
HAL Id: hal-01212886
https://hal.science/hal-01212886

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward a General Framework for Information Fusion
Didier Dubois, Weiru Liu, Jianbing Ma, Henri Prade

To cite this version:
Didier Dubois, Weiru Liu, Jianbing Ma, Henri Prade. Toward a General Framework for Information
Fusion. 10th International Conference on Modeling Decisions for Artificial Intelligence (MDAI 2013),
Nov 2013, Barcelone, Spain. pp.37-48, �10.1007/978-3-642-41550-0_4�. �hal-01212886�

https://hal.science/hal-01212886
https://hal.archives-ouvertes.fr


  
   

Open Archive TOULOUSE Archive Ouverte (OATAO)  
OATAO is an open access repository that collects the work of Toulouse researchers and 
makes it freely available over the web where possible.  

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ 
Eprints ID : 12794 

 
Official URL: http://dx.doi.org/10.1007/978-3-642-41550-0_4 

To cite this version : Dubois, Didier and Liu, Weiru and Ma, Jianbing and 
Prade, Henri Toward a General Framework for Information Fusion. (2013) 
In: International Conference on Modeling Decisions for Artificial 
Intelligence (MDAI 2013), 20 November 2013 - 22 November 2013 
(Barcelone, Spain). 

Any correspondance concerning this service should be sent to the repository 

administrator: staff-oatao@listes-diff.inp-toulouse.fr 



Toward a General Framework for Information Fusion

Didier Dubois1,2, Weiru Liu2, Jianbing Ma3, and Henri Prade1

1 IRIT, CNRS & Université de Toulouse, France
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Abstract. Depending on the representation setting, different combination rules

have been proposed for fusing information from distinct sources. Moreover in

each setting, different sets of axioms that combination rules should satisfy have

been advocated, thus justifying the existence of alternative rules (usually moti-

vated by situations where the behavior of other rules was found unsatisfactory).

These sets of axioms are usually purely considered in their own settings, without

in-depth analysis of common properties essential for all the settings. This paper

introduces core properties that, once properly instantiated, are meaningful in dif-

ferent representation settings ranging from logic to imprecise probabilities. The

following representation settings are especially considered: classical set repre-

sentation, possibility theory, and evidence theory, the latter encompassing the two

other ones as special cases. This unified discussion of combination rules across

different settings is expected to provide a fresh look on some old but basic issues

in information fusion.

1 Introduction

In information fusion, each piece of information is assumed to come from a different

source (measurement device or expert opinion) and the fusion is a process aiming at

grasping what is known about a situation being observed. This contrasts with preference

aggregation where preferences merely reflect what some agent would like the result to

be, and the aggregation process is more about building compromises than finding what

the true state of a situation is. The pieces of information to be fused may be inconsistent,

and are often pervaded with uncertainty, which must be reflected on the result.

The information fusion problem is met in different representation settings, ranging

from the merging of logical knowledge/belief bases supposed to encode the states of

mind of agents about the perception of a situation ([11] in classical logic, [1] in pos-

sibilistic logic for the merging of stratified or prioritized bases), to numerical-based

frameworks, such as, probability theory [20], evidence theory [17], possibility the-

ory [10], or imprecise probability theory [22]. It is worth-noticing that all the above-

mentioned settings can handle epistemic uncertainty and incomplete knowledge with

the exception of probability theory that often accounts with variability and randomness,

while the Bayesian approach to subjective probability yields a questionable representa-

tion of incomplete information [5]. In that respect, it is important to keep in mind the

fact that, formally speaking, evidence theory encompasses both probability theory and



possibility theory as particular cases; in turn, evidence theory can be seen as a particular

imprecise probability system [23]; and binary-valued possibility theory is nothing but a

Boolean representation for imprecise pieces of information at work in propositional or

epistemic logic.

It is striking to observe that the information fusion problem until now has been dis-

cussed independently in each setting. Sometimes, specific postulates that govern fusion

operations are provided [21,11,14]. Moreover in each setting, various combination rules

have been advocated as behaving properly (on the basis of good properties) as opposed

to the unsatisfactory behavior of other rules. In practice, we are faced with many com-

bination rules (their number is still increasing!), and several postulate systems. It is

worthwhile to provide a more unified view of the problem.

In this paper, we aim to propose common properties of fusion operators valid in any

setting. They do account for various existing axiomatic systems proposed in specific

settings. These properties are stated at the semantic level, rather than at the syntac-

tic one (unlike [11]), since probabilistic settings do not have a well-established logical

counterpart. Moreover, the semantical level is especially appropriate for laying bare the

practical meaning of the combination rules. This provides a common ground for a ra-

tional exploration of fusion methods, despite the heterogeneity of existing frameworks.

Particular instantiations of these common properties in the different settings are then

considered.

The rest of the paper is organized as follows. The next section introduces eight core

properties, before considering their instantiations, in Section 3 in the classical set repre-

sentation and in the possibility theory setting, and in Section 4 in the context of evidence

theory, in which many different combination rules have been proposed. These proper-

ties provide a basis for comparing these alternative rules.

2 Core Properties

In order to define a set of required properties that make sense in different settings rang-

ing from logic to imprecise probability, we consider an abstract notion of information

item, denoted by T , supplied by sources. Let Ω = {ω1, ..., ω|Ω|} be a finite, non-empty

set of possible worlds (e.g. the range of some unknown quantity), one of which is the

true one. There are n experts/sources and the ith expert/source is denoted by i. Let Ti

be the information provided by i, e.g., Ti may be a basic belief assignment, a possibility

distribution, or a knowledge base. T = f(T1, . . . , Tn) denotes the fusion result using

aggregation operator f over a set of information items Ti. To any information item, we

associate the following features:

– The subset S(T ) ⊆ Ω, called the support of T , contains the set of values considered

possible by information T . It means that ωi 6∈ S(T ) ⇐⇒ ωi is impossible.

– Its core C(T ) ⊆ Ω contains the set of values considered fully plausible according to

information T . The idea is that, by default, if information T is taken for granted, a

first guess for the value of x should be an element of C(T ). Clearly, C(T ) ⊆ S(T ).
– Internal Consistency An information item T is said to be weakly (resp. strongly)

consistent if S(T ) 6= ∅ (resp. C(T ) 6= ∅) otherwise information T is totally (resp.

weakly) inconsistent. In the following, we assume C(T ) 6= ∅ for each source.



Strong consistency is assumed for inputs of a merging process, and weak consis-

tency at worst for the output.

– Mutual consistency T and T ′ are said to be weakly mutually consistent when

S(T ) ∩ S(T )′ 6= ∅ and strongly so when C(T ) ∩ C(T )′ 6= ∅.
– Information ordering: T ⊑ T ′ expresses that T provides at least as much informa-

tion as T ′. In particular, T ⊑ T ′ should imply S(T ) ⊆ S(T ′).

– Plausibility ordering: If consistent, information T induces a partial preorder �T

expressing relative plausibility: ω�T ω′ means that ω is at least as plausible as (or

dominates) ω′ according to T . We write ω ∼T ω′ if ω �T ω′ and ω′ �T ω. Of

course, if ω∈S(T ), ω′ 6∈S(T ), then ω ≻T ω′ (ω is strictly more plausible than ω′).

The vacuous information, expressing total ignorance is denoted by T⊤. Then the plau-

sibility ordering is flat: S(T⊤) = C(T⊤) = Ω and ω ∼T⊤ ω′ ∀ω, ω′ ∈ Ω.

The process of merging information items, supplied by sources whose reliability

levels are not known, is guided by a few first principles (already in [21]):

– It is a basically symmetric process as the sources play the same role and supply

information of the same kind;

– We try to use as many information items as possible in the fusion process, so as to

get a result that is as precise and useful as possible. However, the result should not

be arbitrarily precise, but faithful to the level of informativeness of the inputs.

– Information fusion should try to solve conflicts between sources, while neither dis-

missing nor favoring any of them without a reason.

These principles are implemented in the postulates listed below, called core properties,

which are meant to be natural minimal requirements, independent of the actual repre-

sentation framework.

Property 1: Unanimity.

When all sources agree on some results, then the latter should be preserved. Mini-

mal conditions are

(a) Possibility preservation. If for all sourcesω is possible, then so should the fusion

result assert: if ∀i, ω ∈ S(Ti) then ω ∈ S(f(T1, ..., Tn)).

(b) Impossibility preservation. If all sources believe that a possible world ω is im-

possible, then this ω cannot become (even slightly) possible after fusion. This can

be expressed as S(f(T1, ...Tn)) ⊆ S(T1) ∪ ... ∪ S(Tn).

Property 2: Informational Monotonicity.

If a set of agents provides less information than another set of non-disagreeing

agents, then fusing the former inputs should not produce a more informative result

than fusing the latter. The weakest such requirement is:

Weak Informational Monotonicity. if ∀i, Ti ⊑ T ′
i , then f(T1, ...Tn) ⊑ f(T ′

1, ...T
′
n),

provided that all the inputs are globally strongly mutually consistent.

Property 3: Consistency Enforcement.

This property requires that fusing individually consistent inputs should give a con-

sistent result. At best: C(f(T1, ...Tn)) 6= ∅. At least: S(f(T1, ...Tn)) 6= ∅.



Property 4: Optimism.
In the absence of specific information about source reliability, one should assume

as many sources as possible are reliable, in agreement with their observed mutual

consistency. In particular: If ∩n
i=1C(Ti) 6= ∅ then f(T1, ..., Tn) ⊑ Ti, ∀i = 1,...,n.

In general, it should be assumed that at least one source is reliable.
Property 5: Fairness. The fusion result reconciles all sources. Hence, the result of the

fusion process should keep something from each input, i.e.,

∀i = 1,...,n,S(f(T1,...,Tn)) ∩ S(Ti) 6= ∅.
Property 6: Insensitivity to Vacuous Information.

Sources that provide vacuous information should not affect the fusion result:

fn(T1, . . . , Ti−1, T
⊤, Ti+1, . . . , Tn) = fn−1(T1, . . . , Ti−1, Ti+1, . . . , Tn)

Property 7: Commutativity.
Inputs from multiple sources are treated on a par, and the combination should be

symmetric (up to their relative reliability).
Property 8. Minimal Commitment.

The result of the fusion should be as little informative as possible (in the sense of

⊑) among possible results that satisfy the other core properties.

Some comments are in order. The general core properties proposed here have coun-

terparts in properties considered in different particular settings ; see especially [21] and

also [11]. Let us further discuss each of them.

Possibility and impossibility preservation can be found in possibility theory [14] and

imprecise probability [21]. It makes sense to request more than possibility preservation:

plausibility preservation, replacing supports by cores [21]. The strongest form of Una-

nimity (Prop. 1) is idempotence: if ∀i, Ti = T , f(T1, ..., Tn) = T . However, while it

makes sense if sources are redundant, adopting it in all situations forbids reinforcement

effects to take place when sources are independent [9]. Our Unanimity properties mini-

mally respect the agreement between sources. A slightly more demanding requirement

which leaves room for reinforcement effects can be: Local Ordinal Unanimity: ∀ω and

ω′, if ω is at least as plausible as ω′, then so should it be after fusion. e.g., ω dominates

ω′. Formally: if ∀i, ω �Ti
ω′, then ω �f(T1,...,Tn) ω

′.

Informational Monotonicity (Prop.2), adopted as a general property in [14] should

be restricted to when information items supplied by sources do not contradict each

other. Indeed, if conflicting, it is always possible to make these information items less

informative in such a way that they become consistent. In that case the result of the

fusion may become very precise by virtue of Optimism Prop. 4, and in particular,

more informative than the union of the supports of original precise conflicting items

of information.

Consistency enforcement (Prop. 3) is instrumental if the result of the merging is to

be useful in practice: one must extract something non-trivial, even if tentative, from

available information. It is a typical requirement from the logical area [11] and a prop-

erty taken for granted by numerical approaches (viz. Dempster rule of combination, but

also for imprecise probabilities [21]). Still, when the representation setting is refined

enough, there are gradations in consistency requirements, and Prop. 3 can be interpreted

in a flexible way. For example, the re-normalisation of belief functions or possibility

distributions obtained by merging is not always compulsory, even if sub-normalisation

expresses a form of inconsistency.



Optimism (Prop. 4) underlies the idea of making the best of the available informa-

tion: If items of information are globally consistent with each other, there is no reason

to question the reliability of the sources. It is again a typical assumption in logical

settings [11], but Walley [21] tries to formulate a similar property. In case of strong

inconsistency, this assumption is not sustainable. Note that in the latter case (in par-

ticular if ∩n
i=1S(Ti) = ∅), and under the Impossibility Preservation property (1b),

the support of the result should be at worst the union of the supports of inputs, i.e.,

S(f(T1, ...Tn)) ⊆ S(T1) ∪ ... ∪ S(Tn), now assuming that at least one source is reli-

able (still a form of optimism in the presence of inconsistency). The latter requirement

sounds natural for two sources only, but may be found overcautious for many sources.

In particular, Optimism will lead to replace any group K of strongly consistent sources,

by a single source that is more informative than and in agreement with each of them.

Fairness (Prop. 5) ensures that all input items participate to the result. At the same

time, it favors no source by forbidding any input to be derived from the output result in

the case of inconsistency. Note that different versions of the Fairness property can be

found in the literature. In particular, a form of this property was already suggested by

Walley [21] for imprecise probabilities. In the logical setting [11], the counterpart of the

condition S(f(T1,...,Tn))∩S(Ti) 6= ∅ is required to hold either for each i, or for none.

The possibility that it holds for none sounds highly debatable using supports, from a

knowledge fusion point of view, while it may be acceptable when fusing preferences,

which is more a matter of trade-off, or when supports are changed into cores.

Insensitivity to Vacuous Information (Prop. 6) looks obvious, not to say redundant,

but dispensing with it may lead to uninformative results. It appears again in the Walley

postulates [21] for merging sets of probabilities. Prop. 6 implicitly admits that a non

informative source is assimilated to one that does not express any opinion, and is typical

of information fusion. It excludes probabilistic fusion rules like averaging, since it is

sensitive to vacuous information (represented, e.g., by a uniform distribution).

Commutativity (Prop. 7) is characteristic of fusion processes as opposed to revision

where prior knowledge may be altered by input information. In contrast, information

fusion deals with inputs received in parallel. So, commutativity makes sense, if no in-

formation is available on the reliability of sources.

Minimal Commitment is a very important postulate that applies in many circum-

stances. It is central in all uncertainty theories handling incomplete information under

different terminologies, including in logic-based approaches (where it is implicit). It

considers as possible any state of affairs not explicitly discarded. It is called principle

of minimal specificity in possibility theory [10], principle of Minimal Commitment in

evidence theory [19], and it underlies the so-called natural extension in imprecise prob-

ability theory [22]. This is a cautious principle that is nicely counterbalanced by the

Optimism postulate, and this equilibrium is sometimes useful to characterise the unic-

ity of fusion rules: Optimism provides an upper limit to the set of possible worlds and

Minimal Commitment a lower limit.

Some other properties may be required in aggregation processes, such as associativ-

ity, which makes computation more efficient, but lacking associativity is not a fatal flaw

in itself (e.g., the MCS rule below), if the rule can be defined for n sources.



3 Merging Set-Valued Information: Hard Constraints

The most elementary setting one may first consider is the one of sets, whereby any in-

formation item is a subset of possible worlds, which restricts the unknown location of

the true state, the simplest account of an epistemic state. Let us assume that the infor-

mation items Ti are classical subsets. Then S(Ti) = Ti, the relation ⊑ is set inclusion,

and ω ≻T ω′ if ω ∈ T and ω′ 6∈ T , while ω ∼T ω′ if ω, ω′ ∈ T or ω, ω′ 6∈ T .

If the inputs are globally consistent, i.e., if ∩i=1,nTi 6= ∅, one should have the inclu-

sion f(T1,..., Tn) ⊆ ∩n
i=1Ti by Prop. 4 (Optimism). By Possibility preservation (1a),

∩n
i=1Ti ⊆ f(T1, ..., Tn). Thus, f(T1, ..., Tn) = ∩n

i=1Ti in case of global consistency.

Let us now consider the case of two inconsistent pieces of information T1 and T2 such

that T1 ∩ T2 = ∅. By Prop. 5 (Fairness), one should have f(T1, T2) ∩ T1 6= ∅ and

f(T1, T2) ∩ T2 6= ∅. Moreover by Impossibility preservation (1b), one should have

f(T1, T2) ⊆ T1 ∪ T2. This leads to f(T1, T2) = A1 ∪ A2 with ∅ 6= Ax ⊆ Tx for

x = 1, 2. Minimal Commitment leads us to take Ax = Tx for x = 1, 2.

This reasoning clearly extends to the case of more than two pairwise inconsistent

information pieces: by Fairness, f(T1, ..., Tn) should be of the form A1 ∪ ... ∪ An,

∅ 6= Ai ⊆ Ti for i = 1, . . . , n. Let I ⊂{1,..,n}be a maximal consistent subset (MCS)

of sources, i.e., T I = ∩i∈ITi 6= ∅ and T I ∩ Tj = ∅ if j 6∈ I . Then the partial result

should be Aj = ∩i∈ITi, ∀j ∈ I by Minimal Commitment and Optimism. Given two

MCSs I and I ′, T I∩T I′

=∅. Hence at most one subset I of sources is correct. Optimism

dictates that at least one subset I of sources is so. We thus get the general combination

rule

f(T1, ..., Tn) =
⋃

I∈MCS({1,...,n})

⋂

i∈I

Ti (1)

where MCS({1, . . . , n}) is the set of maximal consistent subsets of sources. It was first

proposed by [15]. It satisfies all core properties.

This rule exhibits an apparent discontinuity when moving from a consistent situation

to an inconsistent one, since shrinking two subsets that overlaps may lead from situa-

tions with more and more precise fusion results to a situation with an imprecise result.

However, nothing forbids independent sources to provide information pieces having a

narrow intersection. But such a precise result may sometimes become all the more de-

batable as its precision increases. Some approaches cope with inconsistency in fusion

problems by a similarity-based enlargement of the supports and cores of information

pieces [16].

4 Possibility Theory

The possibility theory framework is a graded extension of the previous setting. Sub-

sets are replaced by possibility distributions π, which are mappings from Ω to [0, 1]
that rank-order interpretations (ω �T ω′ if π(ω) ≥ π(ω′)). The support is S(π) =
{ω|π(ω) > 0} and the core is C(π) = {ω|π(ω) = 1}. A strongly consistent pos-

sibility distribution is such that C(π) 6= ∅. The consistency degree Cns(πi, πj) =
maxω min(πi(ω), πj(ω)) between two distributions ranges from 1 when there is a



commonω that is fully possible, to 0 when the supports do not overlap. The information

ordering is relative specificity (πi ⊑ πj ⇐⇒ πi ≤ πj ).

The most basic combination rules extend conjunction and disjunction, especially the

Minimum rule min(π1, ..., πn) and the Maximum rule max(π1, ..., πn); other conjunc-

tions can be t-norms t such as product instead of min, which creates a reinforcement

effect. The conjunctive rules do not obey the strong form of consistency enforcement.

The latter property justifies the renormalized conjunctive fusion rule (RCF) [8]

ˆ∧
(π1, ..., πn) =

∧

(π1, ..., πn)

Cns(π1, ..., πn).
(2)

It is undefined as soon as Cns(π1, ..., πn) = 0 (strong conflict). When
∧

is product, this

rule is well-known and is associative, but associativity is generally not preserved with

other t-norms. This kind of fusion rule is used in logic-based merging using distances

[11] instead of possibility distributions (see [1] for the connection between the two

approaches). However this kind of rule cannot cope with strongly mutually inconsistent

sources. We can extend the MCS rule in at least two ways:

MCS1(π1, ..., πn) = max
I∈MCS({C(π1),...,C(πn)})

∧

i∈I

πi (3)

MCS0(π1, ..., πn) = max
I∈MCS({S(π1),...,S(πn)})

ˆ∧

i∈I
πi (4)

In fact, each of MCS1, MCS0 selects maximal consistent subsets in a specific way.

Once this principle is chosen, the same reasoning holds as in the crisp case, and we

obtain for the above three rules for merging possibility distributions:

Proposition 1. The RCF rule (2) does not satisfy Consistency Enforcement nor Fair-

ness (when undefined). The extended-MCS rules (3,4) satisfy all core properties.

MCS1 is much demanding on mutual consistency of sources and yields plain disjunc-

tion if cores of πi are disjoint. MCS0 is less demanding and more optimistic: it yields
ˆ∧(π1, ..., πn) if all supports overlap.

Another fusion rule for possibility distribution that applies the classical MCS rule to

all cuts of the input possibility distributions has been recently proposed [4]. It satisfies

all basic postulates but it yields a belief function, as resulting cuts are no longer nested.

5 Evidence Theory

In evidence theory, a piece of information is modeled by a basic belief assignment (bba)

m which is a mapping from 2Ω to [0, 1] such that
∑

A⊆Ω m(A)=1. A bba is consistent

if m(∅) 6=0. A is called a focal element of m if m(A)> 0. Let Fm be the set of focal

elements of m. Let S(m) denote the union of the focal elements: if Fm={A1,..., An},

then S(m)=
⋃n

i=1 Ai is the support of m. The vacuous bba mΩ is such that m(Ω) = 1.

From a bba m, two dual functions, bel and pl called belief and plausibility functions

respectively, are defined as bel(A) =
∑

B⊆A m(B), and pl(A) =
∑

B∩A 6=∅m(B),
while the commonality function q is defined by q(A) =

∑

A⊆B m(B).



Evidence theory is rich enough to include as particular cases i) sets (when there

is one focal element), ii) probabilities (when focal elements are singletons), and iii)

possibility theory (when focal elements are nested). The contour functionCm of the bba

m, which is the plausibility function of the singletons, Cm(ω) =
∑

A⊆Ω,ω∈Am(A),
reduces to a possibility distribution πm = Cm when focal elements are nested, and then

pl(A) = maxω∈A πm(ω) is a possibility measure. The contour function reduces to a

probability distribution if the focal elements are singletons.

We now examine issues related to plausibility and information ordering, and incon-

sistency between bbas.

Plausibility Ordering. In evidence theory, from a representation point of view the

contour function is a natural option for comparing possible worlds (ω1 �con
m ω2 iff

Cm(ω1) ≥ Cm(ω2)). In addition to this standard ordering, we define a more basic

partial ordering relation on possible worlds induced by the bba.

Definition 1. Let ω1, ω2 ∈ Ω. Then ω1 dominates ω2 w.r.t. m, denoted by w1 �dom
m ω2

iff for any A ⊆ Ω \ {ω1, ω2}, m(A ∪ {ω1}) ≥ m(A ∪ {ω2}).

Proposition 2. �dom
m is a reflexive and transitive relation. Moreover ω1 �dom

m ω1 im-

plies Cm(ω1) ≥ Cm(ω2).

Inconsistency. The degree of inconsistency (or conflict) of two bbas m1 and m2

is measured by the mass received by the empty set as the result of the conjunction

of m1 and m2 viewed as random sets: m1∧2(∅) =
∑

A∩B=∅ m1(A)m2(B). It is the

counterpart of 1 − Cns(π1, π2) using product instead of min. However, it has been

pointed out in [12] that m1∧2(∅) is not a convincing measure of conflict, since two

identical bba’s usually have a non zero degree of conflict. To get a more satisfactory

measure of conflict one may avoid using productsm1(A)m2(B) that presuppose source

independence, and replace them by a joint mass x(A,B) whose marginals are m1 and

m2[6]. Then we can define a better inconsistency index, such that Inc(m,m) = 0:

Inc(m1,m2) = inf
x

∑

B∈F1,C∈F2:B∩C=∅

x(B,C)

Note that Inc(m1,m2) = 0 whenever there exists a joint mass x(A,B) whose

marginals are m1 and m2 that assigns zero mass to all disjoint focal sets, which cor-

responds to saying that the two credal sets (families of probabilites) {P : P (A) ≥
Bel1(A), ∀A} and {P : P (A) ≥ Bel2(A), ∀A} have a non-empty intersection [2]. So

we can call this index one of probabilistic consistency. Its calculation requires the use

of linear programming. It is easy to see that Inc(m1,m2) ≤ m1∧2(∅).
Alternatively we can adopt definitions that do not rely on numerical values of bba’s:

two mass functions m and m′ with focal sets F and F ′ are said to be

– Weakly mutually consistent if ∃E ∈ F , E′ ∈ F ′ : E ∩ E′ 6= ∅ (note that it implies

that m1∧2(∅) < 1, hence Inc(m1,m2) < 1 as well)

– Strongly (or logically [3]) mutually consistent if ∀E ∈ F , ∀E′ ∈ F ′ : E ∩ E′ 6= ∅
(note that it does imply that Inc(m1,m2) = m1∧2(∅) = 0).



Information Ordering. In the literature, different information orderings in evidence

theory have been proposed for comparing the information contents of bba’s (see e.g.

[7]). We here only consider the one that can be expressed in terms of mass functions, and

echoes the above inconsistency index. It is the strongest information ordering among

those previously introduced in the literature.

Definition 2 (Specialization). Let m1 and m2 be two bbas over Ω, m1 is a specializa-

tion of m2 (denoted by m1 ⊑s m2) if and only if there exists a joint mass x(A,B) whose

marginals are m1 and m2 , such that x(A,B) = 0 whenever A * B,A ∈F1, B ∈F2.

We are in a position to propose one possible instantiation of the basic fusion postulates,

for two sources here, denoting by m12 the result:

1. Unanimity Possibility and impossibility preservation.

2. Weak Information Monotonicity: If m1 and m2 are strongly consistent, and

moreover m1 ⊑s m
′
1, m2 ⊑s m

′
2 then m12 ⊑s m

′
12

3. Consistency enforcement:

–
∑

E⊆S m12(E) = 1 (strong version)

–
∑

E⊆S m12(E) > 0 (weak version)

4. Optimism

– If m1 and m2 are strongly mutually consistent, then m12 ⊑s mi, i = 1, 2.

– There exists a joint bba x(·, ·) whose marginals are m1 and m2, such that

m12 ⊑s m1 ⊕m2, with m1 ⊕m2(E) =
∑

F,G:E=F∪G x(F,G).
5. Fairness: Each mi should be weakly consistent with m12.

6. Insensitivity to Vacuous Information: If m1(Ω) = 1 then m12 = m2

7. Symmetry: m12 = m21

8. Minimal Commitment: m12 should be minimally specific for specialization.

5.1 Checking Some Existing Combination Rules

Several rules have been proposed in evidence theory for merging information, apart

from the well-known Dempster’s rule of combination. We first focus on the main rules.

mDem(C) =

∑

A,B:A∩B=C m1(A)m2(B)

1−
∑

A,B:A∩B=∅m1(A)m2(B)
(Dempster’s rule) (5)

mSm(C) =
∑

A,B⊆Ω,A∩B=C

m1(A)m2(B) (Smets’ rule) (6)

mY a(C) =

{

∑

A,B:A∩B=C m1(A)m2(B) if C 6= Ω (Yager’s rule)

m1(Ω)m2(Ω) +
∑

A∩B=∅ m1(A)m2(B) if C = Ω
(7)

mDP (C) =
∑

A,B:A∩B=C

m1(A)m2(B) +
∑

A,B:A∪B=C,A∩B=∅

m1(A)m2(B). (8)

All four fusion rules presuppose independence between sources, as an additional as-

sumption, which enforces the choice of x(·, ·) = m1(·) ·m2(·). It reduces the scope of



the Minimal Commitment axiom to the choice of a set-theoretic combination for focal

sets. The main difference between Dempster’s rule and the three other rules respectively

proposed in [19] (see also [18]) [24], [8] concern the way the mass (m1 ⊗ m2)(∅) =
∑

A,B:A∩B=∅m1(A)m2(B) is re-allocated. In Dempster’s rule, the renormalization

by division enforces strong consistency of the result, when the two bba’s are weakly

mutually consistent (otherwise the operation is not defined). Smets’s rule simply keeps

this mass on ∅, whilst Yager’s rule assigns it to Ω.

All four fusion rules coincide with each other if the two bba’s are strongly con-

sistent. Then all postulates are satisfied. When
∑

A∩B=∅ m1(A)m2(B) = 1, mDem

is not defined due to a total conflict between the sources, which violates the Consis-

tency Enforcement postulate, like for the normalized conjunctive rule of possibility the-

ory. When the two bba’s are weakly mutually consistent, the result is consistent since

mDem(∅) = 0. Dempster’s rule of combination is over-optimistic in case of weak con-

sistency; it may fail to satisfy the second Optimism condition, due to renormalization (it

would satisfy it if we replace it by the weaker condition S(m12) ⊆ S(m1) ∪ S(m2)).
In Smets rule, the mass assigned to the empty set mS(∅) may be different from 0.

Smets rule does not respect the consistency enforcement principle, even if it is always

defined, since it may deliver the plain empty set in case m1 and m2 are strongly incon-

sistent. Like Dempster rule of combination, Smets’ rule is purely conjunctive, hence

does not behave in agreement with the postulates in case of partial mutual inconsistency.

The Fairness axiom formally fails with this fusion rule like for Dempster’s, because it

is not compatible with the failure of the consistency enforcement postulate.

Yager’s rule is similar to Smets’ rule except that (m1 ⊗m2)(∅) is added to mY a(Ω)
instead of leaving it in mY a(∅), just changing conflict into ignorance (a form of renor-

malization). It does not respect Unanimity, nor Optimism and in particular impossibility

preservation is clearly violated. In fact, this rule is far too cautious in the presence of

conflicts.

Three of the four above rules are conjunctive, while the last one, proposed in [8]

extends the basic fusion rule (1) for sets to belief functions (hence it is a special case

of the MSC rule). It is a hybrid rule, like Yager’s, that contains both conjunctive and

disjunctive elements. It is more informative than Yager’s. This fusion rule satisfies all

fusion postulates like the MCS fusion rule for two sets, which it generalizes.

Dempster rule and Smets rule are associative, while the others are not. However,

Dubois and Prade combination rule can be readily extended to n > 2 sources using the

MCS rule on all n-tuples of focal sets.

We may complement Unanimity with Local Ordinal Unanimity with respect to dom-

inance ordering: for two possible worlds ω and ω′, ω �dom
1 ω′ and ω �dom

2 ω′ then

ω �dom
12 ω′. Indeed, we can prove the following:

Proposition 3. Smets, Yager and Dempster combination rules obey Local Ordinal Una-

nimity with respect to the dominance ordering.

It is still unclear whether this result holds for the 4th fusion rule. The above results are

summarized by the following Table 5.1 (all above rules are symmetric).



rule/Prop Una Mono Cons Opti Fair Vacuous Min-Com

Dempster Yes1 Yes Strong1 No3 Yes1 Yes No3

Smets Yes2 Yes No Yes No Yes Yes1

Yager No Yes Strong No Yes Yes Yes

DP Yes Yes Strong Yes Yes Yes Yes

– 1. Only when there is no strong global inconsistency

– 2. Trivially in case of strong global inconsistency

– 3. Overoptimistic in case of weak inconsistency

All the fusion rules considered above assume source independence but can be ex-

tended by replacing the product of bba’s m1(F )m2(G) by a suitably chosen joint mass

function x(E,F ) whose marginals are m1 and m2 [3]. The main difference is that

we can replace strong consistency by probabilistic consistency, that is all four fusion

rules would coincide with m12(E) =
∑

E=F∩G x(E,F ) if m1 and m2 are mutually

consistent in the sense that Inc(m1,m2) = 0. However there may be several mini-

mally specific fusion rules, some of which are idempotent [3], if we leave the choice of

x(E,F ) open.

6 Concluding Remarks

In this paper, we have provided a general framework for analyzing fusion operators pro-

posed in different settings, in a unified way. Due to space limitation, we have concen-

trated the presentation on three types of representation using classical sets, possibility

theory, and evidence theory respectively, considering only a representative sampling of

operators. It is clear that the analysis may be applied more systematically, as well as to

other settings, whether numerical (such as imprecise probabilities [22,21]), ordinal[13]

or yet logical [11]. The latter case comes down to viewing the set of models of a knowl-

edge base K as the core C(TK) of the corresponding information item TK . We did

not discuss the case of single probability distributions as they only support weighted

arithmetic means [20], which violates Insensitivity to Vacuous Information (assuming

the latter is expressed by uniform probability distributions). When distinct, they always

conflict, but taking their convex hull satisfies all postulates [21]. Beyond our core prop-

erties, that are usually completely intuitive, and should be satisfied by any reasonable

fusion rule, other less universal properties, may make sense in specific contexts. For

instance a discontinuous fusion rule in a continuous setting is questionable (e.g. Demp-

ster’s rule is oversensitive to small changes of input values). Some properties are useful

in some situations but not possessed by many rules (e.g., idempotency when sources

are redundant). Moreover, when the representation setting becomes richer, more op-

tions are available for expressing the properties with various strengths. Adapting the

basic postulates to prioritized merging is another line for further work.
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