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Abstract. We are interested in the long time behaviour of the positive solutions

of the Cauchy problem involving the integro-differential equation

∂tu(t, x) =

ˆ
Ω
m(x, y) (u(t, y)− u(t, x)) dy+

(
a(x)−

ˆ
Ω
k(x, y)u(t, y) dy

)
u(t, x),

supplemented by the initial condition u(0, ·) = u0 in Ω. Such a problem is used
in population dynamics models to capture the evolution of a clonal population

structured with respect to a phenotypic trait. In this context, the function

u represents the density of individuals characterized by the trait, the domain of
trait values Ω is a bounded subset of RN , the kernels k and m respectively account

for the competition between individuals and the mutations occurring in every

generation, and the function a represents a growth rate. When the competition
is independent of the trait, we construct a positive stationary solution which

belongs to the space of Radon measures on Ω. Moreover, in the case where this

measure is regular and bounded, we prove its uniqueness and show that, for any
non-negative initial datum in L1(Ω)∩L∞(Ω), the solution of the Cauchy problem

converges to this limit measure in L2(Ω). We also exhibit an example for which
the measure is singular and non-unique, and investigate numerically the long
time behaviour of the solution in such a situation. The numerical simulations
seem to reveal a dependence of the limit measure with respect to the initial
datum.
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1. Introduction

In this paper, we are interested in the evolution of a clonal population structured
with respect to a phenotypic trait and essentially subjected to three processes: mu-
tation, growth, and competition. As an example, one can think of a virus population
structured by its virulence, as this trait can be easily quantified from experimental
data. For such type of population, a mathematical model commonly used (see for
instance [10, 9, 21, 23, 11, 12, 30, 14, 13, 31, 32]) is based on the following partial
integro-differential equations:

∀(t, x) ∈ R∗+ × Ω, ∂tu(t, x) =M[u](t, x) +

(
a(x)−

ˆ
Ω

k(x, y)u(t, y) dy

)
u(t, x),(1)

∀x ∈ Ω, u(0, x) = u0(x),(2)

in which the non-negative function u is the density of individuals of the considered
population characterized by the trait x, the functions k and a are respectively a kernel
accounting for interaction between individuals through competition and a growth
rate, the set Ω is a bounded domain of RN , andM denotes a linear diffusion operator
modelling the mutation process. Depending on the context, several kinds of diffusion
operators have been considered in the literature, see [10, 9, 23, 11, 3, 14, 20, 26, 31,
29, 27] among others. In the present work, our attention is focused on models for
which the operator M is integral and of the form

(3) ∀v ∈ L1(Ω) ∩ L∞(Ω), M[v](x) :=

ˆ
Ω

m(x, y) (v(y)− v(x)) dy,

the function m being a positive kernel satisfying some integrability conditions.
Lately, this type of integro-differential equation has attracted a lot of interest and

much effort has been made to analyse the solutions of (1). In particular, existence
of global solutions in C1(R+, L

1(Ω) ∩ L∞(Ω)) for any non-negative initial datum in
L∞(Ω) and fairly general assumptions on the functions k, m, a and the domain Ω was
established in [11, 12, 20, 13], and the local stability of bounded continuous stationary
solutions in unidimensional domains Ω ⊂ R was investigated in [31, 13, 32]. However,
the analysis of stationary solutions of (1) in higher dimension remains to be done,
whereas the long time behaviour of positive solutions of problem (1)-(2) is still not
fully understood.

When mutations are neglected (that is, when m ≡ 0), equation (1) is reduced to

(4) ∀(t, x) ∈ R∗+ × Ω, ∂tu(t, x) =

(
a(x)−

ˆ
Ω

k(x, y)u(t, y) dy

)
u(t, x),

and, for any generic positive initial datum u0, the solution to (4)-(2) is known to
converge weakly to a positive Radon measure µ [22, 20, 25]. This measure is, in some
sense, a stationary solution of (4) representing an evolutionarily stable strategy for
the system. For example, when the kernel k is positive and does not depend on the
trait, the support of µ lies in the set A := {x ∈ Ω | ∀y ∈ Ω, a(y) ≤ a(x)}, and one
may check in such a situation that the sum of Dirac masses

µ =
∑
xi∈A

a(xi)

k(xi)
δxi ,

is indeed a stationary solution of the equation. Moreover, when the measure µ is
unique, any positive solution u(t, ·) of (4)- (2) converges weakly to it as t tends to
infinity (see [25] for a proof).
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Since the mutation process can be seen as a diffusion operator on the trait space,
it is expected that the long time behaviour of a positive solution to problem (1)-(2)
is simple and that concentration phenomena do not occur. This is verified when
the mutation operator M is a classical elliptic operator [26, 16]. For an integral
operator, as in the present case, the existence of bounded equilibria when the domain
Ω is unidimensional seems to give credit to such a conjecture. However, we prove
that it is false in higher dimension, by exhibiting a class of situations for which a
positive singular measure µ, solution of (1), can be constructed and by investigating
numerically the long time behaviour of positive solutions of the corresponding Cauchy
problem.

1.1. Main results. Let us state precisely the assumptions on the domain Ω, the
kernels k and m and the function a under which the results are obtained. First, we
suppose that the domain Ω is an open bounded connected set of RN with a Lipschitz
boundary, that the function a is such that

(5) a is continuous on Ω and positive,

and that the function m is a non-negative symmetric Carathéodory kernel function,
that is,

(6)


∀(x, y) ∈ Ω× Ω, m(x) ≥ 0, m(x, y) = m(y, x),

∀x ∈ Ω, m(x, ·) is measurable,

for a. e. y in Ω, m(·, y) is continuous.

Finally, we assume that the kernel k is independent of the trait, that is, for any (x, y)
in Ω× Ω, k(x, y) = k(y), and that it satisfies the following condition:

(7) there exist positive constants c0 and C0 such that c01Ω ≤ k ≤ C01Ω,

where 1Ω denotes the characteristic function of the set Ω.

We start by considering stationary solutions of (1), that is, satisfying the equation

(8) ∀x ∈ Ω, M[u](x) +

(
a(x)−

ˆ
Ω

k(y)u(y) dy

)
u(x) = 0.

Under the above assumptions, we prove that there exists a positive Radon measure
solving (8) in a weak sense.

Theorem 1.1. Assume that the functions a, m and k respectively satisfy conditions
(5) to (7). Then, there exists a positive Radon measure µ such that ∀ϕ ∈ Cc(Ω),

(9)

ˆ
Ω

(M[ϕ](x) + a(x)ϕ(x)) dµ(x) =

(ˆ
Ω

ϕ(x) dµ(x)

)(ˆ
Ω

k(x) dµ(x)

)
.

Let λp be the principal eigenvalue of the operator M+ a defined by

λp(M+ a) := sup {λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0 and M[ϕ] + (a+ λ)ϕ ≤ 0 in Ω}.

We have the following characterisation for the measure µ.

• If λp is associated with an eigenfunction ϕp which belongs to L1(Ω), then µ is
an absolutely continuous measure, that is, there exists ū in L1(Ω) such that
dµ(x) = ū(x)dx, and the unique strong solution to equation (8). Moreover,
the function ū is in L∞(Ω) when the principal eigenfunction ϕp belongs to
L∞(Ω).
• Otherwise, µ is a singular measure.
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As a consequence of this theorem, the existence of a singular measure solution to
(9) is strongly related to the non-existence of an integrable principal eigenfunction
for the non-local operator M+ a, a result which was proved recently [15, 34, 17].

Next, the global stability of the measure µ and the long time behaviour of positive
solutions of the problem (1)-(2) are analysed. When the measure is regular, we have
the following convergence result.

Theorem 1.2. Assume that the functions a, m and k respectively satisfy conditions
(5) to (7) and that there exists an absolutely continuous positive Radon measure µ,
such that dµ(x) = ū(x) dx, solution to (8). Assume further that the function ū belongs
to L∞(Ω). Then, for any non-negative initial datum u0 in L1(Ω)∩L∞(Ω), the positive
solution u of problem (1)-(2) satisfies

lim
t→∞

‖u(t, ·)− ū‖L2(Ω) = 0.

Note that this last global stability result implies the uniqueness of the measure
solution of (8). On the contrary, when no regular positive Radon measure exists, the
convergence of a positive solution of (1) to a stationary one is delicate to analyse. To
shed light on the possible dynamics prevailing in such a situation, we have conducted
a few numerical experiments.

1.2. Numerical simulations. In order to gain some insight on the long time be-
haviour of solutions of problem (1)-(2), we compute approximate solutions, for dif-
ferent choices of growth function a and initial datum u0, using a numerical method.
Limiting ourselves to preliminary computations, the retained configuration is such
that the two-dimensional domain Ω = B1/4(0) the open ball of radius 0.25 centred
at the origin, and the competition and mutation kernels are two constant functions,
such that k ≡ 1 and m ≡ ρ, with ρ a positive constant, respectively. The problem to
be solved thus reduces to the equation

(10) ∂tu(t, x) = ρ

ˆ
Ω

(u(t, y)− u(t, x)) dy +

(
a(x)−

ˆ
Ω

u(t, y) dy

)
u(t, x),

for any (t, x) in R∗+ × Ω, completed by the initial condition

(11) ∀x ∈ Ω, u(0, x) = u0(x).

1.2.1. A simple growth rate. We first consider a configuration in which the growth
rate achieves its maximum at a single point, a case for which the uniqueness of the
stationary solution can be shown.

Proposition 1. For any positive value ρ, there exist a unique positive measure µ
which is a stationary solution of (10), and a critical value ρ∗ such that this measure
is singular for ρ < ρ∗ or regular otherwise. In addition, for any non-negative initial
datum u0 in L1(Ω)∩L∞(Ω), the solution of problem (10)-(11) converges weakly to µ.

This proposition is a direct consequence of Theorem 1.1 and of the uniform L1

estimates obtained in Section 3. To illustrate its conclusions, we take a(x) = 1 −√
‖x‖2, where ‖ · ‖2 denotes the Euclidean norm in R2, and solve numerically the

problem. The obtained results, presented in Figures 1 and 2, provide a clear picture
of the dynamics of the solution with respect to the constant value of the mutation
rate.
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(a) t = 5 (b) t = 20 (c) t = 100 (d) t = 1000

Figure 1. Numerical approximation of the solution of problem (10)-
(11) at different times, starting from a uniform initial density with
value 1. The mutation and competition rates are constant and set
to 2 and 1 respectively, while the growth rate function achieves its
maximum at the origin. We observe a convergence of the approx-
imate solution towards a regular stationary state, the stationarity
being attained numerically around t = 590.

(a) t = 5 (b) t = 20 (c) t = 100 (d) t = 1000

Figure 2. Numerical approximation of the solution of problem (10)-
(11) at different times, starting from a uniform initial density with
value 1. The mutation and competition rates are constant and set
respectively to 0.01 and 1, while the growth rate function achieves
its maximum at the origin. We observe a very slow convergence
towards a stationary state (as the approximate solution continues to
take increasing values in a single element at t = 3000) characteristic
of a singular concentration phenomenon.

1.2.2. A complex growth rate. We next explore a situation for which the growth rate
reaches its maximum at multiple points. In such a setting, we expect the stationary
measure to be non-unique. In order to numerically investigate this conjecture, we
consider a growth rate function of the form

a(x) = 1− 4

√
(x1 − 0.1)2 + x2

2
4

√
(x1 + 0.1)2 + x2

2
4

√
x2

1 + (x2 − 0.1)2 4

√
x2

1 + (x2 + 0.1)2.

With this choice, for a sufficiently small constant value ρ of the mutation rate, we
can show that there are at least four different positive Radon measures which are
stationary solutions of the problem. The impact of the non-uniqueness can be seen
in the simulations presented in Figures 3 and 4. Indeed, as soon as the regime allows
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several singular stationary measures to exist, we observe that the outcome of the
simulation may drastically differ depending on the initial datum. In contrast, when
the mutation rate is such that the stationary measure is regular, the stationary state
is a global attractor (see Figure 5).

(a) t = 0 (b) t = 5 (c) t = 20 (d) t = 50

(e) t = 100 (f) t = 250 (g) t = 500 (h) t = 1000

Figure 3. Numerical approximation of the solution of problem (10)-
(11) at different times. The mutation and competition rates are
constant and set respectively to 0.01 and 1, the growth rate function
achieves its maximum at four points and the initial datum u0 is such
that it vanishes on three of these four points. We observe a slow
convergence of the numerical solution towards the approximation of
a singular stationary measure containing a single Dirac mass.

1.3. Outline. The paper is organised as follows. We start by recalling important
facts about the spectral properties of the class of non-local operators considered in
Section 2. Uniform estimates are derived by means of non-linear relative entropy
formulas in Section 3, leading to proofs of Theorems 1.1 and 1.2 in Section 4. Finally,
the numerical method used for the simulations is briefly described in an appendix.

2. Spectral properties of non-local operators

Consider the eigenproblem

(12) M[ϕ] + aϕ+ λϕ = 0 in Ω,

in which M is the integral operator defined by (3), whose kernel satisfies condition
(6). When the function a is not constant, neither the operator M + a + λ nor its
inverse are compact, and the Krein–Rutman theory fails in providing existence of the
principal eigenvalue of M + a. However, a variational formula, introduced in [6] to
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(a) t = 0 (b) t = 5 (c) t = 20 (d) t = 50

(e) t = 100 (f) t = 250 (g) t = 500 (h) t = 1000

Figure 4. Numerical approximation of the solution of problem (10)-
(11) at different times. The mutation and competition rates are
constant and set respectively to 0.01 and 1, the growth rate function
achieves its maximum at four points and the initial datum u0 is
such that it vanishes on two of these four points. We observe a slow
convergence of the numerical solution towards the approximation of
a singular stationary measure containing two Dirac masses.

characterise the principal eigenvalue of elliptic operators, can be transposed to the
operator M+ a. Namely, the quantity

(13) λp(M+ a) := sup {λ ∈ R | ∃ϕ ∈ C(Ω), ϕ > 0 and M[ϕ] + aϕ+ λϕ ≤ 0 in Ω}
is well defined and called the generalised principal eigenvalue of M + a. It is also
well-known (see [15, 34, 19, 4, 33]) that λp(M + a) is not always an eigenvalue of
M + a in a reasonable Banach space, which means there is not always a positive
continuous eigenfunction associated with it. Nevertheless, as shown in [17], there
always exists an associated positive Radon measure.

Theorem 2.1 ([17]). Let Ω ⊂ RN be a bounded domain, a be a continuous function
over Ω, M be the integral operator defined by (3), whose kernel m satisfies condition
(6), and define

M(x) :=

ˆ
Ω

m(x, y) dy, σ := sup
x∈Ω

(a(x)−M(x)), A :=
{
x ∈ Ω | a(x)−M(x) = σ

}
.

Then, there exists a positive Radon measure µp such that, for any function ϕ in
Cc(Ω), we haveˆ

Ω

ϕ(x)

(ˆ
Ω

m(x, y) dµp(y)

)
dx+

ˆ
Ω

ϕ(x)(a(x)−M(x) + λp) dµp(x) = 0.

In addition, we have the following dichotomy:
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(a) t = 0 (b) t = 5 (c) t = 20 (d) t = 100

(e) t = 0 (f) t = 5 (g) t = 20 (h) t = 100

Figure 5. Numerical approximation of the solution of problem (10)-
(11) at different times for two configurations, which differ only in
their initial datum. The mutation and competition rates are constant
and set respectively to 2 and 1, the growth rate function achieves
its maximum at four points and the initial datum u0 is such that
it vanishes on three (subfigures (A) to (D)) or two (subfigures (E)
to (H)) of these points. In both cases, rapid convergence of the
approximate solution towards an identical regular stationary state is
observed, the numerical stationarity being attained around t = 85.

• either there exists ϕp in L1(Ω), ϕp > 0, such that dµp(x) = ϕp(x) dx,

• or there exists gp in C(Ω), gp > 0, and ν a positive singular measure with
respect to the Lebesgue measure, whose support lies in the set A, such that

dµp(x) =
gp(x)

σ − (a(x)−M(x))
dx+ dν(x).

The measure µp can be characterised more precisely and there exists a simple
criterion guaranteeing its regularity.

Proposition 2 ([15, 19, 4, 18]). Under the assumptions of the preceding theorem,
one has dµp(x) = ϕp(x) dx with ϕp in C(Ω), ϕp > 0, if and only if λp(M+ a) < −σ.

We conclude with an alternate characterisation of λp(M+ a). In the spirit of the
works in [7, 5, 8], let us define the quantity

λ′p(M+ a) := inf{λ ∈ R | ∃ϕ ∈ C(Ω) ∩ L∞(Ω), ϕ ≥ 0, M[ϕ] + (a+ λ)ϕ ≥ 0 in Ω}.

As in the case of elliptic operators, we have the following result.

Theorem 2.2 ([19, 4, 18]). Let Ω ⊂ RN be a bounded domain, a be a continuous
function over Ω, M be the integral operator defined by (3), whose kernel m satisfies
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condition (6). Then, we have

λp(M+ a) = λ′p(M+ a).

3. A priori estimates

In this section, given a non-negative initial datum u0 in L1(Ω)∩L∞(Ω), we establish
some uniform in time a priori estimates on the solution of problem (1)-(2). To do so,
we start by proving a non-linear relative entropy identity satisfied by any solution of
(1).

Proposition 3 (general identity). Let Ω ⊂ RN be a bounded domain and assume
that the functions a, m and k respectively satisfy conditions (5) to (7). Let H be a
smooth (of class C1 at least) function. Finally, let the function ū in L1(Ω) ∩ L∞(Ω)
be a positive stationary solution of (1), and the function u in C1((0,+∞), L∞(Ω))
be a solution of (1). Then we have

(14) ∀t ∈ R∗+,
d

dt
HH,ū[u](t) = −DH,ū[u](t) + Γ(t)

ˆ
Ω

ū(x)H ′
(u
ū

(t, x)
)
u(t, x) dx,

where HH,ū[u], DH,ū(u) and Γ are respectively defined by

HH,ū[u](t) :=

ˆ
Ω

H

(
u(t, x)

ū(x)

)
(ū(x))

2
dx,

Γ(t) :=

ˆ
Ω

k(y)(ū(y)− u(t, y)) dy,

DH,ū[u](t) :=

ˆ
Ω2

H

(
u(t, x)

ū(x)

)
−H

(
u(t, y)

ū(y)

)
+H ′

(
u(t, x)

ū(x)

)(
u(t, x)

ū(x)
− u(t, y)

ū(y)

)
dν,

where ν is the measure on Ω× Ω defined by ν := m(x, y)ū(x)ū(y) dx dy.

Proof:

Since the kernel k satisfies condition (7) and defining Γ as above, we have from
equation (1) that, for all t in R∗+ and almost every x in Ω,

∂tu(t, x) =M[u](t, x) +

(
a(x)−

ˆ
Ω

k(y)ū(y) dy

)
u(t, x) + Γ(t)u(t, x).

The function ū being a positive stationary solution of (1), we also have that, for
almost every x in x in Ω,

a(x)−
ˆ

Ω

k(y)ū(y) dy = − 1

ū(x)
M[ū](x),

and we can rewrite the above equation as follows:

∀t ∈ R∗+, for a. e. x ∈ Ω, ∂tu(t, x) =M[u](t, x)− u(t, x)

ū(x)
M[ū](x) + Γ(t)u(t, x).

Multiplying this identity by the function ū(x)H ′
(

u(t,x)
ū(x)

)
and integrating over Ω, we

find that, for all t in R∗+,

ˆ
Ω

ū(x)H ′
(
u(t, x)

ū(x)

)
∂tu(t, x) =

ˆ
Ω

H ′
(
u(t, x)

ū(x)

)
(ū(x)M[u](t, x)− u(t, x)M[ū](x))

+ Γ(t)

ˆ
Ω

ū(x)H ′
(
u(t, x)

ū(x)

)
u(t, x).
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Using definition (3) and rearranging the terms, we get, for all t in R∗+,

ˆ
Ω

ū(x)H ′
(
u(t, x)

ū(x)

)
∂tu(t, x)dx =

ˆ
Ω2

H ′
(
u(t, x)

ū(x)

)(
u(t, y)

ū(y)
− u(t, x)

ū(x)

)
dν

+ Γ(t)

ˆ
Ω

ū(x)H ′
(
u(x)

ū(t, x)

)
u(t, x)dx,

where ν stands for the positive measure ν := m(x, y)ū(x)ū(y)dxdy.
Due to the symmetry property of the kernel m, we straightforwardly see that

∀t ∈ R∗+,
ˆ

Ω2

(
H

(
u(t, x)

ū(x)

)
−H

(
u(t, y)

ū(y)

))
dν = 0,

and, by combining the above equalities and using the remaining definitions, we finally
reach

∀t ∈ R∗+,
d

dt
HH,ū[u](t) = −DH,ū[u] + Γ(t)

ˆ
Ω

ū(x)H ′
(
u(t, x)

ū(x)

)
u(t, x) dx.

�

Remark 1. When k ≡ 0, equation (1) is linear and relative entropy formulas are
well-known in this case [28].

Remark 2. When the function H is non-decreasing and ū is only assumed to be a
stationary super-solution of (1), we clearly see from the above proof that

∀t ∈ R∗+,
d

dt
HH,ū[u](t) ≤ −DH,ū[u](t) + Γ(t)

ˆ
Ω

ū(x)H ′
(u
ū

(t, x)
)
u(t, x) dx.

Similarly, if ū is a positive stationary sub-solution of (1), we have

∀t ∈ R∗+,
d

dt
HH,ū[u](t) ≥ −DH,ū[u](t) + Γ(t)

ˆ
Ω

ū(x)H ′
(u
ū

(t, x)
)
u(t, x) dx.

Equipped with this general relative entropy identity, we are in a position to derive
useful differential inequalities.

Proposition 4. Let Ω ⊂ RN be a bounded domain and assume that the functions a, k
and m respectively satisfy conditions (5) to (7). Let the functions ū and u be defined
as in Proposition 3, q in [1,+∞) and Hq be the smooth convex function Hq : s 7→ sq.

Then the functional F [u] := log

(
HHq,ū[u]

(HH1,ū[u])
q

)
satisfies

(15) ∀t ∈ R∗+,
d

dt
F [u](t) = − 1

HHq,ū[u](t)
DHq,ū[u](t) ≤ 0.

Moreover, we have for all t ∈ R∗+,

(16) DHq,ū[u](t) =
q

2

ˆ
Ω2

(
u(t, x)

ū(x)
− u(t, y)

ū(y)

)((
u(t, x)

ū(x)

)q−1

−
(
u(t, y)

ū(y)

)q−1
)
dν,

where ν is the positive measure in Ω× Ω defined by ν := m(x, y)ū(x)ū(y)dxdy.
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Remark 3. When q = 2, we observe that HH2,ū[u](t) = ‖u(t, ·)‖2L2(Ω), yielding a

Lyapunov functional which involves the L2(Ω)-norm of u(t, ·) instead of a weighted
Lq(Ω)-norm. Indeed, we have, for all t in R∗+,

d

dt

(
log

(
‖u(t, ·)‖2L2(Ω)

(HH1,ū[u](t))
2

))
= − 1

‖u(t, ·)‖2L2(Ω)

ˆ
Ω2

(
u(t, x)

ū(x)
− u(t, y)

ū(y)

)2

dν.

Proof of Proposition 4:

Owing to Proposition 3, we have, for H = Hq,

∀t ∈ R∗+,
d

dt
HHq,ū[u](t) = −DHq,ū[u](t) + q Γ(t)

ˆ
Ω

ū(x)

(
u(t, x)

ū(x)

)q−1

u(t, x) dx,

which, by definition of HHq,ū[u], can be written

∀t ∈ R∗+,
d

dt
HHq,ū[u](t) = −DHq,ū[u](t) + q Γ(t)HHq,ū[u](t).

A quick computation showing that DH1,ū(u) = 0, we therefore obtain, setting q = 1,

∀t ∈ R∗+,
d

dt
HH1,ū[u](t) = Γ(t)HH1,ū[u](t).

Since

∀q ∈ [1,+∞), ∀t ∈ R+, HHq,ū[u](t) > 0,

we have, for all t in R∗+,

d

dt
(log(HH1,ū[u](t))) = Γ(t),(17)

∀q ∈ (1,+∞),
d

dt

(
log(HHq,ū[u](t))

)
= − 1

HHq,ū[u](t)
DHq,ū[u](t) + q Γ(t),(18)

and, combining these two relations, we end up with

∀t ∈ R∗+,
d

dt

(
log

( HHq,ū[u](t)

(HH1,ū[u](t))
q

))
= − 1

HHq,ū[u](t)
DHq,ū[u](t).

Equality (16) then follows from direct computations, by using symmetry and an
obvious change of variables.

�

We may now obtain uniform in time a priori bounds on the L1(Ω)-norm of a
solution to problem (1)-(2).

Lemma 3.1. Let Ω ⊂ RN be a bounded domain and assume that the functions a, m
and k respectively satisfy conditions (5) to (7). Let the function u in C1(R∗+, L1(Ω)∩
L∞(Ω)) be a non-negative solution of the Cauchy problem (1)-(2) with non-negative
initial datum u0 in L1(Ω) ∩ L∞(Ω), such that ‖u0‖L1(Ω) 6= 0. Then, there exist two
positive constants c1 and C1, depending on u0, such that

∀t ∈ R+, c1 ≤ ‖u(t, ·)‖L1(Ω) ≤ C1.

Proof:

We first observe that large (respectively small) constants are stationary super-
solutions (respectively sub-solutions) of equation (1). Indeed, given a constant C
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such that C ≥ sup
x∈Ω

(
a(x)´

Ω
k(z) dz

)
, one has

∀x ∈ Ω, M[C] + C

(
a(x)− C

ˆ
Ω

k(z) dz

)
= C

(
a(x)− sup

x∈Ω
a(x)

)
≤ 0,

and similarly, for c ≤ inf
x∈Ω

(
a(x)´

Ω
k(z) dz

)
,

∀x ∈ Ω, M[c] + c

(
a(x)− c

ˆ
Ω

k(z) dz

)
= c

(
a(x)− inf

x∈Ω
a(x)

)
≥ 0.

Therefore, from Proposition 3 and Remark 2, choosing the stationary solution ū as a
large, respectively small, constant and considering the convex function H = H1, we

obtain, for all t in R∗+ and C ≥ supx∈Ω

(
a(x)´

Ω
k(z) dz

)
,

d

dt
‖u(t, ·)‖L1(Ω) ≤ C

(ˆ
Ω

k(z) dz −
ˆ

Ω

k(z)u(t, z) dz

)
‖u(t, ·)‖L1(Ω),

respectively, for all t in R∗+ and c ≤ infx∈Ω

(
a(x)´

Ω
k(z) dz

)
,

d

dt
‖u(t, ·)‖L1(Ω) ≥ c

(ˆ
Ω

k(z) dz −
ˆ

Ω

k(z)u(t, z) dz

)
‖u(t, ·)‖L1(Ω).

Using the fact that the kernel k satisfies condition (7), we finally get, for all t in R∗+,

C ≥ supx∈Ω

(
a(x)´

Ω
k(z) dz

)
, and c ≤ infx∈Ω

(
a(x)´

Ω
k(z) dz

)
d

dt
‖u(t, ·)‖L1(Ω) ≤ C

(ˆ
Ω

k(z) dz − c0‖u(t, ·)‖L1(Ω)

)
‖u(t, ·)‖L1(Ω),

d

dt
‖u(t, ·)‖L1(Ω) ≥ c

(ˆ
Ω

k(z) dz − C0‖u(t, ·)‖L1(Ω)

)
‖u(t, ·)‖L1(Ω).

Let us c1 and C1 be the following positive constants,

c1 := min

{
‖u0‖L1(Ω);

´
Ω
k(z) dz

C0

}
,

C1 := max

{
‖u0‖L1(Ω);

´
Ω
k(z) dz

c0

}
.

From the logistic character of these differential inequalities and since ‖u0‖L1(Ω) > 0,
we deduce that, for all t in R+,

c1 ≤ ‖u(t, ·)‖L1(Ω) ≤ C1.

�

Remark 4. One may observe that the above proof relies on the fact that the function
k is bounded above and below by positive constants. As a consequence, such an
uniform L1(Ω)-norm estimate holds more generally if the kernel k depends on the
trait x.

4. Proofs

We are now in a position to prove Theorems 1.1 and 1.2.
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4.1. Construction of a stationary state. To construct a solution to stationary
equation (8) in the space of Radon measures (and thus prove Theorem 1.1), we look
for a measure µ satisfying (9). Owing to Theorem 2.1, consider a positive measure
µp associated with λp(M+ a) and normalised in order to have

´
Ω
dµp(x) = 1. We

are reduced to proving the following assertion.

Claim 4.1. There exists a unique positive real number θ such that θ µp satisfies (9).

Proof:

Set θ =
−λp(M+ a)´
Ω
k(x) dµp(x)

. We have, for all ϕ in Cc(Ω),

ˆ
Ω

(M[ϕ](x) + a(x)ϕ(x)) θ dµp = −λp(M+ a)

ˆ
Ω

ϕ(x)θ dµp

= − λp(M+ a)´
Ω
k(x) dµp

(ˆ
Ω

k(x) dµp

)(ˆ
Ω

ϕ(x)θ dµp

)
=

(ˆ
Ω

k(x)θ dµp

)(ˆ
Ω

ϕ(x)θ dµp

)
,

so that θ µp is a solution to (9). To conclude, it remains to show that −λp(M+a) > 0.
We first notice that the couple λ = − infx∈Ω a(x) and ϕ ≡ 1 satisfies

∀x ∈ Ω, M[ϕ](x) + (a(x) + λ)ϕ(x) = a(x)− inf
y∈Ω

a(y) ≥ 0.

It then follows directly from the alternate characterisation of the principal eigenvalue,
given by Theorem 2.2, that

λ′p(M+ a) ≤ − inf
x∈Ω

a(x) < 0.

�

Remark 5. From the above computation, it is clearly seen that the uniqueness of
the stationary state follows from the uniqueness of the measure associated with the
principal eigenvalue λp(M+ a).

4.2. Long time behaviour. This final subsection is devoted to the proof of Theorem
1.2. We now assume that the positive measure µ constructed above is absolutely
continuous and bounded, that is, there exists a function ū in L1(Ω) ∩ L∞(Ω) such
that dµ(x) = ū(x) dx. This measure being linked to the principal eigenvalue λp(M+
a) through Claim 4.1, we have in addition that ū = θ ϕp, with ϕp a function in
L1(Ω) ∩ L∞(Ω). From the regularity of ϕp, we infer that the function ū is a strong
solution of equation (8). Thus, knowing that a positive continuous stationary solution
exists, we may derive further a priori estimates on the solution u of problem (1)-(2).

Lemma 4.2. Let Ω ⊂ RN be a bounded domain and assume that the functions a, m
and k respectively satisfy conditions (5) to (7). Let u in C1((0,+∞), L1(Ω)∩L∞(Ω))
be a non-negative solution of the Cauchy problem (1)-(2) with non-negative initial
datum u0 in L1(Ω)∩L∞(Ω), u0 ≥ 0. Then, there exist two positive constants c2 and
C2, depending on u0, such that

∀t ∈ R∗+, c2 ≤ ‖u(t, ·)‖L2(Ω) ≤ C2.

Proof:
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The uniform lower bound follows directly from Hölder’s inequality combined with
the estimates in Lemma 3.1. Indeed, since the set Ω is bounded, we have

∀t ∈ R∗+, c1 ≤ ‖u(t, ·)‖L1(Ω) ≤
√
|Ω|‖u(t, ·)‖L2(Ω),

where |Ω| denotes the Lebesgue measure of the set Ω.
On the other hand, the uniform upper bound is a straightforward application of

Proposition 4. More precisely, the function ū in L1(Ω) ∩ L∞(Ω) being a positive

stationary solution of (1), the quantity F(t) = log

(
‖u(t,·)‖2

L2(Ω)

(HH1,ū[u](t))2

)
is a decreasing

function of t. Therefore, we have

∀t ∈ R+, ‖u(t, ·)‖L2(Ω) ≤
‖u0‖L2(Ω)

HH1,ū[u0]
HH1,ū[u](t) ≤ C(u0)‖ū‖L∞(Ω)‖u(t, ·)‖L1(Ω),

and, using Lemma 3.1, we finally reach

∀t ∈ R+, ‖u(t, ·)‖L2(Ω) ≤ C(u0)C1 ‖ū‖L∞(Ω).

�

To show that the solution u converges to a stationary state, we introduce the
decomposition

(19) ∀t ∈ R∗+, u(t, ·) = λ(t) ū+ h(t, ·),

in which the function h is such that

∀t ∈ R∗+,
ˆ

Ω

ϕp(x)h(t, x) dx = 0.

Claim 4.3. One has lim
t→+∞

λ(t) = 1 and lim
t→+∞

‖h(t, ·)‖L2(Ω) = 0.

Proof:

Let us denote by 〈·, ·〉L2 the standard inner product over L2(Ω). It stems from the
decomposition of the solution u that

∀t ∈ R+, 〈u(t, ·), ū〉L2 = θ 〈u(t, ·), ϕp〉L2 = λ(t)θ2 〈ϕp, ϕp〉L2 .

Since the function ϕp is positive and bounded over Ω, we have from Lemma 3.1

∀t ∈ R+, c1(u0) inf
x∈Ω

ϕp(x) ≤
ˆ

Ω

u(t, x)ϕp(x) dx ≤ C1(u0)‖ϕp‖L∞(Ω),

which gives

(20) ∀t ∈ R+,
c1(u0) infx∈Ω ϕp(x)

θ
≤ λ(t) ≤

C1(u0)‖ϕp‖L∞(Ω)

θ
.

We next observe that an obvious upper bound for ‖h(t, ·)‖L2(Ω) can be derived
from Lemma 4.2 since, by construction, one has

(21) ∀t ∈ R+, ‖h(t, ·)‖2L2(Ω) ≤ ‖u(t, ·)‖2L2(Ω) ≤ C2.

Substituting to the solution u its decomposition into equation (1), we moreover have

∀(t, x) ∈ R∗+ × Ω, λ′(t) ū(x) +
∂h

∂t
(t, x) = λ(t)M[ū](x) +M[h](t, x)

+

(
a(x)−

ˆ
Ω

k(y)u(t, y) dy

)
(λ(t)ū(x) + h(t, x)) .
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As HH2,ū[h](t) = ‖h(t, ·)‖2L2(Ω) by definition, we obtain, by multiplying the above

equation by h and integrating over the set Ω,〈
∂

∂t
h(t, ·), h(t, ·)

〉
L2

=
1

2

d

dt
HH2,ū[h](t),

=

〈(
a(x)−

ˆ
Ω

k(y)u(t, y) dy

)
h(t, ·) +M[h](t, ·), h(t, ·)

〉
L2

,

where we have used the definition of ū and the fact that 〈ū, h(t, ·)〉L2(Ω) = 0 at any

time t. By proceeding as in the proof of Proposition 3 with the choice H = H2, we
see that

(22) ∀t ∈ R∗+,
d

dt
HH2,ū[h](t) = −DH2,ū[h](t) + Γ(t)HH2,ū[h](t),

with Γ(t) =

(ˆ
Ω

k(y)ū(y) dy −
ˆ

Ω

k(y)u(t, y) dy

)
=

(
−λp −

ˆ
Ω

k(y)u(t, y) dy

)
.

The function HH2,ū[h] being non-negative, we either have that it is positive at all
times or there exists t0 in R+ such that HH2,ū[h](t0) = 0. In the latter case, this
means that u(t0, x) = λ(t0)θϕp(x) for almost every x in Ω. Setting w(t, ·) := η(t)θϕp,
the function η satisfying the initial value problem

d

dt
η(t) = −λp η(t)(1− η(t)),

η(t0) = λ(t0),

so that it tends to 1 as t tends to infinity, we can check that w is a solution of (1) for
all times larger than or equal to t0. Since w(t0, ·) = u(t0, ·), we have, by uniqueness
of the solution of the Cauchy problem (1), that u(t, · = w(t, ·) for all t ≥ t0, which
yields that λ(t) = η(t) and h(t, ·) = 0 for all t ≥ t0. In the former case, we resort to
the following result.

Claim 4.4. One has lim
t→+∞

HH2,ū[h](t) = 0.

Indeed, let us assume for the moment that Claim 4.4 holds. It follows from (19)
that

∀t ∈ R+, HH1,ū[u](t) = 〈u(t, ·), ū〉L2(Ω) = λ(t)〈ū, ū〉L2(Ω),

and we deduce from Proposition 4 that

∀t ∈ R∗+, λ′(t) =

(
−λp(1− λ(t))−

ˆ
Ω

k(y)h(t, y) dy

)
λ(t).

The Claim implying that ‖h(t, ·)‖2L2(Ω) = HH2,ū[h](t) vanishes as t tends to infinity,

we then have that

∀t ∈ R∗+, λ′(t) = −λp(1− λ(t))λ(t) + λ(t) o(1),

with o(1) ≤ C ‖h(t, ·)‖L2(Ω), and an elementary analysis of this ordinary differential
equation finally shows that λ(t) tends to 1 as t tends to infinity.

Let us now conclude by giving the postponed proof of the above Claim.

Proof of Claim 4.4:
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The function HH2,ū[h] being positive, we see, using (22) and following the proof

of Proposition 4, that the function F(t) = log

(
HH2,ū[h](t)

(HH1,ū[u](t))
2

)
verifies

(23) ∀t ∈ R∗+,
d

dt
F(t) = −DH2,ū[h](t)

HH2,ū[h](t)
≤ 0

and is thus both smooth and non-increasing. To prove the Claim, it is thus sufficient,
due to this monotonicity property, to exhibit a sequence (tn)n∈N tending to infinity
such that the corresponding sequence (HH2,ū[h](tn))n∈N has a vanishing limit, which
amounts to proving that inft∈R+

HH2,ū[h](t) = 0.
Now, let us assume that inft∈R+

HH2,ū[h](t) = κ > 0. Then, using (21) and (20)
respectively, we infer there exist three positive constants α, β and γ such that

∀t ∈ R∗+, 0 < κ ≤ HH2,ū[h](t) ≤ α and 0 < β ≤ HH1,ū[u](t) ≤ γ.
As a consequence from the above, there exists a constant c0 such that

(24) lim
t→+∞

F(t) = c0 and lim
t→+∞

d

dt
F(t) = 0.

Let (tn)n∈N be a sequence that tends to infinity. On the one hand, it follows from
(23) and (24) that

(25) lim
n→+∞

DH2,ū[h(tn, ·)] = 0.

On the other hand, the sequence (h(tn, ·))n∈N being bounded in L2(Ω), it has a weakly
convergent subsequence in L2(Ω), which we still denote (h(tn, ·))n∈N, with limit h̄.
We have
(26)

DH2,ū[h(tn, ·)] = 2

(ˆ
Ω

(h(tn, x))2g(x) dx−
ˆ

Ω

ˆ
Ω

m(x, y)h(tn, x)h(tn, y) dx dy

)
,

where the function g(x) :=

ˆ
Ω

m(x, y)
ū(y)

ū(x)
dy is well defined over Ω and bounded

from below by a positive constant C, the functions ū and m being both positive and
bounded. By Fatou’s lemma and the weak convergence of (h(tn, ·))n∈N in L2(Ω), we
thus get ˆ

Ω

(h̄(x))2g(x) dx ≤ lim inf
n→+∞

ˆ
Ω

(h(tn, x))2g(x) dx

and lim
n→+∞

ˆ
Ω

ˆ
Ω

m(x, y)h(tn, x)h(tn, y) dx dy =

ˆ
Ω

ˆ
Ω

m(x, y)h̄(x)h̄(y) dx dy.

Therefore, one has

0 ≤
ˆ

Ω

ˆ
Ω

m(x, y)ū(x)ū(y)

(
h̄(x)

ū(x)
− h̄(y)

ū(y)

)2

dx dy ≤ lim inf
n→+∞

DH2,ū[h(tn, ·)] = 0,

which enforces that h̄ = τ ū for some real constant τ . Recalling that that the function
h(tn, ·) is orthogonal to ū for any integer n, we then find that

τ ‖ū‖2L2(Ω) =

ˆ
Ω

h̄(x)ū(x) dx = lim
n→+∞

ˆ
Ω

h(tn, x)ū(x) dx = 0,

implying that τ = 0. Using (25) and (26) with the fact that h̄ ≡ 0 thus leads to the
following contradiction

κ ≤ lim
n→+∞

ˆ
Ω

(h(tn, x))2 dx ≤ C−1 lim
n→+∞

ˆ
Ω

(h(tn, x))2g(x) dx = 0.
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Hence, one has inft∈R+
HH2,ū[h](t) = 0, which implies that lim inf

t→+∞
HH2,ū[h](t) = 0,

the function being non-negative.
�

The proof is complete.
�

Appendix A. The numerical method

To investigate numerically the asymptotic behaviour of solutions to problem (1)-
(2), we assume that we are in the setting of Lemma 4.2, so that solutions belong to
C1((0, T ], L2(Ω)) for all positive times T . We use a spatial discretisation based on
the finite element method and solve the resulting ordinary differential equation with
an implicit-explicit (IMEX) time-discretisation scheme. In this way, the linear terms
in the equation are treated implicitly in time, while the non-linear reaction term is
dealt with explicitly in time.

The first step in deriving the method is to write the problem in variational form.
To this end, we multiply equation (1) by a test function w in L2(Ω) and integrate
over the domain Ω to obtain

(27) ∀t ∈ R∗+, ∀w ∈ L2(Ω),ˆ
Ω

∂tu(t, x)w(x) dx =

ˆ
Ω

(ˆ
Ω

m(x, y)u(t, y) dy

)
w(x) dx

+

ˆ
Ω

(
a(x)−

ˆ
Ω

m(x, y) dy

)
u(t, x)w(x) dx−

ˆ
Ω

(ˆ
Ω

k(x, y)u(t, y) dy

)
u(t, x)w(x) dx.

Next, given a mesh Th of the domain Ω, that is a collection of geometrically simple
elements (we used triangles in the simulations) partitioning∗ the set Ω, the positive
real parameter h being related to the size of the elements in Th, an approximation
space Vh, which is a finite dimensional subspace of L2(Ω) composed of functions
which are constant on each element K of the partition Th, is constructed. Setting
N = dimVh and considering a basis {wi}i=1,...,N of Vh, the restriction of the above
variational problem to the set Vh gives rise to a system of N ordinary differential
equations, of the form

∀t ∈ (0, T ], M
d

dt
uh(t) = (Ma −Mm)uh(t)−K(uh(t))uh(t) + b(uh(t)),

where the components of the vector uh are the coefficients at time t of the semi-
discrete approximate solution uh(t) in the basis of Vh, i.e. uh(t, x) =

∑n
i=1 ui(t)wi(x),

the matrices M , Ma and Mm are three, in some cases weighted†, so called mass
matrices, respectively defined by

∀(i, j) ∈ {1, . . . , N}2, Mij =

ˆ
Ω

wi(x)wj(x) dx, (Ma)ij =

ˆ
Ω

a(x)wi(x)wj(x) dx,

and (Mm)ij =

ˆ
Ω

(ˆ
Ω

m(x, y) dy

)
wi(x)wj(x) dx,

∗In practice, the mesh may produce only an approximation of the domain, which can possibly

entice several technical difficulties when analysing the convergence of the method.
†In practice, quadrature rules are used to compute the integrals appearing in the definitions of

the mass matrices. As a consequence, these integrals may be only approximately known, depending
on both the form of the kernel functions k and m and the quadrature rule which is used.
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the matrix K(u) is such that

∀(i, j) ∈ {1, . . . , N}2, (K(u))ij =

N∑
l=1

ul

ˆ
Ω

(ˆ
Ω

k(x, y)wl(y) dy

)
wi(x)wj(x) dx,

and the last term is the vector defined by

∀i ∈ {1, . . . , N}, (b(u))i =

N∑
l=1

ul

ˆ
Ω

(ˆ
Ω

m(x, y)wl(y) dy

)
wi(x) dx.

The initial value function of this semi-discrete problem is the projection of the func-
tion u0 onto the chosen finite element space.

While the mass matrices are sparse, that is most of their entries are zero, the matrix
K(u) associated with the non-linear term is a priori dense, which prevents the use
of fully implicit time-integration schemes to solve the previous differential system
when the integer N is large. A common strategy is thus to consider a combination
of implicit and explicit (linear multistep or Runge–Kutta) schemes (see [1, 2] for
instance), the most simple case of being that of the forward and backward Euler
methods, yielding the system of algebraic equations

M
u

(n+1)
h − u

(n)
h

∆t
= (Ma −Mm)u

(n+1)
h −K(u

(n)
h )u

(n)
h + b(u

(n)
h ),

where ∆t is the length of the fixed time step (which has to be chosen small enough

due to stability restrictions) and u
(n)
h is the approximation of uh at time n∆t, n ∈{

1, . . . ,
⌊

T
∆t

⌋}
, to be solved at each iteration.

This method was implemented using FreeFem++ [24] to obtain the numerical sim-
ulations presented in Subsection 1.2. The same mesh was used in all the simulations
and composed of approximately 30000 triangles. The length of the time step was cho-
sen constant and equal to 0.1. Note that the piecewise constant numerical solutions
were interpolated continuously for the visual representations in Figures 1 to 5.
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