][START_REF] Dubois | Approximation of conditional preferences networks "CP-nets" in possibilistic logic[END_REF][START_REF] Kaci | Relaxing ceteris paribus preferences with partially ordered priorities[END_REF]. Then, a representation of CP-net has been proposed using the symmetric Pareto order in [START_REF] Kaci | Mastering the processing of preferences by using symbolic priorities[END_REF][START_REF] Kaci | Working With Preferences: Less Is More[END_REF], and recalled in [START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF][START_REF] Hadjali | Database preference queries -A possibilistic logic approach with symbolic priorities[END_REF] using leximin order. This representation has been presented as being faithful in the general case (without providing the proof). It turns out that the representation using the symmetric Pareto order is exact only in special cases. We have shown that it is indeed the case for the particular CP-nets where nodes have at most one child. We have also proved that in general it is a lower approximation, while the use of leximin order leads to an upper approximation.

Thus, the semantics of possibilistic logic that could lead to an exact representation of any (acyclic) CP-net in the general case is still to be found (if it exists). However, the partial ordering induced by the CP-net approach may appear somewhat questionable, as exemplified now, which in turn questions the possibility of an exact representation of the latter by means of an approach that handles preferences in a more global way. We notice that ω violates the preferences at two grandson nodes S, T , but ω ′ violates the preferences at children nodes Y, Z. Moreover, ω ′′ violates the preference at the father node X and ω ′′′ violates preference at a child Z and a grandson T . The CP-net order is such that ω ≻ N ω ′ ≻ N ω ′′ , ω ≻ N ω ′′′ , but it tells nothing on ω ′′′ vs. ω ′′ and ω ′ . Thus, violating preferences at grandsons S, T (ω) is better than violating preferences at children nodes Y, Z (ω ′ ), which is better than violating preferences at the father node X (ω ′′ ), in agreement with the CP-net implicit priorities. But it is troublesome that violating CP-net preferences at one child node Z and one grandson node T (ω ′′′ ) is neither comparable with the violation of preference at the two children nodes Y, Z (ω ′ ), let alone the father node X (ω ′′ ). This is not acknowledged by the possibilistic approach using leximin ordering.

Concluding Remarks

The interest for preference representation of the possibilistic logic framework relies first on the logical nature of the representation and constitutes an alternative to the introduction of a preference relation inside the representation language, as in, e.g., [START_REF] Bienvenu | From preference logics to preference languages, and back[END_REF]. Moreover, the possibilistic representation is expressive (see [START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF] for an introductory survey), and can capture partial orders thanks to the use of symbolic weights, without being obliged to impose greater priority weights to any preference (as it is the case for father node preferences in CP nets). Still much remains to be done. First, the question of an exact representation of any CP-net remains open. Moreover, an attempt has been made recently [START_REF] Dubois | Handling partially ordered preferences in possibilistic logic -A survey discussion[END_REF] for representing more general CP-theories [START_REF] Wilson | Computational techniques for a simple theory of conditional preferences[END_REF] in the possibilistic logic approach (by introducing further inequalities between symbolic weights in order to take into account the CP-theory idea that some preferences hold irrespective of the values of some variables), where the leximin order seems to provide an upper approximation. This remains to be confirmed and developed further. Comparing CP-nets with Bayesian possibilistic nets would be also of interest.

Example 1 :

 1 [START_REF] Boutilier | CP-nets: A tool for representing and reasoning with conditional ceteris paribus preference statements[END_REF]. Fig.1(a) illustrates a CP-net about preferences for evening dress. It involves variables J, P , and S, standing for the jacket, pants, and shirt:

Fig. 1 .

 1 Fig. 1. CP-net and partial order induced by it

  k and ω -|= ¬u k , and F Ch ω -∪ F Ch ω + does not contain any formula pertaining to variable X k . Now, it becomes clear that ω + (Σ) and ω -(Σ) only differ on components pertaining to children nodes of X i and to X i itself.Due to the specific structure of CP-nets, and since we have shown that a preference is only related to a variable node and their children nodes (Proposition 2), we have to consider the three following elementary cases:-Case a: Two father nodes and a child node (see Fig 2(a)) (also Fig. 1); -Case b: A father node and two children nodes (see Fig 2(b)); -Case c: A grandfather node, a father node and a child node (see Fig 2(c)).

Fig. 2 . 2 .

 22 Fig. 2. Elementary cases of CP-nets

  In the 1st case (N a ), symmetric Pareto and leximin orders are able to capture the ordering of the CP-net exactly. Otherwise, the min order fails to distinguish between the interpretations {xyz, xy z, xȳz, xȳz} and between {xȳ z, xȳz}. -In the 2nd case (N b ), symmetric Pareto order fails to capture the CP-net ordering exactly by leaving the two interpretations ω = xȳ z and ω ′ = xȳ z non compared (while node X in the CP-net N ⌊ ensures xȳ z ≻ N xȳ z). Otherwise the representation is exact. The associated vectors ω

Fig. 3 .Example 3 :

 33 Fig. 3. CP-net related to Example 3

Table 1 .

 1 Possible alternative choices in Example 1
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