
HAL Id: hal-01212866
https://hal.science/hal-01212866v1

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

DUCK : a deDUCtive Keyboard
Philippe Roussille, Mathieu Raynal, Slim Kammoun, Emmanuel Dubois,

Christophe Jouffrais

To cite this version:
Philippe Roussille, Mathieu Raynal, Slim Kammoun, Emmanuel Dubois, Christophe Jouffrais.
DUCK : a deDUCtive Keyboard. 3rd International Workshop on Mobile Accessibility (MOBACC
2013), Apr 2013, Paris, France. pp.1-5. �hal-01212866�

https://hal.science/hal-01212866v1
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/ Eprints ID : 12810

The contribution was presented at MOBACC 2013: http://mobile-accessibility.di.fc.ul.pt/index.html

To cite this version : Roussille, Philippe and Raynal, Mathieu and Kammoun, Slim and Dubois,
Emmanuel and Jouffrais, Christophe DUCK : a deDUCtive Keyboard. (2013) In: International
Workshop on Mobile Accessibility (MOBACC 2013), 28 April 2013 (Paris, France).

Any correspondance concerning this service should be sent to the repository administrator: staff-oatao@listes-diff.inp-toulouse.fr

DUCK : a deDUCtive Keyboard

Philippe Roussille

IRIT – Elipse
Université de Toulouse
31062, Toulouse cedex 9
France
philippe.roussille@irit.fr

Emmanuel Dubois

IRIT – Elipse
Université de Toulouse
31062, Toulouse cedex 9
France
emmanuel.dubois@irit.fr

Matthieu Raynal

IRIT – Elipse
Université de Toulouse
31062, Toulouse cedex 9
France
mathieu.raynal@irit.fr

Christophe Jouffrais

IRIT – Elipse
CNRS & Université de
Toulouse
31062, Toulouse cedex 9
France
christophe.jouffrais@irit.fr

Slim Kammoun

IRIT – Elipse
Université de Toulouse
31062, Toulouse cedex 9
France
slim.kammoun@irit.fr

Copyright is held by the author/owner(s). CHI 2013 Mobile

Accessibility Workshop, April 28, 2013, Paris, France.

Abstract
This paper presents the deDUCtive Keyboard (DUCK),
aiming to improve text entry for visually impaired users on
AZERTY/QWERTY based layout on software keyboards.
Relying on a predictive system, DUCK allows rapid text
entry without any precision on keyboard hits. A
preliminary study with a visually impaired user indicated
that usability is improved when compared to a regular
virtual keyboard with a vocal feedback.

Author Keywords
accessibility, input method, keyboard, mobile device,
software, text entry, visual impairment

ACM Classification Keywords
H.4.2 [Computers and Society]: Social Issues - Assistive
Technologies for Persons with Disabilities; H.5.2 [User
Interfaces]: Information Interfaces and Presentation

General Terms
Accessibility

Introduction
During the last years, mobile devices have been equipped
with touchscreens, additional technologies (WiFi, GPS,
etc.) and new interactions techniques. These devices
which were originally used only to make calls, have evolved
into full connected tools. They are used to exchange short
text messages1 , communicate using instant messaging
protocols, or deeply interact on a wide scale with complex
social networks (Facebook, Twitter, etc.) and Internet.

Figure 1: Alphabet with NavTap

As a result, text entry on such devices has become a
critical task. As the main trend goes with touchscreens,
software based techniques are more and more popular. It
is obvious that touchscreens are more flexible than
physical keypads to design dynamic interfaces; but at the
expanse of a huge drawback : accessibility. Indeed,
visually impaired people lack tactile clues to locate the
keys when typing.

In the following, we first present different techniques
which have been proposed to restore accessibility of
virtual mobile keyboard. We then present a new technique
called DUCK, as well as the results of a preliminary
evaluation with a blind person. Finally, we open the
discussion towards possible future works.

Figure 2: BrailleType dot matrix

Related works
The most common and used methods to assist text entry
on mobile devices consist on using Text To Speech (TTS)
synthesis with a standard keyboard layout (e.g. QWERTY
or AZERTY, depending on the culture). When the user
moves his finger onto the keyboard or hits a key, the keys
he hits or he moves across are spoken (see e.g. Apple
VoiceOver). The user can also use additional gestures to

1ABI Research, More than seven trillion SMS messages will be

sent in 2011.

perform text entry. However, the keys of a virtual
keyboard on a mobile device are very small. Thus, the risk
of mistyping a letter is quite high. The second hindrance
is the need for users to go through most of the keys
before finding the one they seek (known as ”painful
exploration”), which usually takes some time. The offered
sets of gestures might also be too complex to perform in
mobility.

Another category of text entry method especially designed
for visually impaired users is based on the Braille alphabet
(see e.g. BrailleType[6] – cf. Fig. 2) & TypeInBraille [5] –
cf. Fig. 3). They mimic a 6-dots Braille cell onto the
phone screen. The characters are entered by successively
activating the dots of the cell. Unlike the QWERTY
standard keyboard, BrailleType proves to have a much
easier learning phase, due to the similarity with the Braille
alphabet. However, the user must fill-in the dot matrix for
each character, which leads to a quite high Keystroke Per
Character (KSPC), hence drastically reducing text-entry
speed.

NavTouch & NavTap[1] (cf. Fig. 1) are still different
text-entry methods for the visually impaired. The user can
dynamically select a letter with a specific gesture
performed anywhere on the screen, drawn on the device,
(location-independent on the keyboard). These techniques
are very efficient for quickly targeting one letter. However,
they generate high cognitive load to simultaneously
remember the correct gesture, as well as the position of
the typed letter in the word.

Some techniques, such as BlindType, Swype and
SHARK[4] heavily rely on character prediction and user
typing anticipation, enhancing their dictionaries through
constant use. These systems allow the user to dissociate
rapid typing and precision typing, using the keyboard

letters as mementos and landmarks for typed or drawn
patterns. In spite of allowing fast typing, these keyboards
are not made accessible for the blind (low or no nonvisual
feedback).

The No-Look-Notes[2] text-entry method uses multiple
fingers, relying on the multi-touch capacities of the
device. The screen is divided in different zones, with a set
of characters associated for each. The user can search for
a character among a group of letters with one finger, and
confirms the selection via a split-tapping. This method
provides a fast and easy access to letters, but drastically
increases the number of taps, which slows word typing
down, and may cause muscular fatigue.

DUCK: the deDUCtive Keyboard

Figure 3: TypeInBraille finger
gestures

DUCK Principle

We designed DUCK (deDUCtive Keyboard) based on
either the AZERTY or QWERTY layouts. Actually these
layouts are the most used ones, meaning that most people
are acquainted with them. We decided, however, to
simplify the user interaction to type letters. The main
objective was to get rid of the accurate search of each
character on the layout. Besides, we aimed to compensate
for the lack of precision related to small and mobile
keyboards.

Design

As DUCK targets visually impaired users, we designed a
full-screen keyboard, preventing calling sub-menus or
misinterpreted keystrokes. The user initially explores the
keyboard to find the first key of the intended word. Each
finger motion provides a vocal feedback, allowing the user
to locate a letter on the layout. Once he releases the key,
the corresponding character is selected. For typing the
remaining letters of the word, the user doesn’t have to

explore the keyboard again. He just needs to press the
location where he believes the keys are according to the
memorized representation of the AZERTY or QWERTY
layout. The user signals the end of the word by pressing
two fingers on the screen. Different chimes describe the
keyboard state. Typed words are finally spoken entirely to
avoid confusion.

Implementation

DUCK relies on a different approach than the usual
prediction technique. Instead of offering possible words
starting with what the user is typing, DUCK waits for a
full word (two fingers press). It then detects and corrects
the possible typing errors, similarly to SHARK[4]. DUCK
analyses the keystrokes that were made. A first filter is
applied to select a list of words beginning with the same
first letter and the same length. DUCK then computes
the distance between the center of the keys corresponding
to each letter of these words, and the successive locations
hit by the user. Finally, given the distances, the DUCK
returns the best five matches, which are the words
minimizing the sum of these distances. The user can cycle
through these five proposition with a one finger press, and
can validate his choice with a two fingers press.

Modes

The commands in the DUCK are designed to be simple
and easy to use without visual feedback, as they do not
require complex strokes[3]. In addition, the keyboard has
four modes that can be toggled by simple gestures:

a. the letter deductive mode (which is the default mode);

b. a numerical input mode to type numbers and operators
(toggled by a two fingers up swipe);

c. a symbol input mode for punctuation and
non-alphanumerical characters (toggled by a two

fingers down swipe);

d. a spelling mode allowing the user to add a word to the
dictionary (toggled by pressing with three fingers on
the screen)

At any moment, the user can insert a space by swiping
the screen right with two fingers, or remove the last
keystroke/word/character by swiping the screen left. The
user can switch back to the previous mode by doing the
opposite gesture. Our objective was to design simple but
distinctive gestures; thus we preferred the use of multi
touch to a set of single finger strokes[3].

Case study
Procedure

We designed a case study with one blind user without
additional sensory or cognitive impairment, accustomed to
a daily use of a computer and a mobile phone. We
compared the speed and accuracy of the DUCK versus a
mobile keyboard augmented with VoiceOver. Two
sessions were conducted. Both sessions were done on a
Samsung Galaxy S, running Android 2.3.6 as the
operating system. In each session, the participant had to
execute two separate typing tasks using either DUCK or
VoiceOver. The first task consisted in typing a list of 30
different French words. The second task comprised typing
15 different short sentences. The participant was allowed
to rest between each task. As the user does not have to
scan through the entire keyboard between each character
input, we made the main hypothesis that DUCK is faster
than a VoiceOver like keyboard.

Results

Although there was quite an observable difference
between the number of characters per second (CPS)
during the two tasks of a same session – the user achieved

0.42 CPS with the VoiceOver like keyboard versus 0.53
CPS with DUCK (25% increase) – we had too few
participants to make this observation significant. The
exploration time was about three times shorter for DUCK
compared to VoiceOver (1004,5 ms vs. 2920,2 ms). The
error rate per character for the VoiceOver keyboard was
16.1%, while the error rate per word for DUCK was
23.5%. With DUCK, the words were validated without
any correction in 81.5% of the cases. In average,
predicted words were at the 1.27 position in the list. They
were in the 1st proposition in 74% of the cases.

Discussion & Future work
The preliminary evaluation showed that DUCK highly
reduced the time between keystrokes. It also provided very
accurate output in the vast majority of the situations.
The only negative result concerned the error rate. This
was an expected result, as a mistyped word in DUCK
forces the user to retype the whole word. We are currently
improving the presentation of the predicted words, in
order to decrease the error rate. We also noted two points
where we can improve DUCK. On the one hand, we want
to decrease the latency caused by the text-to-speech
feedback. Indeed, the user is slowed down as he has to
wait for his input to be spoken so he can check what he
entered. On the other hand, we are designing a method to
distinguish homophone words. On the other hand, we
could improve our prediction results greatly by using a
similar prediction system such as SwiftKey, where we
could modify the suggestions order on behalf of the user’s
habits. Finally the results may be different according to
the touch-screen size (e.g. a smartphone vs. a tablet) and
to the length and type of the document (i.e. a short text
vs. a more structured document). We are planning an
experiment with more participants and conditions in order
to assess the significance and validity of the results.

References
[1] Bonner, M. N., Brudvik, J. T., Abowd, G. D., and

Edwards, W. K. No-look notes: accessible eyes-free
multi-touch text entry. In Proceedings of the 8th

international conference on Pervasive Computing,
Pervasive’10, Springer-Verlag (Berlin, Heidelberg,
2010), 409–426.

[2] Guerreiro, T., Lagoá, P., Nicolau, H., Gonçalves, D.,
and Jorge, J. A. From tapping to touching: Making
touch screens accessible to blind users. IEEE
MultiMedia 15, 4 (Oct. 2008), 48–50.

[3] Kane, S. K., Bigham, J. P., and Wobbrock, J. O.
Slide rule: making mobile touch screens accessible to
blind people using multi-touch interaction techniques.
In Proceedings of the 10th international ACM

SIGACCESS conference on Computers and

accessibility, Assets ’08, ACM (New York, NY, USA,
2008), 73–80.

[4] Kristensson, P.-O., and Zhai, S. Shark2: a large
vocabulary shorthand writing system for pen-based
computers. In Proceedings of the 17th annual ACM

symposium on User interface software and technology,
UIST ’04, ACM (New York, NY, USA, 2004), 43–52.

[5] Mascetti, S., Bernareggi, C., and Belotti, M.
Typeinbraille: quick eyes-free typing on smartphones.
In Proceedings of the 13th international conference on

Computers Helping People with Special Needs -

Volume Part II, ICCHP’12, Springer-Verlag (Berlin,
Heidelberg, 2012), 615–622.

[6] Oliveira, J. a., Guerreiro, T., Nicolau, H., Jorge, J.,
and Gonçalves, D. Brailletype: unleashing braille over
touch screen mobile phones. In Proceedings of the

13th IFIP TC 13 international conference on

Human-computer interaction - Volume Part I,
INTERACT’11, Springer-Verlag (Berlin, Heidelberg,
2011), 100–107.

