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CONCENTRATION PHENOMENON IN SOME NON-LOCAL EQUATION

OLIVIER BONNEFON1, JÉRÔME COVILLE1, GUILLAUME LEGENDRE2

Dedicated to the Professor Stephen Cantrell, with all our admiration.

ABSTRACT. We are interested in the long time behaviour of the positive solutions of the Cauchy problem
involving the following integro-differential equation

∂tu(t, x) =

[
a(x)−

ˆ
Ω

k(x, y)u(t, y) dy

]
u(t, x) +

ˆ
Ω

m(x, y)[u(t, y)− u(t, x)] dy (t, x) ∈ R+ × Ω,

together with the initial condition u(0, ·) = u0 in Ω. Such a problem is used in population dynamics models
to capture the evolution of a clonal population structured with respect to a phenotypic trait. In this context,
the function u represents the density of individuals characterized by the trait, the domain of trait values Ω is
a bounded subset of RN , the kernels k and m respectively account for the competition between individuals
and the mutations occurring in every generation, and the function a represents a growth rate. When the
competition is independent of the trait, we construct a positive stationary solution which belongs to the space
of Radon measures on Ω. Morever, when this “stationary” measure is regular and bounded, we prove its
uniqueness and show that, for any non negative initial datum in L∞(Ω) ∩ L1(Ω), the solution of the Cauchy
problem converges to this limit measure in L2(Ω). We also construct an example for which the measure
is singular and non-unique, and investigate numerically the long time behaviour of the solution in such a
situation. These numerical simulations seem to reveal some dependence of the limit measure with respect to
the initial datum.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we are interested in the evolution of a clonal population structured with respect to a
phenotypic trait and essentially subjected to three processes: mutation, growth, and competition. As
an example, one can think of a virus population structured by its virulence, as this trait can be easily
quantified from experimental data. For such type of population, a common model used (see [8, 7, 19, 21,
9, 10, 28, 12, 11, 29, 30]) is the following:

∂tu(t, x) =M[u](t, x) +

[
a(x)−

ˆ
Ω
k(x, y)u(t, y) dy

]
u(t, x), (t, x) ∈ R+ × Ω,(1.1)

u(0, ·) = u0 in Ω,(1.2)

the function u ≥ 0 being the density of individuals of the considered population characterized by the
trait x, the set Ω is a bounded domain of RN , the function k and a respectively are a competition kernel
and a growth rate, andM is a linear diffusion operator modelling the mutation process. In the literature,
depending on the context, several kinds of mutation operator have been considered, see [8, 7, 21, 9, 1, 12,
18, 24, 29, 27, 25] among others. In the present work, we focus our analysis on populations for whichM
is an integral operator of the form

(1.3) ∀v ∈ L1(Ω) ∩ L∞(Ω), M[v](x) :=

ˆ
Ω
m(x, y)[v(y)− v(x)] dy,

with m a positive kernel satisfying some integrability conditions.
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Lately, this type of equation have attracted a lot of attention and much effort has been made in the
analysis of solutions of (1.1). In particular, let us mention [9, 10, 18, 11] for the construction of a global
solution in C1(R+;L1(Ω) ∩ L∞(Ω)) for any non negative initial data in L∞(Ω) and quite fairly general
assumptions on Ω, k, m and a. We also point to [29, 11, 30] for an analysis of the existence of bounded
continuous stationary solutions and their local stability for unidimensional domains Ω ⊂ R. However,
the analysis of stationary solutions of (1.1) in higher dimension remains to be done, while the long time
behaviour of positive solutions of problem (1.1)-(1.2) is still not fully understood.

When mutations are neglected (that is, m ≡ 0), equation (1.1) is reduced to

(1.4) ∂tu(t, x) =

[
a(x)−

ˆ
Ω
k(x, y)u(t, y) dy

]
u(t, x), (t, x) ∈ R+ × Ω,

and, for a generic positive initial datum u0, the solution to (1.4)-(1.2) is known to converge weakly to
a positive Radon measure dµ [20, 18, 23]. This measure is, in some sense, a stationary solution of (1.4)
representing an evolutionarily stable strategy for the system. For example, when the kernel k is positive
and does not depend on the trait (i.e., k(x, y) = k(y) > 0), dµ is a measure whose support lies in the set
Σ := arg max

x∈Ω̄

a(x). In such a situation, one may check that a sum of Dirac masses dµ =
∑

i∈I
a(xi)
k(xi)

δxi , with

xi ∈ Σ for all i ∈ I, is a stationary solution. When this measure dµ is unique, then the positive solution of
(1.4)– (1.2) converges weakly to dµ, see [23] for a detailed proof.

Since the mutation process can be seen as a diffusion operator on the trait space, it is expected that the
long time behaviour of a positive solution to (1.1)–(1.2) is simple and that such concentration phenomena
does not occur. Indeed, this conjecture can be verified when the mutation operatorM is a classical elliptic
operator [24, 14]. When it is an integral operator as in the present situation, the existence of bounded
equilibria when Ω is unidimensional seems to give credit to this conjecture. However, we prove that it
is false in higher dimension. To this end, we exhibit a class of situations in which a positive singular
measure dµ, solution of (1.1) can be constructed, and investigate numerically the long time behaviour of
positive solutions of the corresponding Cauchy problem.

1.1. Main results. We first state precisely the assumptions on the domain Ω, the kernels k and m and
the function a under which the results are obtained. We suppose that the domain Ω is an open bounded
connected set of RN with Lipschitz boundary, that the function a is such that

(1.5) a is continuous over Ω̄ and positive,

and that m is a non-negative symmetric Carathéodory kernel function, that is, m ≥ 0, m(x, y) = m(y, x)
and

(1.6) ∀x ∈ Ω,m(x, ·) is measurable, and, for almost every y in Ω, m(·, y) is uniformly continuous.

Finally, we assume that the kernel k is independent of the trait (i.e., k(x, y) = k(y)) and that it satisfies the
following condition: there exist positive constants C0 ≥ c0 > 0 such that

(1.7) c01Ω ≤ k ≤ C01Ω,

where 1Ω denotes the characteristic function of the set Ω.
Let us now consider a stationary solution of (1.1), that is, satisfying

(1.8) M[u](x) +

[
a(x)−

ˆ
Ω
k(y)u(y) dy

]
u(x) = 0, x ∈ Ω.

Under the above assumptions, we prove that there exists a positive Radon measure dµ solution of (1.8)
in a weak sense.



CONCENTRATION PHENOMENON IN SOME NON-LOCAL EQUATION 3

Theorem 1.1. Assume a, k and m satisfy (1.5)–(1.7). Then there exists a positive Radon measure dµ such that for
all ϕ in Cc(Ω),

(1.9)
ˆ

Ω
(M[ϕ](x) + a(x)ϕ(x)) dµ(x) =

(ˆ
Ω
ϕ(x)dµ(x)

)(ˆ
Ω
k(x)dµ(x)

)
.

Let λp be the principal eigenvalue of the operatorM+ a defined by

λp(M+ a) := sup{λ ∈ R | ∃ϕ ∈ C(Ω̄), ϕ > 0, s.t.M[ϕ] + (a+ λ)ϕ ≤ 0 in Ω}.
Then, we have the following characterisation for the measure dµ.

• If λp is associated with an eigenfunction ϕp which belongs to L1(Ω), then dµ is a regular (uniformly
continuous) measure, that is, dµ = ū(x)dx with ū in L1(Ω) and is the unique strong solution of (1.8).
Moreover, ū is in L∞(Ω) when the principal eigenfunction ϕp belongs to L∞(Ω).
• Otherwise, dµ is a singular measure.

As a consequence from the above dichotomy result, the existence of singular measure for (1.9) is
strongly related to the non-existence of a L1 eigenfunction associated with λp. This non-existence result
has recently been established for the non-local operatorM+ a, as shown in [13, 32, 15].

Next, we analyse the global stability of dµ and the long time behaviour of the positive solution of
(1.1)–(1.2). When the measure dµ is regular, we have the following result.

Theorem 1.2. Assume a, k and m satisfy (1.5)–(1.7). Assume there exists a positive regular Radon measure
dµ(x) = ū(x)dx solution of (1.8). Assume further that ū belongs to L∞(Ω). Then, for any non negative initial
data u0 ∈ L1(Ω) ∩ L∞(Ω), the positive solution u to (1.1) – (1.2) satisfies

lim
t→∞
‖u(t, ·)− ū‖L2(Ω) = 0.

Note that the above global stability implies the uniqueness of the regular stationary positive Radon
measure solution of (1.8). When no regular positive Radon measure exists, the convergence of a positive
solution of (1.1) is very delicate to analyse. To shed light on the possible dynamics in such a situation, we
explore numerically the behaviour of solutions of (1.1)–(1.2).

1.2. Numerical simulations. In order to illustrate and get some insight on the long time behaviour of
solutions to (1.1)–(1.2), we numerically solve the problem for different choices of growth function a and
initial datum u0 in two dimensions. Limiting ourselves to preliminary computations, we choose the
domain as the open ball of radius 1/4 centered at the origin, that is, Ω = B1/4(0), and the competition and
mutation kernels uniformly constant, such that k ≡ 1 and m ≡ ρ with ρ a positive constant. The system
to be numerically solved thus reduces to:

∂tu(t, x) = ρ

(ˆ
B1/4(0)

(u(t, y)− u(t, x)) dy

)
+

(
a(x)−

ˆ
B1/4(0)

u(t, y) dy

)
u(t, x), in R+ ×B1/4(0),

(1.10)

u(0, ·) = u0 in B1/4(0).
(1.11)

1.2.1. A simple growth rate. First, we look at a situation in which the growth rate a achieves its maximum
at a single point, a case for which we can show the uniqueness of the stationary solution. More precisely,
we have the following result.

Proposition 1.3. For any positive value ρ, there exists a unique positive measure dµ which is a stationary solution
of (1.10). Moreover, there exists a critical value ρ∗ such that the measure dµ is singular for ρ < ρ∗, whereas it is
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regular for ρ ≥ ρ∗. In addition, for any non negative initial datum u0 in L1(Ω) ∩ L∞(Ω), the solution of (1.10)
converges weakly to dµ.

This proposition is a direct consequence of Theorem 1.1 and of the uniform L1 estimates obtained in
Section 3. To illustrate its conclusions, we take a(x) = 1−

√
‖x‖2, where ‖ ·‖2 denotes the Euclidean norm

in R2 (∀x = (x1, x2) ∈ R2, ‖x‖2 =
√
x2

1 + x2
2), and solve numerically the problem. The obtained results,

presented in Figure 1, provide a clear picture of the dynamics of the solution.

(A) t = 0 (B) t = 10 (C) t = 20 (D) t = 100 (E) t = 400

(F) t = 0 (G) t = 10 (H) t = 20 (I) t = 100 (J) t = 400

FIGURE 1. Numerical approximation of the solution to (1.10) at different times for two
configurations, in which the initial condition is the same and only the mutation rate differs.
More precisely, we have set ρ = 1 for the first simulation (subfigures (A) to (E)), and ρ = 0.1
for the second one (subfigures (F) to (J)). In both situations, we observe the convergence
to a stationary solution, either to a regular measure (see subfigure (E)) or to a singular
measure with one Dirac mass at the origin (see subfigure (J)), the latter being characteristic
of a concentration phenomenon.

1.2.2. A complex growth rate. Next, we explore a situation where the growth rate a achieves its maximum
at multiple points. In such a setting, we expect the stationary measure to be non-unique. In order to verify
this conjecture numerically, we consider a function of the form:

a(x) = 1−
√√

(x1 − 0.1)2 + x2
2)

√√
(x1 + 0.1)2 + x2

2)

√√
x2

1 + (x2 − 0.1)2)

√√
x2

1 + (x2 + 0.1)2),

which achieves its maximum at four distinct points. With this choice, for ρ sufficiently small, we can
show that there is at least four different positive Radon measures that are solution of the stationary prob-
lem (1.9). The impact of the non-uniqueness of the stationary measure simulations can be seen in the
simulations prensented in Figures 2 and 3. Indeed, in a regime of mutation rate where several singular
stationary measures can be constructed, we observe that the outcome of the simulation may drastically
differ depending on the initial datum (see Figures 3 and 4). In contrast, in a regime where the mutation
rate is such that the stationary measure is regular, the stationary solution is a global attractor (see Figure
2).

1.3. Outline. The paper is organised as follows. We start by recalling in Section 2 important facts about
the spectral properties of the class of non-local operators considered in the problem. We then derive
some uniform estimates by means of nonlinear relative entropy formulas in Section 3 and give a proof
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of Theorems 1.1 and 1.2 in Section 4. Finally, the numerical method used for the simulations is briefly
described in an appendix section.

(A) t = 0 (B) t = 50 (C) t = 100 (D) t = 800 (E) t = 1600

(F) t = 0 (G) t = 50 (H) t = 100 (I) t = 800 (J) t = 1600

FIGURE 2. Numerical approximation of the solution to (1.10) at different times for two
configurations, in which the mutation rate is fixed (ρ = 1) and the initial datum is chosen
with either one (subfigures (A) to (E)) or two (subfigures (F) to (J)) spikes, that is, the
function u0 vanishes on the points at which the function a reaches its maximum, except for
one or two of them. We can see the convergence of the solution towards the same regular
stationary measure (subfigures (E) and (J)).

(A) t = 0 (B) t = 200 (C) t = 400 (D) t = 800 (E) t = 1600

FIGURE 3. Numerical approximation of the solution to (1.10) at different times for a con-
figuration, in which the mutation rate is fixed (ρ = 0.01) and the initial datum is chosen
with one spikes, that is, the function u0 vanishes on the points at which the function a
reaches its maximum, except for one of them. In this cases, we observe a concentration
phenomenon: the solution converges towards a singular stationary measure, presenting
one Dirac mass.
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(A) t = 0 (B) t = 200 (C) t = 400 (D) t = 800 (E) t = 1600

FIGURE 4. Numerical approximation of the solution to (1.10) at different times for a con-
figuration, in which the mutation rate is fixed (ρ = 0.01) and the initial datum is chosen
with two spikes, that is, the function u0 vanishes on the points at which the function a
reaches its maximum, except for two of them. In this cases, we observe a concentration
phenomenon: the solution converges towards a singular stationary measure, presenting
two Dirac masses.

2. SPECTRAL PROPERTIES OF NON-LOCAL OPERATORS

In this section, we recall some known results on the spectral problem

(2.1) M[ϕ] + aϕ+ λϕ = 0 in Ω.

where M is the integral operator defined by (1.3) with a kernel satisfying the assumption (1.6). When
the function a is not constant, neither the operatorM+ a+ λ nor its inverse are compact, and the Krein-
Rutman theory fails in providing existence of the principal eigenvalue ofM + a. However, a variational
formula, introduced in [4] to characterise the first eigenvalue of elliptic operators, can be transposed to
the operatorM+ a. Namely, the following quantity

(2.2) λp(M+ a) := sup{λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0 such that M[ϕ] + aϕ+ λϕ ≤ 0 in Ω}.
is well defined and called the generalised principal eigenvalue ofM + a. It is known [13, 32, 17, 2, 31]
that λp(M+ a) is not always an eigenvalue ofM+ a in a reasonable Banach space, which means there is
not always a positive continuous eigenfunction associated with it. Nevertheless, as shown in [15], there
always exists an associated positive Radon measure.

Theorem 2.1 ([15]). Let the domain Ω be bounded, the operator M be defined by (1.3) with a kernel satisfying
(1.6), a be a continuous function over Ω̄, and define

M(x) :=

ˆ
Ω
m(x, y) dy, σ := sup

x∈Ω
(a(x)−M(x)), Σ :=

{
y ∈ Ω̄|a(y)−M(y) = σ

}
.

Then, there exists a positive Radon measure dµp, such that, for any ϕ in Cc(Ω), we haveˆ
Ω
ϕ(x)

(ˆ
Ω
m(x, y)dµp(y)

)
dx+

ˆ
Ω
ϕ(x)(a(x)−M(x) + λp)dµp(x) = 0.

In addition, we have the following dichotomy:
• either there exists ϕp in L1(Ω), ϕp > 0, such that dµp = ϕp(x)dx,
• or there exists gp in C(Ω̄), gp > 0, and dν a positive singular measure with respect to the Lebesgue measure,

whose support lies in the set Σ, such that

dµp =
gp(x)

σ − (a(x)−M(x))
dx+ dν.
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The measure dµp can be characterised more precisely and there exists a simple criterion guaranteeing
its regularity.

Proposition 2.2 ([13, 17, 2, 16]). Under the assumptions of the preceding theorem, dµp = ϕp(x)dx with ϕp ∈
C(Ω̄), ϕp > 0, if and only if λp(M+ a) < −σ.

We conclude by recalling a characterisation of λp(M + a) in the spirit of what is known for elliptic
operators [5, 3, 6].

Definition 2.3 ([17, 2, 16]). Let Ω be a bounded domain, M be defined by (1.3) with a kernel satisfying
(1.6) and a ∈ C(Ω̄). We define the following quantity:

λ′p(M+ a) := inf{λ ∈ R | ∃ϕ ∈ C(Ω) ∩ L∞(Ω), ϕ ≥ 0, M[ϕ] + (a+ λ)ϕ ≥ 0 in Ω}.

As in the case of elliptic operators, the two quantities λp and λ′p are equal in our setting.

Theorem 2.4 ([17, 2, 16]). Let Ω be a bounded domain,M be defined by (1.3) with a kernel satisfying (1.6) and
a ∈ C(Ω̄). Then

λp(M+ a) = λ′p(M+ a).

3. A PRIORI ESTIMATES

In this section, for a non-negative initial data u0 in L1(Ω) ∩ L∞(Ω), we establish some uniform in time
a priori estimates on the solution of (1.1)–(1.2). To do so, we start by proving a non-linear relative entropy
identity satisfied by any solution of (1.1).

Proposition 3.1 (general identity). Let Ω ⊂ RN be a bounded domain and assume that a, k and m satisfies
(1.5)–(1.7). Let H be a smooth (at least C1) function. Let ū be a L1(Ω) ∩ L∞(Ω) positive stationary solution of
(1.1). Let u ∈ C1((0,+∞), L∞(Ω)) be a solution of (1.1), then we have

(3.1)
dHH,ū [u](t)

dt
= −DH,ū(u) + Γ(t)

ˆ
Ω
ū(x)H ′

(u
ū

(t, x)
)
u(t, x) dx

where Γ,HH,ū [u], DH,ū(u) are defined by

Γ(t) :=

ˆ
Ω
k(y)(ū(y)− u(t, y)) dy

HH,ū [u](t) :=

ˆ
Ω
ū2(x)H

(
u(t, x)

ū(x)

)
dx

DH,ū(u)(t) :=

¨
Ω×Ω

m(x, y)ū(x)ū(y)

[
H

(
u(t, x)

ū(x)

)
−H

(
u(t, y)

ū(y)

)
+H ′

(
u(t, x)

ū(x)

)(
u(t, x)

ū(x)
− u(t, y)

ū(y)

)]
dxdy

Proof:
From (1.1), since the kernel k satisfies condition (1.7), by defining Γ(t) :=

´
Ω k(y)(ū(y) − u(t, y)) dy we

have for all t > 0

∂tu(t, x) =

(
a(x)−

ˆ
Ω
k(y)ū(y) dy

)
u(t, x) +M[u](t, x) + Γ(t)u(t, x) for almost every x ∈ Ω.

Using that ū is a positive stationary solution of (1.1), for almost every x ∈ Ω, we have

a(x)−
ˆ

Ω
k(y)ū(y) dy = − 1

ū(x)
M[ū](x),
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and we can rewrite the above equation as follows

∂tu(t, x) =M[u](t, x)− u(t, x)

ū(x)
M[ū](x) + Γ(t)u(t, x) for almost every x ∈ Ω.

Multiplying the above identity by ū(x)H ′
(
u(t,x)
ū(x)

)
and integrating over Ω, we find that

ˆ
Ω
ū(x)H ′

(
u(t, x)

ū(x)

)
∂tu(t, x) dx =

ˆ
Ω
ū(x)H ′

(
u(t, x)

ū(x)

)
Γ(t)u(t, x) dx

+

ˆ
Ω
H ′
(
u(t, x)

ū(x)

)
[ū(x)M[u](t, x)− u(t, x)M[ū](x)] dx.

By rearranging the terms, we get
ˆ

Ω
ū(x)H ′

(
u(t, x)

ū(x)

)
∂tu(t, x) dx =

ˆ
Ω
ū(x)H ′

(
u(x)

ū(t, x)

)
Γ(t)u(t, x) dx

+

¨
Ω×Ω

m(x, y)ū(x)ū(y)H ′
(
u(t, x)

ū(x)

)[
u(t, y)

ū(y)
− u(t, x)

ū(x)

]
dxdy,

and, due to the symmetry of m, we straightforwardly see that¨
Ω×Ω

m(x, y)ū(x)ū(y)

[
H

(
u(t, x)

ū(x)

)
−H

(
u(t, y)

ū(y)

)]
dxdy = 0.

Hence, by combining the above equalities, we reach

d

dt
HH,ū [u](t) = Γ(t)

ˆ
Ω
ū(x)H ′

(
u(t, x)

ū(x)

)
u(t, x) dx−DH,ū(u).

�

Remark 3.2. When k ≡ 0, equation (1.1) is linear and relative entropy formulas are well known in this case,
see [26].

Remark 3.3. When H is non decreasing and ū is only assumed to be a stationary super-solution of (1.1),
from the above proof we clearly see that,

d

dt
HH,ū [u](t) ≤ −DH,ū(u)(t) + Γ(t)

ˆ
Ω
ū(x)H ′

(u
ū

(t, x)
)
u(t, x) dx.

Similarly, if ū is a positive stationary sub-solution of (1.1), we have

d

dt
HH,ū [u](t) ≥ −DH,ū(u)(t) + Γ(t)

ˆ
Ω
ū(x)H ′

(u
ū

(t, x)
)
u(t, x) dx.

Equipped with this general relative entropy identity, we may derive some useful differential inequali-
ties.

Proposition 3.4. Let Ω ⊂ RN be a bounded domain and assume that a, k and m satisfies (1.5)–(1.7). Let q ≥ 1
and Hq be the smooth convex function Hq(s) : s 7→ sq. Let u, ū be two positive solutions of (1.1) as in Proposition

3.1. Then the functional F(u) := log

(
Hq,ū [u]

(H1,ū [u])
q

)
satisfies:

(3.2)
d

dt
F(u)(t) = − 1

Hq,ū [u](t)
Dq,ū(u)(t) ≤ 0.
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Moreover, we have

(3.3) Dq,ū(u)(t) =
q

2

¨
Ω×Ω

m(x, y)ū(x)ū(y)

[
u(t, x)

ū(x)
− u(t, y)

ū(y)

][(
u(t, x)

ū(x)

)q−1

−
(
u(t, y)

ū(y)

)q−1
]
dxdy.

Remark 3.5. We observe that in the case of H(s) = s2, H2,ū [u](t) = ‖u(t, ·)‖22 and we get a Lyapunov
functional involving the L2 norm of u instead of a weighted Lq norm of u. Indeed, we have

d

dt

(
log

(
‖u(t, ·)‖22(
H1,ū [u](t)

)2
))

= − 1

‖u(t, ·)‖22

¨
Ω×Ω

m(x, y)ū(x)ū(y)

(
u(t, x)

ū(x)
− u(t, y)

ū(y)

)2

dxdy.

Proof of Proposition 3.4:
Observe that, for H(s) := sq, we have, by Proposition 3.1,

d

dt
Hq,ū [u](t) = −Dq,ū(u)(t) + q Γ(t)

ˆ
Ω
ū(x)

(
u(t, x)

ū(x)

)q−1

u(t, x) dx.

Therefore, by definition ofHq,ū [u] we get from the above equality

(3.4)
d

dt
Hq,ū [u](t) = −Dq,ū(u)(t) + q Γ(t)Hq,ū [u](t).

Now by taking q = 1 in (3.4), we obtain
d

dt
H1,ū [u](t) = −D1,ū(u)(t) + Γ(t)H1,ū [u](t).

A quick computation shows that D1,ū(u) = 0 and therefore

(3.5)
d

dt
H1,ū [u](t) = Γ(t)H1,ū [u](t).

Since for all q ≥ 1,Hq,ū [u](t) > 0 for all times, we have

d

dt
log(H1,ū [u](t)) = Γ(t),(3.6)

d

dt
log(Hq,ū [u](t)) = − 1

Hq,ū [u](t)
Dq,ū(u)(t) + q Γ(t).(3.7)

By combining (3.6) and (3.7), we end up with

d

dt

(
log

(
Hq,ū [u](t)(
H1,ū [u](t)

)q
))

= − 1

Hq,ū [u](t)
Dq,ū(u)(t).

Equality (3.3) then follows straightforwardly from direct computations, by using symmetry and an obvi-
ous change of variables.

�
From these differential inequalities, we obtain uniform in time a priori bounds of the L1 norm of a

solution of (1.1) – (1.2). Namely, we show

Lemma 3.6. Let Ω ⊂ RN be a bounded domain and assume that a, k and m satisfies (1.5)–(1.7). Let u ∈
C1((0,+∞), L1(Ω) ∩ L∞(Ω)) be a non-negative solution of the Cauchy problem (1.1)–(1.2) with initial data
u0 ∈ L∞(Ω) ∩ L1(Ω), u0 ≥ 0. Then there exists two positive constants C1(u0) > c1(u0) > 0 such that for
all t ≥ 0

c1 ≤ ‖u(t, ·)‖L1(Ω) ≤ C1.
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Proof:
First, let us observe that large (respectively small) constants are super-solutions (respectively sub-

solutions) of (1.1). Indeed, for C ≥ sup
x∈Ω

(
a(x)´

Ω k(z) dz

)
, we have

M[C] + C

(
a(x)− C

ˆ
Ω
k(z) dz

)
= C(a(x)− sup

x∈Ω
a(x)) ≤ 0.

Similarly, for C ≤ inf
x∈Ω

(
a(x)´

Ω k(z) dz

)
, we get

M[C] + C

(
a(x)− C

ˆ
Ω
k(z) dz

)
= C(a(x)− inf

x∈Ω
a(x)) ≥ 0.

Therefore, from Proposition 3.1 and Remark 3.3, by choosing ū a large, respectively a small constant,
and considering the convex function H(s) : s 7→ s, we get

d

dt
(‖u(t, ·)‖L1(Ω)) ≤ C

(ˆ
Ω
k(z) dz −

ˆ
Ω
k(z)u(t, z) dz

)
‖u(t, ·)‖L1(Ω) for C ≥ sup

x∈Ω

(
a(x)´

Ω k(z) dz

)
,

d

dt
(‖u(t, ·)‖L1(Ω)) ≥ c

(ˆ
Ω
k(z) dz −

ˆ
Ω
k(z)u(t, z) dz

)
‖u(t, ·)‖L1(Ω) for c ≤ inf

x∈Ω

(
a(x)´

Ω k(z) dz

)
.

Now, since k satisfies (1.7), we have c0 ≤ k(y) ≤ C0 for all y ∈ Ω and from the above differential
inequalities we get

d

dt
(‖u(t, ·)‖L1(Ω)) ≤ C

(ˆ
Ω
k(z) dz − c0‖u(t, ·)‖L1(Ω)

)
‖u(t, ·)‖L1(Ω) for C ≥ sup

x∈Ω

(
a(x)´

Ω k(z) dz

)
,

d

dt
(‖u(t, ·)‖L1(Ω)) ≥ c

(ˆ
Ω
k(z) dz − C0‖u(t, ·)‖L1(Ω)

)
‖u(t, ·)‖L1(Ω) for c ≤ inf

x∈Ω

(
a(x)´

Ω k(z) dz

)
.

From the logistic character of these two differential inequalities and since ‖u0‖L1(Ω) > 0, we deduce that
for all t ≥ 0

c1 := inf

{
‖u0‖L1(Ω);

´
Ω k(z) dz

C0

}
≤ u(t, x) ≤ C1 := sup

{
‖u0‖L1(Ω);

´
Ω k(z) dz

c0

}
.

�

Remark 3.7. Observe that the above proof holds as well for k bounded above and below by positive con-
stants. As a consequence, such a uniform L1 estimate can be also obtained in a more general situation
where the kernel k is not necessarily independent of the trait x.

4. PROOFS

We are now in a position to prove Theorems 1.1 and 1.2. Let us start with the construction of a stationary
measure.

4.1. Construction of a Stationary state. Consider the stationary problem (1.8), then in order to construct
stationary state in the space of Radon measures, we have to find dµ solution of the following weak for-
mulation

(4.1) ∀ϕ ∈ Cc(Ω),

ˆ
Ω

(M[ϕ](x) + a(x)ϕ(x)) dµ(x) =

ˆ
Ω
ϕ(x)dµ(x)

ˆ
Ω
k(x)dµ(x).
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Owing to Theorem 2.1, let us consider a positive measure dµp associated to λp(M+ a), which we
normalise in order to have

´
Ω dµp = 1.

Claim 4.1. There exists a unique θ > 0 such that θ dµp is a positive stationary solution of (4.1).

Proof:
Let θ be defined by θ :=

(
−λp(M+a)´

Ω k(y)dµp(y) dy

)
. For any ϕ ∈ Cc(Ω), θ dµp satisfies

ˆ
Ω

(M[ϕ](x) + a(x)ϕ(x)) θ dµp(x) = −(λp(M+ a))

ˆ
Ω
ϕ(x)θ dµp(x)

= − (λp(M+ a))´
Ω k(x) dµp(x)

ˆ
Ω
k(x) dµp(x)

ˆ
Ω
ϕ(x)θ dµp(x)

=

ˆ
Ω
k(x)θ dµp(x)

ˆ
Ω
ϕ(x)θ dµp(x).

Thus, θ dµp is a stationary solution of (4.1).
To conclude, it remains to show that −λp(M + a) > 0. This is the case, since we have λp(M + a) =

λ′p(M+ a) by Theorem 2.4, and by taking (− infx∈Ω a(x), 1) as test function, we can easily check that

λ′p(M+ a) ≤ − inf
x∈Ω

a(x) < 0.

�

Remark 4.2. From the above computation, we clearly see that the uniqueness of the stationary state follows
from the uniqueness of the measure associated with λp.

4.2. Long time behaviour. Let us now prove Theorem 1.2. We assume that dµ the positive measure
constructed above is regular and bounded, i.e. dµ(x) = ū(x) dx with ū ∈ L1(Ω) ∩ L∞(Ω). Since dµ
is associated with the principal eigenvalue λp(M + a), then ū = θϕp with ϕp ∈ L1(Ω) ∩ L∞(Ω) and θ
defined in the proof of Claim 4.1. From the regularity of ϕp, we can see that ū is a strong solution of (1.8).
Now, knowing that a positive continuous stationary solution of (1.8) exists, we can derive further a priori
estimates on the solution u of (1.1)–(1.2).

Lemma 4.3. Let Ω ⊂ RN be a bounded domain and assume that a, k and m satisfy (1.5)–(1.7). Let u ∈
C1((0,+∞), L1(Ω) ∩ L∞(Ω)) be a non-negative solution of the Cauchy problem (1.1)–(1.2) with initial datum
u0 ∈ L∞(Ω)∩L1(Ω), u0 ≥ 0. Then there exist two constants C2 > c2 > 0 depending on u0 such that for all t > 0,

c2 ≤ ‖u(t, ·)‖L2(Ω) < C2.

Proof:
The uniform lower bound is rather easy to obtain and follows directly from the Hölder’s inequality

and the estimates in Lemma 3.6. Indeed, since Ω is bounded we have
√
c1 ≤ ‖u(t, ·)‖L1(Ω) ≤

√
|Ω|‖u(t, ·)‖L2(Ω),

where |Ω| denotes the Lebesgue measure of the set Ω.
On the other hand, we get an uniform upper bound as a straightforward application of Proposition 3.4.

Namely, since ū is a positive L1(Ω)∩L∞(Ω) stationary solution of (1.1), by Proposition 3.4, the functional

F (t) := 2 log

(
‖u(t,·)‖L2(Ω)

H1,ū [u](t)

)
is a decreasing function of t and therefore, for all t ≥ 0,

‖u(t, ·)‖L2(Ω) ≤ H1,ū [u](t)

(‖u0‖L2(Ω)

H1,ū [u0]

)
≤ C(u0)‖ū‖∞‖u(t, ·)‖L1(Ω).
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Hence, for all t ≥ 0,
‖u(t, ·)‖L2(Ω) ≤ C1C(u0)‖ū‖∞.

�
In order to prove that u converges to a stationary solution, we introduce the following decomposition

of u. Since for all t > 0, u and ū belong to L1(Ω) ∩ L∞(Ω), they belong to L2(Ω) and we can write u as
follows:

u(t, x) := λ(t)ū(x) + h(t, x)

with h such that
´

Ω ϕp(x)h(t, x) dx = 0 for all t > 0.

Claim 4.4. λ(t)→ 1 and ‖h(t, ·)‖L2(Ω) → 0 as t→ +∞.

Proof:
For convenience, we introduce the following notation 〈ϕ,ψ〉 :=

´
Ω ϕ(x)ψ(x) dx to denote the standard

scalar product of two function of L2(Ω).
We start by deriving some useful bounds on λ and h. From the decomposition, we have

〈ū, u(t, ·)〉 = λ(t)θ2 = θ

ˆ
Ω
u(t, x)ϕp(x) dx.

Therefore, since ϕp is positive and bounded in Ω̄, we have from Lemma 3.6

c1(u0) inf
x∈Ω

ϕp(x) ≤
ˆ

Ω
u(t, x)ϕp(x) dx ≤ C1(u0)‖ϕp‖∞,

and

(4.2)
c1(u0) infx∈Ω ϕp(x)

θ
≤ λ(t) ≤ C1(u0)‖ϕp‖∞

θ
.

From Lemma 4.3, we obviously derive an upper bound for ‖h(t, ·)‖L2(Ω). Indeed, by construction

(4.3) ‖h(t, ·)‖2L2(Ω) ≤ ‖u(t, ·)‖2L2(Ω) ≤ C2.

Substituting to u its decomposition in the equation (1.1), we get

λ′(t)ū(x) +
∂

∂t
h(t, x) =

(
a(x)−

ˆ
Ω
k(z)u(t, z) dz

)
(λ(t)ū(x) + h(t, x)) + λ(t)M[ū](x) +M[h](t, x).(4.4)

Multiplying the above equation by h and integrating it over Ω, we get after obvious computations〈
∂

∂t
h(t, ·), h(t, ·)

〉
=

〈(
a(x)−

ˆ
Ω
k(z)u(t, z) dz

)
h(t, ·) +M[h](t, ·), h(t, ·)

〉
,

where we used the definition of ū and 〈ū, h(t, ·)〉 = 0.
SinceH2,ū [h](t) := ‖h(t, ·)‖2L2(Ω), we get〈

∂h

∂t
(t, ·), h(t, ·)

〉
=

1

2

d

dt
H2,ū [h](t) =

〈(
a(x)−

ˆ
Ω
k(z)u(t, z) dz

)
h(t, ·) +M[h](t, ·), h(t, ·)

〉
.

By following the computation developed for the proof of Proposition 3.1 with H(s) = s2, we see that

(4.5)
d

dt
H2,ū [h](t) = −D2,ū(h)(t) + Γ(t)H2,ū [h](t).

with Γ(t) :=

(ˆ
Ω
k(z)ū(z) dz −

ˆ
Ω
k(z)u(t, z) dz

)
=

(
−λp −

ˆ
Ω
k(z)u(t, z) dz

)
.



CONCENTRATION PHENOMENON IN SOME NON-LOCAL EQUATION 13

By construction, H2,ū [h](t) ≥ 0 for all t ≥ 0. So either H2,ū [h](t) > 0 for all times t or there exists t0 ∈ R
such that H2,ū [h](t0) = 0. In the latter case, we have u(t0, x) = λ(t0)θϕp(x) for almost every x ∈ Ω. Let
w(t, x) := γ(t)θϕp with γ(t) satisfying the ODE

d

dt
γ(t) = −λpγ(t)(1− γ(t))(4.6)

γ(t0) = λ(t0).(4.7)

By construction, γ(t) → 1 as t → +∞ and we can check that w is a solution of (1.1) for all t ≥ t0. Thus,
since w(t0, ·) = u(t0, ·) by uniqueness of the solution of the Cauchy problem (1.1), we have u(t, ·) ≡ w(t, ·)
for all t ≥ t0 and therefore for all t ≥ t0, h(t, ·) ≡ 0 and λ(t) = γ(t).

In the other situation,H2,ū [h](t) > 0 for all t and we claim the following.

Claim 4.5. H2,ū [h](t)→ 0 as t→ +∞.

Assume the Claim holds then we can conclude the proof by arguing as follows. From the decompo-
sition u(t, x) = λ(t)ū(x) + h(t, x), we can express the function H1,ū [u](t) by H1,ū [u](t) =< ū, u(t, ·) >=
λ(t)〈ū, ū〉. Using Proposition 3.4, we deduce that

(4.8) λ′(t) = −λp(1− λ(t))λ(t)−
(ˆ

Ω
k(z)h(t, z) dz

)
λ(t).

Now by using ‖h(t, ·)‖22 = H2,ū [h](t)→ 0 as t→ +∞, we deduce that

λ′(t) = −λp(1− λ(t))λ(t) + λ(t) o(1),

with o(1) ≤ C‖h(t, ·)‖L2(Ω).
Therefore, by a elementary analysis of the ODE, we deduce that λ(t)→ 1 as t→ +∞.

�

Proof of Claim 4.5:
SinceH2,ū [h](t) > 0 for all t, from (4.5) and by following the proof of Proposition 3.4 we see that

(4.9)
d

dt
log

[
H2,ū [h](t)(
H1,ū [u](t)

)2
]

= −D2,ū(h)(t)

H2,ū [h](t)
≤ 0

Thus F (t) := log

[
H2,ū [h](t)

(H1,ū [u](t))
2

]
is a non increasing smooth function. Thanks the monotonicity of F , to

prove the Claim, it is sufficient to exhibit a sequence (tn)n∈N such that tn → +∞ andH2,ū [h](tn)→ 0.
To exhibit such sequence, it is sufficient to prove that inft∈R+ H2,ū [h](t) = 0. By contradiction, let us

assume that inft∈R+ H2,ū [h](t) = κ > 0. Then, by (4.2) and (4.3), there exist positive constants α, β, η such
that for all t > 0

0 < κ ≤ ‖h‖L2(Ω)(t) ≤ α,
0 < β ≤ H1,ū [u](t) ≤ η.

As a consequence, there exists c0 ∈ R such that

(4.10) F (h(t))→ c0 and
d

dt
F (h(t))→ 0 as t→ +∞.

Take now a sequence (tn)n∈N such that tn → +∞, and consider the sequence of L2 functions (hn)n∈N :=
(h(tn))n∈N. Then ‖hn‖L2(Ω) is then bounded from above and below and therefore, by (4.10) and (4.9), we
get

(4.11) lim
n→+∞

D2,ū(hn) = 0.
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On the other hand, since (hn)n∈N is bounded in L2, there exists h̄ ∈ L2 such that, up to extraction of
a subsequence, hn ⇀ h̄ in L2. Let us evaluate D2,ū(h̄). Since ū and m are positive and bounded from

above and below, the function g(x) :=

ˆ
Ω
m(x, y)

ū(y)

ū(x)
dy, is well defined and g ≥ C > 0 for some positive

constant C. Moreover, we have

(4.12) D2,ū(hn) = 2

(ˆ
Ω
h2
ng −

¨
Ω×Ω

m(x, y)hn(x)hn(y) dydx

)
.

Since m ∈ L2(Ω× Ω) and g ≥ 0, by Fatou’s Lemma and the L2 weak convergence of hn, we getˆ
Ω
h̄2g ≤ lim inf

n→∞

ˆ
Ω
h̄2
ng,

lim
n→∞

¨
Ω×Ω

m(x, y)hn(x)hn(y) dydx =

¨
Ω×Ω

m(x, y)h̄(x)h̄(y) dydx.

Therefore,

0 ≤ D2,ū(h̄) =

¨
Ω×Ω

m(x, y)ū(x)ū(y)

(
h̄(x)

ū(x)
− h̄(y)

ū(y)

)2

dydx ≤ lim inf
n→∞

D2,ū(hn) = 0,

which enforces that h̄ = νū for some constant ν ∈ R. Recall now that for all n, hn ∈ ū⊥, so

ν‖ū‖2L2(Ω) =

ˆ
Ω
h̄ū = lim

n→+∞

ˆ
Ω
hnū = 0,

implying that ν = 0. Now since, h̄ = 0 and hn ⇀ h̄, from (4.11) and (4.12), we get

lim
n→+∞

ˆ
Ω
g(x)h2

n = 0,

which leads to the following contradiction

κ ≤ lim
n→+∞

ˆ
Ω
h2
n ≤ C−1 lim

n→∞

ˆ
Ω
h2
ng = 0.

Hence, inft∈R+ H2,ū [h](t) = 0, and sinceH2,ū [h](t) > 0, this implies that lim inf
t→∞

H2,ū [h](t) = 0.

�
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APPENDIX A. NUMERICAL ASPECTS

To investigate numerically the behaviour of the solution of (1.10), we are led to understand how to
solve numerically evolution problems of the form :

∂tv(t, x) =

ˆ
Ω
K(x, y)v(t, y) dy + a(x)v(t, x) in (0,∞)× Ω(A.1)

v(0, x) = v0(x) in Ω(A.2)
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To solve numerically (A.1)–(A.2), our approach is to rewrite the above problem in a variational form
and use a finite element method. Multiplying (A.1) by w ∈ L2(Ω) and integrating over Ω, we get

(A.3) ∂t

ˆ
Ω
v(t, x)w −

ˆ
Ω

ˆ
Ω
K(x, y)v(t, y)w(x) dydx−

ˆ
Ω
a(x)v(t, x)w = 0

To approximate the time derivation, we use standard Euler approximation scheme. For the space dis-
cretisation of v(t, x), we use the standard Lagrange finite elements. Let us look at the non-local term. If
we set,

v(tn, x) ≈
N∑
i=1

v
(n)
j wj

where wj is the j element of a finite element basis. Then, for w = wi, we have
ˆ

Ω

ˆ
Ω
K(x, y)v(t, y)w(x) dydx ≈

ˆ
Ω

ˆ
Ω
K(x, y)

N∑
j=1

v
(n)
j wj(y)wi(x) dydx,

which can be rewritten as follows

(A.4)
ˆ

Ω

ˆ
Ω
K(x, y)v(t, y)w(x) dydx ≈

N∑
j=1

v
(n)
j

(ˆ
Ω

ˆ
Ω
K(x, y)wj(y)wi(x) dydx

)
If we interpolate the map x, y 7→ K(x, y) on the fem basis {wi(x)wj(y)} of L2(Ω)× L2(Ω), we have

(A.5) K(x, y) ≈
N∑
k=1

N∑
l=1

K(k, l)wk(x)wl(y)

Plugging the interpolation (A.5) in the relation (A.4), we get
ˆ

Ω

ˆ
Ω
K(x, y)wj(y)wi(x) dydx ≈

N∑
k=1

N∑
l=1

(ˆ
Ω

ˆ
Ω
K(l, k)wj(y)wi(x)wl(x)wk(y) dydx

)
which rewrites

(A.6)
ˆ

Ω

ˆ
Ω
K(x, y)wj(y)wi(x) dydx ≈

N∑
k=1

N∑
l=1

K(l, k)

ˆ
Ω
wj(y)wk(y) dy

ˆ
Ω
wl(x)wi(x) dx.

Now set M and K to be the following square matrices

Mij :=

ˆ
Ω
wi(y)wj(y) dy and Kij := K(xi, yj).

Then (A.6) can be expressed as follows:

(A.7)
ˆ

Ω

ˆ
Ω
K(x, y)wj(y)wi(x) dydx ≈

N∑
k=1

N∑
l=1

MilKlkMkj

The finite element matrix representing the integral term is then given by the multiplication of three
matrices MKM . Thus

(A.8)
ˆ

Ω

ˆ
Ω
K(x, y)v(t, y)w(x) dydx ≈

N∑
j=1

v
(n)
j (MKM)ij = MKM(vn)

With this finite element approximation of the integral terms, we implement a standard Euler semi-
implicit scheme using FreeFem++ [22] to compute numerically the solution of (1.1)–(1.2). To guarantee
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the convergence of the scheme used, the mesh used is an adapted mesh composed of approximately 17000
triangles.
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