
HAL Id: hal-01212840
https://hal.science/hal-01212840v1

Submitted on 7 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Good predictions are worth a few comparisons
Nicolas Auger, Cyril Nicaud, Carine Pivoteau

To cite this version:
Nicolas Auger, Cyril Nicaud, Carine Pivoteau. Good predictions are worth a few comparisons. STACS
2016, Feb 2016, Orléans, France. pp.12:1-12:14, �10.4230/LIPIcs.STACS.2016.12�. �hal-01212840�

https://hal.science/hal-01212840v1
https://hal.archives-ouvertes.fr

Good predictions are worth a few comparisons
Nicolas Auger, Cyril Nicaud, and Carine Pivoteau

Université Paris-Est, LIGM (UMR 8049), F77454 Marne-la-Vallée, France

Abstract
Most modern processors are heavily parallelized and use predictors to guess the outcome of
conditional branches, in order to avoid costly stalls in their pipelines. We propose predictor-
friendly versions of two classical algorithms: exponentiation by squaring and binary search in a
sorted array. These variants result in less mispredictions on average, at the cost of an increased
number of operations. These theoretical results are supported by experimentations that show
that our algorithms perform significantly better than the standard ones, for primitive data types.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases branch misses, binary search, exponentiation by squaring, Markov chains

1 Introduction

As an introductory example, consider the simple problem of computing both the minimum
and the maximum of an array of size n. The naive approach is to compare each entry to the
current minimum and maximum, which uses 2n comparisons. A better solution, in terms of
number of comparisons, is to look at the elements of the array two by two, and to compare
the smallest to the current minimum and the greatest to the current maximum. This uses
only 3n/2 comparisons, which is optimal.1

Figure 1 Execution time of simultaneous
minimum and maximum searching.

In order to observe the benefit of this
optimization, we implemented both versions
(see Figure 3) and measured their execution
time2 for large arrays of uniform random float
in [0, 1]. The results are given in Figure 1 and
are very far from what was expected, since the
naive implementation is almost twice as fast
as the optimized one. Clearly, counting com-
parisons can not explain these counterintuitive
performances. An obvious explanation could
be a difference in the number of cache misses.
However, both implementations make the same
memory accesses, in the same order. Instead,
we turn our attention to the comparisons them-
selves. Most modern processors are heavily parallelized and use predictors to guess the out-
come of conditional branches in order to avoid costly stalls in their pipelines. Every time
a conditional is used in a program, there is a mechanism that tries to predict whether the
corresponding conditional jump will be taken or not. The cost of a misprediction can be
quite large compared to a basic instruction, and should be taken into account in order to
explain accurately the behavior of algorithms that use a fair amount of comparisons.

1 More precisely, an adversary argument can be used to establish a lower bound of b 3n
2 c−2 comparisons,

in the “decision tree with comparisons” model of computation.
2 We used a Linux machine with a 3.40 GHz Intel Core i7-2600 CPU.

© Nicolas Auger, Cyril Nicaud, and Carine Pivoteau;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Good predictions are worth a few comparisons

In this matter, our example is quite revealing since the trick used to lower the number
of comparisons relies on a conditional branch that is unpredictable (for an input taken
uniformly at random) and will cause a substantial increase in the number of mispredictions.
As we will see in the sequel, the expected number of mispredictions caused by the naive
algorithm is Θ(logn), whereas it is Θ(n) for the “optimal” one.

The influence of branch predictors over comparison based algorithms has already been
studied, mostly to acknowledge the over-cost induced by mispredictions. Our approach is
quite the opposite as we propose to take advantage of this feature, by proposing predictor-
friendly versions of two classical algorithms.

Our contributions. After dealing with our introductory example using combinatorial ar-
guments, we turn our attention towards the classical exponentiation by squaring and give a
simple alternative algorithm, which reduces the number of mispredictions without increasing
the number of multiplications. The analysis is based on the study of the Markov chains that
describe the dynamic local predictors (see next section for a brief description of predictors).
Finally, in the same vein, we propose biased versions of the binary search in a sorted array.
We analyze the expected number of mispredictions for local predictors and we also give the
(first to our knowledge) analysis of a global predictor. For these two different problems, we
manage to significantly lower the number of mispredictions by breaking the perfect balance
usually favored in the divide and conquer strategy. In practice, the trade-off between com-
parisons and mispredictions allows a noticeable speed-up in the execution time, when the
comparisons involve primitive data types, which supports our theoretical results.

Related work. Over the past decade, several articles began to address the influence of
branch predictors, and especially the cost of mispredictions, in comparison based algo-
rithms. For instance, Biggar and his coauthors [1] investigated the behavior of branches
for many sorting algorithms, in an extensive experimental study. Brodal, Fagerberg and
Moruz reviewed the trade-offs between comparisons and mispredictions for several sorting
algorithms [3] and studied how the number of inversions in the data affects statistics such
as the number of mispredictions [2]. Moreover, these works introduced the first theoretical
analysis of static branch predictors.

Also interested by the influence of mispredictions on the running time of sorting al-
gorithms, Sanders and Winkel considered the possibility to dissociate comparisons from
branches in their SampleSort, which allows to avoid most of the misprediction cost [13].
Elmasry, Katajainen and Stenmark then proposed a version of MergeSort that is not
affected by mispredictions [6], by taking advantage of some processor-specific instructions.3
The influence of mispredictions was also studied for Quicksort: Kaligosi and Sanders gave
an in-depth analysis of simple dynamic branch predictors to explain how mispredictions
affect this classical algorithm [9]; however, Martínez, Nebel and Wild pointed out that this
is not enough to explain the “better than expected” performances of the dual-pivot version
of QuickSort [11] implemented in Java’s standard library.

Besides, Brodal and Moruz conducted an experimental study of skewed binary search
trees in [4], highlighting that such data structures can outperform well-balanced trees, since
branching to the right or left does not necessarily have the same cost, due to branch pre-
diction schemes. Our work follows the same line, as we also want to take advantage of the
branch predictions, but we focus on algorithms rather than on data structures.

3 Namely, conditional moves, which are now widely available on computers.

N. Auger, C. Nicaud, and C. Pivoteau 3

Strongly
Not

Taken

Not
Taken

Taken
Strongly
Taken

not taken

taken

not taken

taken

not taken

taken

not taken

taken

Not
Taken

Not
Taken

Taken Taken

not taken

taken

not taken

taken

not taken

taken
not taken taken

Figure 2 Two different 2-bit predictors (left: saturating counter, right: flip-on-consecutive).

2 Elements of computer architecture

To analyze the complexity of searching or sorting algorithms, the standard model consists in
counting the number of comparison operations performed. However most modern processors
are pipelined. And to avoid stalling the pipeline when coming across a conditional jump,
the processor tries to predict if the jump will occur and proceeds according to its prediction.
A correctly predicted jump does not stall the pipeline whereas mispredictions lead this one
to be flushed, causing a significant performance loss.4 Therefore, the cost of a comparison
in an “if” statement actually depends on the quality of the prediction.

For any conditional jump, a branch predictor will “guess” if the corresponding branch will
be taken or not. For this purpose, many different strategies have been designed. The simplest
one is a static branch predictor that does not use information from the code execution. It
can, for example, predict that all branches will be taken. To improve its accuracy, a dynamic
branch predictor uses the outcome of past branches to guess whether a particular branch
should be taken or not. We now describe different techniques of dynamic branch prediction.

A 1-bit predictor is a state buffer which remembers the last outcome of the branch; the
guess is that the next outcome will be the same. As an improvement, the 2-bit predictors
try to avoid making two mispredictions when a branch takes an unlikely path. Two slightly
different schemes are given by Figure 2. The saturating counter scheme can be further
improved by keeping more information (k-bit predictors using 2k states). All these predictors
are local: there is one for every conditional (up to some limit in practice).

An history table has 2n entries indexed by the sequence of the last n branches (1 for
taken, 0 otherwise). The entries themselves are usually k-bit predictors. Such a table is said
to be local when its entries correspond to the behavior of one specific branch and are used for
this one only. On the contrary, in a global history table, the outcomes of the most recently
executed branches are used to index the table, which is shared by all the conditionals.

To get the best of both worlds, correlating branch predictors use local and global infor-
mation mixed together, and tournament predictors use an additional dynamic scheme to
decide if they follow the local or the global prediction. These types of predictors are far
beyond what we study in this article, but are worth mentioning for further analysis.

Strictly speaking, mispredictions can only be analyzed on a given assembly code, as they
occur at conditional jumps. In this article, we use C-style pseudo code. We implicitly work
on the non-optimized assembly code, where control structures are translated into conditional
jumps in the standard way. For our experimental results, we checked that it was indeed the
case. Furthermore, we remarked that our good results still hold when considering fully
optimized binaries.

4 For instance, on an Intel Core i7, a misprediction causes a penalty of about 15 cycles [8].

4 Good predictions are worth a few comparisons
4 Good predictions are worth a few comparisons

NaiveMinmax

1 min = max = T[0]
2 for(i=1; i<n; i++){
3 if (T[i] < min)
4 min = T[i]
5 if (T[i] > max)
6 max = T[i]
7 }

T is an array of size n. Both
min and max are returned.

3
2 -Minmax

1 min = max = T[n-1]
2 for(i=0; i<n-1; i+=2){
3 if (T[i] < T[i+1]){
4 if (T[i] < min) min = T[i]
5 if (T[i+1] > max) max = T[i+1]
6 }
7 else{
8 if (T[i+1] < min) min = T[i+1]
9 if (T[i] > max) max = T[i]

10 }
11 }

Figure 3 Naive and optimized implementation of simultaneous maximum and minimum finding.

length n. This algorithms are given in Figure 3 (see also [5, Sec. 9.1]).
In the classical settings for the analysis, the algorithm 3

2 -Minmax is optimal,1 the number
of comparisons performed being asymptotically equivalent to 3

2n. Obviously, the NaiveM-
inmax needs around 2n comparisons.

In order to give an explanation to the graphics presented in Figure 1, where NaiveMin-
max outperforms 3

2 -Minmax, we estimate the expected number of mispredictions for both
algorithms. Our probabilistic model is the following: we consider the uniform distribution
on arrays of size n, where each element is chosen uniformly and independently in [0, 1]. Up
to an event of probability 0 (when the elements of the input are not pairwise distinct), this
is the same as choosing a uniform random permutation of [n], since we only use comparisons
on the elements in both algorithms.

Recall that a min-record (resp. max-record) in an array or a permutation is an element
that is smaller (resp. greater) than any element to its left. Obviously, in NaiveMinmax,
the first conditional line 3 (resp. second conditional line 5) is true for each min-record (resp.
max-record), except for the first position. The number of records in a random permutation
is a well-known statistic, which we can use to establish the following lemma.

I Proposition 1. The expected number of mispredictions performed by NaiveMinmax for
the uniform distribution on arrays of size n is asymptotically equivalent to 4 logn for the
1-bit predictor and to 2 logn for the two 2-bit predictors and the 3-bit saturating counter.

I Proposition 2. The expected number of mispredictions performed by 3
2 -Minmax for

the uniform distribution on arrays of size n is asymptotically equivalent to n
4 for all the

considered predictors.

In light of these results, we observe that the mispredictions occurring in NaiveMinmax
are negligible with respect to comparisons. On the other hand, the additional test used
to optimize 3

2 -Minmax (line 3) causes the number of mispredictions to be comparable to
the number of comparisons performed. We believe this is enough to explain why the naive
implementation performs better (Figure 1) since we know that mispredictions can cost many
CPU cycles and that comparisons are very cheap operations in comparison. Of course, we are
aware that other factors can influence the performances of such simple programs, including
cache e�ects. For our tests we took care to fetch each element of the array only once
and in the same order, so that the cache behavior should not interfere with our results. In
Figure 1, we also give the results obtained with the most commonly used optimization of the

Figure 3 Naive and optimized implementations of simultaneous maximum and minimum finding.

3 Simultaneous maximum and minimum finding

In this section, we go back to the example given in the introduction: We consider two
algorithms that simultaneously compute the minimum and the maximum of an array of
length n. These algorithms are given in Figure 3 (see also [5, Sec. 9.1]). For our analysis,
we consider the local predictors presented in Section 2.

In the classical settings for the analysis, the algorithm 3
2 -Minmax is optimal (see the

footnote1 in the introduction), the number of comparisons performed being asymptotically
equivalent to 3

2n. Obviously, NaiveMinmax needs 2n− 2 comparisons.
In order to give an explanation of the experimental results presented in Figure 1, where

NaiveMinmax outperforms 3
2 -Minmax, we estimate the expected number of mispredic-

tions for both algorithms. Our probabilistic model is the following: we consider the uniform
random distribution on arrays of size n, where each element is chosen uniformly and inde-
pendently in [0, 1]. Up to an event of probability 0 (when the elements of the input are not
pairwise distinct), this is the same as choosing a uniform random permutation of {1, . . . , n},
since we only use comparisons on the elements in both algorithms.

Recall that a min-record (resp. max-record) in an array or a permutation is an element
that is strictly smaller (resp. greater) than any element to its left. Obviously, in NaiveMin-
max, the first conditional at line 3 (resp. the one at line 5) is true for each min-record (resp.
max-record), except for the first position. The number of records in a random permutation
is a well-known statistics, which we can use to establish the following proposition.

I Proposition 1. The expected number of mispredictions performed by NaiveMinmax, for
the uniform distribution on arrays of size n, is asymptotically equivalent to 4 logn for the
1-bit predictor and to 2 logn for the two 2-bit predictors and the 3-bit saturating counter.
The expected number of mispredictions performed by 3

2 -Minmax is asymptotically equivalent
to n

4 for all the considered predictors.

In light of these results, we observe that the mispredictions occurring in NaiveMinmax
are negligible towards the number of comparisons. On the other hand, the additional test
used to optimize 3

2 -Minmax (line 3) causes the number of mispredictions to be comparable
to the number of comparisons performed. We believe this is enough to explain why the
naive implementation performs better (Figure 1), since we know that mispredictions can

N. Auger, C. Nicaud, and C. Pivoteau 5
N. Auger, C. Nicaud, and C. Pivoteau 5

ClassicalPow (x,n)

1 r = 1;
2 while (n > 0) {
3 // n is odd
4 if (n & 1)
5 r = r * x;
6 n /= 2;
7 x = x * x;
8 }

x is a floating-point num-
ber, n is an integer and r
is the returned value.

UnrolledPow (x,n)

1 r = 1;
2 while (n > 0) {
3 t = x * x;
4 // n0 == 1
5 if (n & 1)
6 r = r * x;
7 // n1 == 1
8 if (n & 2)
9 r = r * t;

10 n /= 4;
11 x = t * t;
12 }

GuidedPow (x,n)

1 r = 1;
2 while (n > 0) {
3 t = x * x;
4 if (n & 3) {
5 if (n & 1)
6 r = r * x;
7 if (n & 2)
8 r = r * t;
9 }

10 n /= 4;
11 x = t * t;
12 }

Figure 4 Three versions of the exponentiation by squaring, in C. The & denote the bitwise AND
of the C language.

gcc compiler (-O3) to check that these results withstand strong code optimization.5 In this
particular case, notice that all the branches but the one at line 3 in 3

2 -Minmax are replaced
by conditional moves that are not vulnerable to misprediction. However, our analysis still
holds since the remaining branch concentrates the majority of the mispredictions.

4 Exponentiation by squaring

As we have seen in the previous section, conditional branches with equal probabilities of
going one way or another are particularly harmful when using branch prediction. Besides,
most divide and conquer algorithms feature such branches, since they tend to split problems
into parts of equal size to reach an optimal complexity. In the sequel, we explore two
di�erent ways of disturbing this balance to end up with better performances for two classical
algorithms: binary exponentiation and binary search.

4.1 Modified algorithms
The classical divide and conquer algorithm to compute xn consists in rewriting xn =

(x2)Ân/2Êxn0 , where nk . . . n1n0 is the binary decomposition of n, in order to divide the
size n of the problem by two. This is the algorithm ClassicalPow of Figure 4. As
expected, the conditional branch of line 3 is taken with probability 1

2 , which is what we
want to avoid.6 In order to introduce some imbalance in the algorithm, we first unroll the
loop (UnrolledPow, Figure 4) using the decomposition xn = (x4)Ân/4Ê(x2)n1xn0 . Still,
both conditional branches are taken with probability 1

2 , but we can now guide the algorithm
by injecting the test which determines whether the last two bits of n are 00 or not. This
is the third algorithm of Figure 4. Note that this conditional branch (line 4) is absolutely
unnecessary in the algorithm since it is redundant with the tests of line 5 and 7. But on
the other hand, this branch is taken with probability 1

4 and the branches of line 5 and 7 are
now both taken with probability 2

3 . This is how we aim at using the branches predictions.

5 We can also notice that the di�erence between the execution time of 3
2 -Minmax and NaiveMinmax

is about the same as the gain obtained by using gcc -O3 on 3
2 -Minmax.

6 In our model, n is chosen uniformly at random between 0 and 2k ≠ 1 for some positive k.

Figure 4 Three versions of the exponentiation by squaring, in C. The & denotes the bitwise AND
in the C language.

cost many CPU cycles and that comparisons are cheap operations. Of course, we are aware
that other factors can influence the performances of such simple programs, including cache
effects. In our implementation, we took care to fetch each element of the array only once and
in the same order, so that the cache behavior should not interfere with our results. We also
tried the most commonly used optimization of the gcc compiler (-O3) to check that these
results withstand strong code optimization.5 In this particular case, all the branches but
the one at line 3 in 3

2 -Minmax are replaced by conditional moves that are not vulnerable to
misprediction. Hence, 3

2 -Minmax still causes approximatively 1
4nmispredictions on average.

4 Exponentiation by squaring

We saw in the previous section that conditional branches with equal probabilities of going one
way or another are particularly harmful when using branch prediction. Besides, most divide
and conquer algorithms feature such branches, since they tend to split problems into parts
of equal size to reach an optimal complexity. In the sequel, we explore two different ways
of disrupting this balance, to end up with better performances for two classical algorithms:
exponentiation by squaring and binary search.

4.1 Modified algorithms
The classical divide and conquer algorithm to compute xn consists in rewriting xn =
(x2)bn/2cxn0 , where nk . . . n1n0 is the binary decomposition of n, in order to divide the
size n of the problem by two. This is the algorithm ClassicalPow of Figure 4. As ex-
pected, the conditional branch of line 3 is taken with probability 1

2 , which is what we want
to avoid.6 In order to introduce some imbalance in the algorithm, we first unroll the loop
(UnrolledPow, Figure 4) using the decomposition xn = (x4)bn/4c(x2)n1xn0 . Still, both
conditional branches are taken with probability 1

2 , but we can now guide the algorithm by
injecting the test that determines whether the last two bits of n are 11 or not. This is the

5 Both algorithms are faster, as expected, but the naive version is still almost twice as fast.
6 In our model, n is chosen uniformly at random between 0 and 4k − 1 for some positive k.

6 Good predictions are worth a few comparisons

Pow time (in sec.) loops ×109 mult. ×109 branches ×109 mispred. ×109

classical 7.230 1.250 1.900 1.300 0.674
unrolled 6.316 0.633 1.917 1.317 0.683
guided 5.606 0.633 1.917 1.658 0.554

Figure 5 Some parameters measured during 5.107 computations of xn with the three algorithms
of Figure 4, using the PAPI library.7 The number of branches is given excluding the ones caused
by loops, since these branches do not yield mispredictions.

third algorithm of Figure 4. Note that this conditional branch (line 4) is absolutely unnec-
essary in the algorithm, as it is redundant with the tests of line 5 and 7. But on the other
hand, this branch is taken with probability 3

4 and the branches of line 5 and 7 are now both
taken with probability 2

3 . This is how we aim at using the branch predictions.
To compare their performances experimentally, we computed the floating-point value

of xn using each of the algorithms 5.107 times, with n chosen uniformly at random in
{0, . . . , 226 − 1}. We measured the execution time, as well as some other parameters given
by the latest version of the PAPI library,7 which give access, for instance, to the number of
mispredictions occurring during the execution. These results are depicted on Figure 5. The
first observation is that GuidedPow is 14% faster than UnrolledPow and 29% faster
than ClassicalPow and yet, the number of multiplications performed is essentially the
same for the three algorithms. The main explanation we have come across for the speed-up
between UnrolledPow and ClassicalPow is that the number of loops is divided by two.
As for GuidedPow, the number of loops is the same as for UnrolledPow and it uses 25%
more comparisons, but still the guided version is faster. The main difference between the
two is that the test added at line 4 allows to decrease the number of mispredictions by about
a quarter. We are in similar settings as for the simultaneous minimum and maximum, where
the increased number of comparisons is balanced by less mispredictions. We now proceed
with the analysis of this phenomenon.

4.2 Analysis of the average number of mispredictions for GuidedPow
For the analysis, we consider that n is taken uniformly at random in {0, . . . , N − 1}, for
N = 4k and with k ≥ 1. This model is exactly the same as choosing each of the 2k bits
of the binary representation of n uniformly at random and independently. We consider the
local predictors presented in Section 2.

Let Lk(n) be the number of loop iterations of GuidedPow. This is a random variable,
which is easy to analyze since it is equal to the smallest integer ` such that 4` is greater
than n. In particular, we have E[Lk] = k − 1

3 + o(1) ∼ k.
We now recall, using our algorithm as an example, why Markov chains are the key tools

for that kind of analysis (as done in [9, 11]). Let us consider the first conditional of line 4.
In our model, at each iteration, the condition is true with probability 3

4 , as it is not satisfied
when the last two bits are 00. It yields that the behavior of the predictor associated to
this conditional is exactly described by the Markov chain obtained when changing the edges
labels “taken” by 3

4 and the labels “not taken” by 1
4 (see Figure 6). A misprediction occurs

whenever an edge labeled by “taken” (resp. “not taken”) is used from a state that predicts

7 PAPI 5.4.1.0 , see http://icl.cs.utk.edu/papi.

http://icl.cs.utk.edu/papi

N. Auger, C. Nicaud, and C. Pivoteau 7

S. NT NT T S. T

NT

T

NT

T

NT

T

NT

T

S. NT NT T S. T

1/4

3/4

1/4

3/4

1/4

3/4

1/4

3/4

Figure 6 The saturating counter and its associated Markov chain for the first conditional of
GuidedPow. The bold edges correspond to mispredictions.

“not taken” (resp. “taken”). We also need to know the initial state of the predictor, but it
has no influence on our asymptotic results, as we shall see.

Hence, we reduced our problem to counting the number of times some particular edges
are taken in a Markov chain, when we perform a random walk of (random) length Lk. We
can therefore conclude using the classical Ergodic Theorem [10], which we restated bellow
in order to fit our needs.

I Theorem 2 (Ergodic Theorem). Let (M,π0) be a primitive and aperiodic Markov Chain
on the finite set S. Let π be its stationary distribution. Let E be a set of edges of M , that
is, a set of pairs (i, j) ∈ S2 such that M(i, j) > 0.

For any nonnegative integer n, let Ln be a random variable on nonnegative integers such
that limn→∞ E[Ln] = +∞. Let Xn be the random variable that counts the number of edges in
E that are used during a random walk of length Ln inM (starting from the initial distribution
π0). Then the following asymptotic equivalence holds: E[Xn] ∼ E[Ln]

∑
(i,j)∈E π(i)M(i, j).

When considering a given predictor, under the model where the condition is satisfied with
probability p, we denote byMp its transition matrix, by πp its stationary vector and by µ(p)
its expected misprediction probability defined by µ(p) =

∑
(i,j)∈E πp(i)Mp(i, j), where E is

the set of edges corresponding to mispredictions. As shown in [11], if we denote by µ1(p),
µ2(p) and µ′2(p) the expected misprediction probability of the 1-bit, 2-bit saturating counter
and the flip-on-consecutive 2-bit, then we have:

µ1(p) = 2p(1− p); µ2(p) = p(1− p)
1− 2p(1− p) ; µ′2(p) = 2p2(1− p)2 + p(1− p)

1− p(1− p) . (1)

Similarly, the expected misprediction probability µ3(p) of the 3-bit saturated counter is

µ3(p) = p(1− p) (1− 3p(1− p))
1− 2p(1− p) (2− p(1− p)) . (2)

Applying these mathematical tools to GuidedPow yields the following results. The theorem
is stated for values of N that are not powers of 4, which is more complicated since the bits
are not exactly 0’s and 1’s with probability 1

2 (and not independent). In Section 5 we show
how to deal with the cases where we slightly deviate from the ideal case.

I Theorem 3. Assume that n is taken uniformly at random in {0, . . . , N − 1}. The ex-
pected number of conditional tests in ClassicalPow and UnrolledPow is asymptoti-
cally equivalent to log2 N , whereas it is asymptotically equivalent to 5

4 log2 N for Guided-
Pow. The expected number of mispredictions is asymptotically equivalent to 1

2 log2 N for
ClassicalPow and UnrolledPow, for any kind of predictor. For GuidedPow, it is
asymptotically equivalent to α log2 N , where α = 1

2µ(3/4)+ 3
4µ(2/3), where µ is the expected

misprediction probability associated to the local predictor.

8 Good predictions are worth a few comparisons
8 Good predictions are worth a few comparisons

BiasedBinarySearch

1 d = 0; f = n;
2 while (d < f){
3 m = (3*d+f)/4;
4 if (T[m] < x)
5 d = m+1;
6 else
7 f = m;
8 }
9 return f;

In both cases, T is an array of floats of size n
and x is the number that is searched for.
The classical binary search is obtained by
replacing line 3 of BiasedBinarySearch
by m = (d+f)/2;

SkewSearch

1 d = 0; f = n;
2 while (d < f){
3 m1 = (3*d+f)/4;
4 if (T[m1] > x)
5 f = m1;
6 else {
7 m2 = (d+f)/2;
8 if (T[m2] > x){
9 f = m2;

10 d = m1+1;
11 }
12 else d = m2+1;
13 }
14 }
15 return f;

Figure 7 Algorithms for binary search and skew search. Both return the position where the
element should be inserted.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size about n

2 and compares the value x that is searched for to the middle
of the array in order to determine in which part of the array to continue the search. As
before, if we consider arrays of uniform random floating-point numbers, we get a conditional
branch that is taken with probability 1

2 . A simple way to change that is to partition another
way, for instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see

Figure 7). Carrying on with the divide and conquer strategy but partitioning the array into
three parts of size about n

3 , gives a ternary search. The main issue with this approach is
that, in practice, the division by 3 which is involved is extremely costly in terms of hardware.
Thus, to limit the cost of partitioning, we choose to slice the array into two parts of size n

4
and one part of size n

2 , which can be done using only divisions by powers of two that are
simple binary shifts, as in the initial binary search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performed
better than the classical binary search and the SkewSearch performed much better. Unlike
our precedent examples, the changes we brought in the binary search are quite sensible to
cache e�ects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the e�ects of branch prediction. The results are given
by Figure 8 and we can see that, for medium-size arrays, SkewSearch is up to 23% faster
than the binary search (program compiled with gcc without optimization, in order to keep
track of what really happens during the execution). Experiments in JAVA using a dedicated
micro-benchmarking library8 gave roughly the same results (but with a lesser speedup of

8 Benchmark using jmh: http://openjdk.java.net/projects/code-tools/jmh/

Figure 7 Algorithms for the biased binary search and skew search. Both return the position
where the element should be inserted.

Using Theorem 3 and Equations (1) and (2), we get that α is equal to 25
48 ≈ 0.52,

9
20 = 0.45, 2045

4368 ≈ 0.47 and 1095
2788 ≈ 0.39 for the 1-bit, 2-bit saturated, flip-on-consecutive

2-bit and 3-bit saturated counter, respectively. These values are to be compared with the
1
2 of the other two algorithms. In particular, for the 1-bit predictor, the expected number
of mispredictions is greater for GuidedPow than for ClassicalPow or UnrolledPow.
This predictor is not efficient enough to offset the mispredictions caused by the additional
conditional. For the 3-bit saturated counter, GuidedPow therefore uses ≈ 0.25 log2 n more
comparisons than UnrolledPow, but ≈ 0.11 log2 n less mispredictions.

5 Binary search and variants

5.1 Unbalancing the binary search
We first consider the classical binary search which partitions a sorted array of size n into
two parts of size n

2 and compares the value x that is searched for to the middle of the array
in order to determine in which part of the array to continue the search. As before, if we
consider arrays of uniform random floating-point numbers, we get a conditional branch that
is taken with probability 1

2 . A simple way to change that is to partition another way, for
instance with parts of size about n

4 and 3n
4 , as in the BiasedBinarySearch (see Figure 7).

Carrying on with the divide and conquer strategy but partitioning the array into three parts
of size about n3 , gives a ternary search. The main issue with this approach is that, in practice,
the division by 3 is costly in terms of hardware. Thus, to limit the cost of partitioning, we
choose to slice the array into two parts of size n

4 and one part of size n
2 . This can be done

using only divisions by powers of two, which are simple binary shifts, as in the initial binary
search (see SkewSearch in Figure 7).

5.2 Experiments
As expected at this point in our work, the BiasedBinarySearch experimentally performs
better than the classical binary search and the SkewSearch performs much better. Unlike
our previous examples, the changes we brought in the binary search are quite sensitive to

N. Auger, C. Nicaud, and C. Pivoteau 9

Figure 8 Execution time of the three searching algorithms of Figure 7 for small-size arrays (that
fit in the first-level cache) and medium-size arrays (that fit in the last-level cache).

cache effects, since the way we partition the array influences the location where the memory
is accessed. Thus we conducted experiments on arrays that fit in the last-level cache of our
machine2 in order to mostly measure the effects of branch prediction. The results are given
by Figure 8 and we can see that, for medium-size arrays, SkewSearch is up to 23% faster
than the binary search (program compiled with gcc without optimization, in order to keep
track of what really happens during the execution). Experiments in JAVA using a dedicated
micro-benchmarking library8 gave roughly the same results (but with a lesser speedup of
about 12%), when comparing our skew search to the implementation of the binary search
on doubles in the standard library.

5.3 Local predictors analysis
As in Section 4, we aim at using the Ergodic Theorem (page 7) to obtain a good asymptotic
estimate of the number of mispredictions. We therefore need to compute the expected
number of times each given conditional is performed, in our different algorithms. We consider
that each possible output is equally likely (i.e. the uniform distribution on {0, . . . , n}).

A first order estimation of the expected number of times a given conditional is executed
can be obtained using the following version of Roura’s Master Theorem [12], which has been
simplified for our specific case:9

I Theorem 4 (Master Theorem). Let k ≥ 1, and a1, . . . , ak and b1, . . . , bk be positive real
numbers such that

∑k
i=1 ai = 1. For every i ∈ {1, . . . , k}, let also εi(n) be a real valued

sequence such that bin + εi(n) is a positive integer and εi(n) = O(1
n). Let T (n) be the real

valued sequence that satisfies, for some positive constants c and d,

T (0) = c and T (n) = d+
k∑
i=1

aiT (bin+ εi(n)) +O
(

logn
n

)
for n ≥ 1.

Then T (n) ∼ d
h logn, with h = −

∑k
i=1 ai log bi.

8 Benchmark using jmh: http://openjdk.java.net/projects/code-tools/jmh/. Our algorithms are
compared to Arrays.binarySearch(double[] a, double key).

9 For more general statements, we refer the reader to the seminal work of Roura [12].

http://openjdk.java.net/projects/code-tools/jmh/

10 Good predictions are worth a few comparisons

0, 8

0, 2 3, 8

0, 0 1, 2

1, 1 2, 2

3, 4

3, 3 4, 4

5, 8

3, 3 3, 3

1
3

2
3

1
3

2
3

1
2

1
2

1
3

2
3

1
2

1
2

1
4

3
4

Figure 9 The decomposition tree of BiasedBinarySearch for n = 8.

Before stating our main result, we describe the main steps of our analysis on the algorithm
BiasedBinarySearch. The expected number of iterations L(n) of BiasedBinarySearch
satisfies the relation

L(n) = 1 + an
n+ 1L (an) + bn

n+ 1L (bn) , with an =
⌊n

4

⌋
+ 1, bn =

⌈
3n
4

⌉
and L(0) = 0.

Thus, Theorem 4 applies and L(n) ∼ λ logn, with λ = 4
4 log 4−3 log 3 ≈ 1.78.

Unfortunately, we cannot directly transform the predictor into a Markov chain as we did
in Section 4, because the probabilities an

n+1 and bn

n+1 are not fixed anymore (they slightly
depend on n). However, since an

n+1 = 1
4 + O(1

n) and bn

n+1 = 3
4 + O(1

n), this Markov chain
should still yields a good approximation of the number of mispredictions with Theorem 2.

A convenient way to prove this formally is to introduce the decomposition tree T asso-
ciated with the search algorithms, which is defined as follows. If the input has size n, its
root is labeled by the pair (0, n), and each node corresponds to the possible values of d and
f during one loop of the algorithm. The leaves are the pairs (i, i), for i ∈ {0, . . . , n}; they
are identified with the output of the algorithm in {0, . . . , n}. There is a direct edge between
(d, f) and (d′, f ′) whenever the variables d and f can be changed into d′ and f ′ during the
current iteration of the loop. Such an edge is labeled with the probability f ′−d′+1

f−d+1 , which is
the probability that this update happens in our model. An example of such a decomposition
tree for BiasedBinarySearch is depicted on Figure 9.

By construction, following a path from the root to a leaf, by choosing between left and
right according to the edge probability is exactly the same as choosing an integer uniformly
at random in {0, . . . , n}. Let u = (u0, u1, . . .) be a infinite sequence of elements of [0, 1]
taken uniformly at random and independently. To u is associated its path Pathn(T , u) in
T where, at step i, we go to the left if ui is smaller than the left child edge probability and
to the right otherwise. Let Ln(T , u) be the length of Pathn(T , u). Let also Pathn(I, u) be
the path following the values in u in the ideal (infinite) tree I where we go to the left with
probability 1

4 and to the right with probability 3
4 . Then the following result holds.

I Lemma 5. The probability that Pathn(T , u) and Pathn(I, u) differ at one of the first
Ln(T , u)−

√
logn steps is O(1

logn).

Hence, the algorithm BiasedBinarySearch behaves almost like the idealized version, for
most of the iterations of its main loop, and we have a sufficiently precise estimation of
the error term. This is enough to prove that the idealized version is a correct first order
approximation of the number of mispredictions. The same construction can be done for all
three algorithms, yielding the following result.

N. Auger, C. Nicaud, and C. Pivoteau 11

0000...00

0000...01
...

1111...11

←− ` −→ Figure 10 A fully global predictor scheme: The
history table of size 2` keeps track of the outcomes
of the last ` branches encountered during the ex-
ecution, the last one corresponding to the right-
most bit. To each sequence of ` branches is asso-
ciated a global 2-bit predictor (shared by all the
conditional branches).

I Theorem 6. Let Cn and Mn be the number of comparisons and mispredictions per-
formed in our model of randomness. For BinarySearch, E[Cn] ∼ 1

log 2 logn and E[Mn] ∼
1

2 log 2 logn. For BiasedBinarySearch, E[Cn] ∼ 4
4 log 4−3 log 3 logn and E[Mn] ∼ µ(1

4)E[Cn].
For SkewSearch, E[Cn] ∼ 7

6 log 2 logn and E[Mn] ∼
(4

7µ(1
4)+ 3

7µ(1
3)
)
E[Cn], where µ is the

expected misprediction probability associated with the predictor.

5.4 Analysis of the global predictor for skewSearch
In this section we intend to give hints about the behavior of a global branching predictor,
such as the one depicted on Figure 10 (see also Section 2), for the algorithm SkewSearch.
Notice in particular that the predictor of each entry is a 2-bit saturated counter. This is not
the only possible choice of a global predictor, but it is simple enough without being trivial.
We make the analysis in the idealized framework that resemble the real case sufficiently well,
by ignoring the rounding effects of dealing with integers. We saw in the previous section
why these approximations still give the correct result for the first order asymptotic.

In our idealized model we only consider the sequence of taken / not taken produced by
the two conditional tests of SkewSearch. We deliberately do not consider the conditional
induced by the test within the “while” loop, which would be always not taken in our settings
(except for the very last step). Adding it would complicate the model without adding
interesting information to the branch predictor.10 We encode a taken conditional by a 1
and a not taken conditional by a 0. The trace of an execution of the algorithm is thus a
non-empty word on the binary alphabet B = {0, 1}. Because of the way the two conditional
tests are nested within the algorithm, we can keep track of the current “if” by the use of
the simple deterministic automaton Aif with two states depicted in Figure 11: main stands
for the first conditional and nested for the second one. In our model, main is taken with
probability 1

4 and nested with probability 1
3 . As done in Section 4, Aif can be changed into

a Markov chainMif using this transition probabilities. A direct computation shows that its
stationary vector πif satisfies πif(main) = 4

7 and πif(nested) = 3
7 .

(Aif) main nested1

0

0, 1

(Mif) main nested1: 1
4

0: 3
4

0 : 2
3 , 1 : 1

3

Figure 11 On the left, the automaton Aif. On the right, the Markovian automaton Mif of
transition probabilities P(1 | main) = 1

4 , P(0 | main) = 3
4 , P(0 | nested) = 2

3 and P(1 | nested) = 1
3 .

10Also, most modern architectures have “loop detectors” that are used to identify such conditionals.

12 Good predictions are worth a few comparisons

For the same reason as above, in the global table, we only record the history for the two
conditionals main and nested. Let ` denote the history length, that is, the number of bits
used in the history table of Figure 10. We assume that ` is even. An history h is thus seen
as a binary word of length `. Let 0` be the history made of 0’s only.

When a conditional is tested at time t, the predictor uses the entry at position ht to make
the prediction, where ht is the current history. To follow the evolution of the algorithm at
time t+ 1, we therefore only have to keep track of (1) the history table Tt, (2) the current
history ht and (3) which of the two conditionals IFt is under consideration. Knowing IFt is
required in order to compute the probability that the next outcome is 0 or 1. This defines
a Markov chain Mup for the updates in the history table. From Mup, one can theoreti-
cally estimate the expected number of mispredictions using Theorem 2, as we did for local
predictors. The main issue with this approach is that computing πup is typically in O(m3),
where m is the number of states of Mup. Since the number of states is exponential in `,
the computations are completely intractable for reasonable history lengths (such as ` ≥ 6),
even if we first remove the unreachable states. In the sequel, we therefore use the particular
structure ofMup to directly compute the typical number of mispredictions.

Let h ∈ B` be an history that is not equal to 0`. There is at least one 1 in h. Since
reading a 1 always send to state main in Aif, we know for sure the conditional IFt under
consideration when an occurrence of h has just happened at time t. Hence, we know the
probability to have a 0 or a 1 at time t+ 1, given that ht = h. As a consequence, each entry
of h 6= 0` in the table T behaves like a fixed-probability local 2-bit saturating predictor,
with probability 1

4 (resp. 1
3) for histories associated to main (resp. to nested). Therefore,

h = 0` concentrates all the differences between the local and the global predictors.
What happens for the entry 0` is well described by considering the automaton on

pairs (s, i), where s is a state of the predictor and i is the current conditional. This automa-
ton can be turned into a Markov chain, and the Ergodic Theorem yields a precise estimation
of the number of mispredictions. Following this idea yields the following result.

I Theorem 7. For the global predictor, the average number of mispredictions caused during
SkewSearch on an input of size n is asymptotically equivalent to (12

35 + 1
595·2`)E[Cn].

By Theorem 6, if we use a local 2-bit predictor for each conditional, the expected number
of mispredictions is asymptotically equivalent to 12

35E[Cn]. The difference with the global
predictor is therefore extremely small, which is not surprising as there is a difference only
when the history is 0`. However, if there is a competition between a global predictor and a
more accurate local predictor (a 3-bit saturated counter for instance), then the local predictor
performs better; it is probably slightly disrupted by the global one, as the dynamic selector
between both predictors can choose to follow the global predictor from time to time.

6 Conclusion

In this article we propose unbalanced predictor-friendly versions of two very classical al-
gorithms, namely the exponentiation by squaring and the binary search. Using a precise
estimation on the expected number of mispredictions, we show that our new algorithms are
worth considering when the cost of a comparison is reasonable compared to the cost of a
misprediction. This is typically the case for primitive data types.

We believe that these theoretical results, supported by experiments, advocate strongly
for considering this particular feature of modern computers in the design and analysis of
algorithms: we showed that taking branch prediction into account can yield significant
improvements, even on very classical algorithms.

N. Auger, C. Nicaud, and C. Pivoteau 13

References
1 Paul Biggar, Nicholas Nash, Kevin Williams, and David Gregg. An experimental study of

sorting and branch prediction. Journal of Experimental Algorithmics, 12:1, June 2008.
2 Gerth Stølting Brodal, Rolf Fagerberg, and Gabriel Moruz. On the adaptiveness of quick-

sort. ACM Journal of Experimental Algorithmics, 12, 2008.
3 Gerth Stølting Brodal and Gabriel Moruz. Tradeoffs Between Branch Mispredictions and

Comparisons for Sorting Algorithms. In Algorithms and Data Structures, volume 3608,
pages 385–395. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

4 Gerth Stølting Brodal and Gabriel Moruz. Skewed Binary Search Trees. In Algorithms
– ESA 2006, volume 4168, pages 708–719. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006.

5 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to Algorithms. MIT Press, Cambridge, MA, third edition, 2009.

6 Amr Elmasry, Jyrki Katajainen, and Max Stenmark. Branch Mispredictions Don’t Af-
fect Mergesort. In Experimental Algorithms, volume 7276, pages 160–171. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

7 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

8 John L. Hennessy and David A. Patterson. Computer Architecture, Fifth Edition: A Quan-
titative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition,
2011.

9 Kanela Kaligosi and Peter Sanders. How Branch Mispredictions Affect Quicksort. In
Algorithms – ESA 2006, volume 4168, pages 780–791. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006.

10 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov Chains and Mixing Times.
American Mathematical Society, 2008.

11 Conrado Martínez, Markus E. Nebel, and Sebastian Wild. Analysis of branch misses in
quicksort. In Proceedings of the Twelfth Workshop on Analytic Algorithmics and Combi-
natorics, ANALCO 2015, San Diego, CA, USA, January 4, 2015, pages 114–128. SIAM,
2015.

12 Salvador Roura. Improved master theorems for divide-and-conquer recurrences. Journal
of the ACM, 48(2):170–205, 2001.

13 Peter Sanders and Sebastian Winkel. Super scalar sample sort. In Algorithms – ESA
2004, volume 3221 of Lecture Notes in Computer Science, pages 784–796. Springer Berlin
Heidelberg, 2004.

14 Good predictions are worth a few comparisons

A Appendix

A.1 Programs
The programs we used for our experiments can be found here: http://www-igm.univ-mlv.
fr/~pivoteau/benchmarks/.

A.2 Proofs

A.2.1 Proof of Proposition 1
Proposition 1. The expected number of mispredictions performed by NaiveMinmax for
the uniform distribution on arrays of size n is asymptotically equivalent to 4 logn for the
1-bit predictor and to 2 logn for the two 2-bit predictors and the 3-bit saturating counter.

The expected number of mispredictions performed by 3
2 -Minmax for the uniform distri-

bution on arrays of size n is asymptotically equivalent to n
4 for all the considered predictors.

Proof. For a given positive n, let [n] be the set {1, . . . , n}. It is convenient for this proof
to use the correspondence between cycles and records in a permutation. If one sees a
permutation σ as a one-to-one mapping from [n] to [n], its underlying graph11 is a set of
labeled directed cycles. If C = c1 → c2 → . . . → c` → c1 is such a cycle of length `, whose
smallest element is ci, let f(C) be the sequence defined by f(C) = cici+1 . . . c`c1 . . . ci−1. In
other words, we read the cycle starting from its smallest element. If the cycles C1, . . . ,Cm
of σ are ordered by decreasing order of their smallest element, then f(σ) is defined by
f(σ) = f(C1) · f(C2) · · · f(Cm). Classically, f is a bijection from the set Sn of permutations
of size n onto itself, such that the number of min-records in f(σ) is equal to the number of
cycles of σ. Hence, the expected number of records in a uniform random element of Sn is
asymptotically equivalent to logn (see [7]).

In the sequel, we will use the fact that f is a bijection by remarking that if ξ is a real
valued random variable on uniform random permutations, the expectation of ξ satisfies:

En[ξ] := 1
n!
∑
σ∈Sn

ξ(σ) = 1
n!
∑
σ∈Sn

ξ (f(σ)) .

We first consider the 1-bit predictor. Let σ be a permutation of Sn whose cycles,
ordered by decreasing order of their smallest element, are C1, . . . , Cm. We want to estimate
the number of mispredictions ξ(f(σ)) caused by line 3 of NaiveMinmax applied to σ. As
f(σ) = f(C1) · f(C2) · · · f(Cm), we count the mispredictions cycle by cycle. Assume that
the predictor is on state NT (not taken) just before processing f(Ci). As the first element
of f(Ci) is a min-record, it causes a misprediction and the predictor switch to state T (taken).
If Ci has length at least 2, the second element of f(Ci) is greater than the first one: it also
causes a misprediction and the predictor goes back to state NT . The remaining elements
of Ci, if any, are all greater than its first element and therefore cause no more misprediction.
Then, either Ci has length 1, and the process of f(Ci) causes 1 misprediction leaving the
predictor on state T , or Ci has length at least 2 and it causes 2 mispredictions, leaving the
predictor on state NT . A similar study can be done when the starting state of the predictor
is T , yielding the following table:

11The set of vertices is [n] and there is an edge i→ j whenever σ(i) = j.

http://www-igm.univ-mlv.fr/~pivoteau/benchmarks/
http://www-igm.univ-mlv.fr/~pivoteau/benchmarks/

N. Auger, C. Nicaud, and C. Pivoteau 15

starting cycle of length 1 cycle of length ≥ 2
state mispred. ending state mispred. ending state
NT 1 T 2 NT

T 0 T 1 NT

For any positive integer i, let Cyci(σ) be the number of cycles of length i of σ. Let
Cyc(σ) =

∑
i≥1 Cyci(σ) be the number of cycles of σ. We see the table above as follows:

there is one misprediction if the starting state is NT , plus one misprediction if the cycle
has length at least 2. As the starting state is NT when the previous cycle has length
at least 2, we get that the number of mispredictions caused by f(σ) at line 3 is ξ(f(σ)) =
2 Cyc(σ)−2 Cyc1(σ)+O(1), where theO(1) captures the border effects (initial configuration
of the predictor and whether the last cycle of σ has length 1 or not). This concludes the
proof for the 1-bit predictor, since En[Cyc] ∼ logn and En[Cyc1]→ 1, as n tends to infinity.
There is a factor two since we have to add the number of mispredictions of both conditionals.

For the 2-bit saturating counter predictor, we use the same technique. If, for instance,
the starting state is NT when beginning the process of f(Ci), then there is a misprediction
and the predictor switches to T . If Ci has length at least 2, then the next element also
causes a misprediction and the predictor goes back to NT . If it has length at least 3, then
the predictor is set to SNT with no further misprediction. All useful cases are depicted in
the following table:

starting cycle of length 1 cycle of length 2 cycle of length 3 cycle of length ≥ 4
state mispred. ending mispred. ending mispred. ending mispred. ending
SNT 1 NT 1 SNT 1 SNT 1 SNT

NT 1 T 2 NT 2 SNT 2 SNT

T 0 ST 1 T 2 NT 2 SNT

ST 0 ST 1 T 2 NT 2 SNT

From this, we readily get that the number χ(f(σ)) of mispredictions caused by the first
conditional satisfies

Cyc≥4(σ) ≤ χ(f(σ)) ≤ Cyc≥4(σ) + 3 Cyc≤3(σ),

since there can be two mispredictions caused by f(Ci) only if Ci−1 has length at most 3. This
concludes the proof for this predictor, by summing the contribution of both conditionals, as
En[Cyc≤3] = O(1). The flip-on-consecutive 2-bit predictor and the 3-bit saturating counter
are analyzed the same way, yielding the same results.

We now consider the algorithm 3
2 -Minmax. Using the model of n random numbers in

[0, 1], it is straightforward to see that the first test in the loop of 3
2 -Minmax (line 3) causes a

misprediction with probability 1
2 , for every predictors. Hence, this first test causes around n

4
mispredictions in average, when the algorithm ranges through the whole input. Moreover,
the inner tests are true only when a min-record or max-record occurs. Using the same kinds
of arguments as for Lemma 1, the expected number of mispredictions caused by these inner
tests is in O(logn), concluding the proof. J

A.2.2 Proof of Theorem 2
Theorem 2. Let (M,π0) be a primitive and aperiodic Markov Chain on the finite set S.
Let π be its stationary distribution. Let also E be a set of edges of M , that is, a set of

16 Good predictions are worth a few comparisons

pairs (i, j) ∈ S2 such that M(i, j) > 0.
For any nonnegative integer n, let Ln be a random variable on nonnegative integers such

that limn→∞ E[Ln] = +∞. Let Xn be the random variable that counts the number of edges in
E that are used during a random walk of length Ln inM (starting from any given distribution
π0). Then the following asymptotic equivalence holds: E[Xn] ∼ E[Ln]

∑
(i,j)∈E π(i)M(i, j).

Proof. From the classical Ergodic Theorem [10, p. 58], we get that if F is a subset of S,
and if Yn counts the number of times an element of F is met during a random walk of length
n in M , then

1
n
E[Yn] −−−−→

n→∞

∑
i∈F

π(i).

We just have to modify it so that it works for edges and for random walks of random lengths.
Let B be the set of all edges of M . We consider the Markov Chain of order two M2

obtained from M as follows: its set of states is B, and the only positive values of M2 are
M2(i → j, j → k) = M(j, k), for every i → j and j → k in B. It is straightforward
to verify that M2 is irreducible and aperiodic, and that its stationary vector π2 satisfies
π2(i→ j) = π(i)M(i, j). Applying the classical Ergodic Theorem on M2 for the set of edges
E yields, if Z` counts the number of times an edge of E is used during a random walk of
length ` in M :

E[Z`] = `

 ∑
i→j∈E

π(i)M(i, j)

 (1 + ε`),

with ε` → 0 as ` tends to infinity.
We now prove the result for variable length random walks:

E[Xn] =
∑
`≥0

P(Ln = `)E[Xn | Ln = `]

=
∑
`≥0

P(Ln = `)E[Z`]

=
∑
`≥0

P(Ln = `)`

 ∑
i→j∈E

π(i)M(i, j)

 (1 + ε`)

= (E[Ln] + E[LnεLn])

 ∑
i→j∈E

π(i)M(i, j)

 .

At this point we only have to prove that E[LnεLn
] = o(E[Ln]) to conclude the proof. For

any real α > 0, there exists an integer `0 such that, for every ` ≥ `0, ε` ≤ α
2 . Hence, with

η0 = max
{
ε` : ` ∈ {0, . . . , `0 − 1}

}
,

∑
`≥0

P(Ln = `)`ε` =
`0−1∑
`=0

P(Ln = `)`ε` +
∑
`≥`0

P(Ln = `)`ε`

≤
`0−1∑
`=0

P(Ln = `)`ε` + α

2E[Ln]

≤ η0(`0 − 1) + α

2E[Ln].

N. Auger, C. Nicaud, and C. Pivoteau 17

Since E[Ln] tends to infinity, for n sufficiently large we have η0(`0−1)
E[Ln] ≤ α

2 . Therefore, for
any α > 0, for n sufficiently large we have E[LnεLn] ≤ αE[Ln]. Hence, E[LnεLn] = o(E[Ln]),
concluding the proof. J

A.2.3 Proof of Theorem 3
Theorem 3. Assume that n is taken uniformly at random in {0, . . . , N − 1}. The ex-
pected number of conditional tests in ClassicalPow and UnrolledPow is asymptoti-
cally equivalent to log2 N , whereas it is asymptotically equivalent to 5

4 log2 N for Guided-
Pow. The expected number of mispredictions is asymptotically equivalent to 1

2 log2 N for
ClassicalPow and UnrolledPow, for any kind of predictor. For GuidedPow, it is
asymptotically equivalent to α log2 N , where α = 1

2µ(3/4) + 3
4µ(2/3).

Proof. The proof is done for N = 4k. Some care is required for other values of N , since
the bits are not 0’s and 1’s with probability exactly 1

2 , and since they are not completely
independent. We explain in Section 5 how to deal with this approximations rigorously: it
can also be done here in a similar way.

It is straightforward to prove, as we did for UnrolledPow, that the expected number
of iterations of ClassicalPow is log2 N + O(1). As each iteration performs one condi-
tional test which is mispredicted with probability 1

2 , we get the announced results for this
algorithm.

We already saw that the expected number of iterations of UnrolledPow and Guid-
edPow is asymptotically equivalent to log4 N = 1

2 log2 N . At each iteration, the first
conditional is performed, and the other two are performed with probability 3

4 . This yields
that the expected number of conditional tests is asymptotically equivalent to 5

4 log2 N .
In UnrolledPow, each conditional is mispredicted with probability 1

2 yielding the
announced result.

For GuidedPow we use the Ergodic Theorem and the fact that E[Lk] ∼ k ∼ log4 N . The
first conditional causes an expected number of mispredictions asymptotically equivalent to
µ(3/4) log4 N and each of the two nested conditionals causes 3

4µ(2/3) log4 N mispredictions,
since they are tested with probability 3

4 . Hence, the expected number of mispredictions is
asymptotically equivalent to

(
µ(3/4) + 3

2µ(2/3)
)

log4 N , concluding the proof. J

A.2.4 Proof of Lemma 5
Lemma 5. The probability that Pathn(T , u) and Pathn(I, u) differ at one of the first
Ln(T , u)−

√
logn steps is O(1

logn).

Proof. Let (d, f) be a node of Tn that is not a leaf, and let t = f −d+ 1. The probability to
go to the left child at the next step is p(d, f) = m−d+1

t where m = bd+f
4 c, which is 1

4 +O(1
t).

Hence, there exists a positive α such that |p(d, f)− 1
4 | ≤

α
2t . And therefore, the probability

that the two paths differ at this step is at most α
t .

Let (d′, f ′) be the node reached after Ln(u)−λn steps. For n sufficiently large, the range
of a node is multiplied by a number that lies in [1

5 ,
4
5] (as 1

5 <
1
4 and 4

5 >
3
4). Hence, we have

f ′ − d′ + 1 ≥
(

5
4

)λn

.

As a consequence, all the nodes at distance at most Ln(u)− λn from the root have a range
that is greater than or equal to γn, with γn =

(5
4
)λn . Moreover, Ln(u) ≤ log5/4 n for n

18 Good predictions are worth a few comparisons

sufficiently large. Thus, the probability that the Ln(u)− λn first steps of Pathn(T , u) and
Pathn(I, u) are equal is at least

(
1− α

γn

)log5/4 n−λn

. Thus:

(
1− α

γn

)log5/4 n−λn

= exp
((

log5/4 n− λn
)

log
(

1− α

γn

))
= exp

(
− α

γn

(
log5/4 n− λn

)
(1 + o(1))

)
= 1−

α log5/4 n

γn
+ o

(
logn
γn

)
= 1− o

(
1

logn

)
,

concluding the proof. J

A.2.5 Proof of Theorem 6
Theorem 6. Let Cn andMn be the number of comparisons and mispredictions performed in
our model of randomness. For BinarySearch, E[Cn] ∼ 1

log 2 logn and E[Mn] ∼ 1
2 log 2 logn.

For BiasedBinarySearch, E[Cn] ∼ 4
4 log 4−3 log 3 logn and E[Mn] ∼ µ(1

4)E[Cn]. For
SkewSearch, E[Cn] ∼ 7

6 log 2 logn and E[Mn] ∼
(4

7µ(1
4) + 3

7µ(1
3)
)
E[Cn].

Proof. LetMn(u) be the number of mispredictions produced by the algorithm for u, and let
In(u) be the number of mispredictions produced by the idealized algorithm when following
the Ln(u) first steps in the ideal tree I. Let Gn be the set of u ∈ [0, 1]ω such that Pathn(T , u)
and Pathn(I, u) are equal for their first Ln(u)− λn steps. Observe that if u ∈ Gn, then we
have |Mn(u)− In(u)| ≤ λn since they can only differ at the λn last steps of the algorithms.
If u /∈ Gn, we simply use the fact that there are less than Ln(u) mispredictions, which is
smaller than β logn for some well-chosen constant β. Using Lemma 5 we have∣∣∣E[Mn]− E[In]

∣∣∣ ≤ λn · (1− o
(

1
logn

))
+ β logn · o

(
1

logn

)
= o(logn).

Hence E[Mn] ∼ E[In], and the first order asymptotic results obtained in the idealized model
still hold for the real case.

To obtain the result for SkewSearch, observe that if Xn denotes the number of times
the first conditional is executed for an input of length n, then:

E[Xn] = 1 + an
n+ 1E[Xan

] + bn
n+ 1E[Xbn

] + cn
n+ 1E[Xcn

], with

an =

⌊
n
4
⌋

+ 1
bn =

⌊
n+1

2
⌋
− an

cn =
⌈
n+1

2
⌉ ,

thus Theorem 4 applies, yielding the same result that f(n) = 1 + 1
2f(n/4) + 1

2f(n/2) and

E[Xn] ∼ 2
3 log 2 logn.

Similarly, if Yn denotes the number of times the second conditional is executed for an
input of length n, then:

E[Yn] = an
n+ 1E[Xan]+ bn

n+ 1
(
E[Xbn]+1

)
+ cn
n+ 1

(
E[Xcn]+1

)
, with

an =

⌊
n
4
⌋

+ 1
bn =

⌊
n+1

2
⌋
− an

cn =
⌈
n+1

2
⌉ ,

N. Auger, C. Nicaud, and C. Pivoteau 19

and thus Theorem 4 applies, and yields the same result that f(n) = 3/4+ 1
2f(n/4)+ 1

2f(n/2)
and

E[Yn] ∼ 1
2 log 2 logn.

The expected total number of comparisons is therefore

E[Cn] = E[Xn + Yn] ∼ 7
6 log 2 logn,

as announced.
By Theorem 2, the expected number of mispredictions is therefore asymptotically equiv-

alent to

µ

(
3
4

)
E[Xn]+µ

(
2
3

)
E[Yn] =

(
2
3µ
(

3
4

)
+ 1

2µ
(

2
3

))
logn
log 2 =

(
4
7µ
(

3
4

)
+ 3

7µ
(

2
3

))
E[Cn],

which is the announced result. J

A.2.6 Proof of Theorem 7
Theorem 7. For the global predictor, the average number of mispredictions caused during
SkewSearch on an input of size n is asymptotically equivalent to (12

35 + 1
595·2`)E[Cn].

Proof. Let w = w0w1 . . . wN−1 ∈ {0, 1}N be the output of the two conditionals, where 1
stands for “taken” and 0 for “not taken”.

Let h 6= 0` be a history. Let 1 ≤ τ1 < τ2 < . . . < τm ≤ N − 1 be the times t such that
ht = h (there is an occurrence of h in w that ends at position t). Of course, the τi’s and m
depend on N and h, and are random variables for random inputs of the algorithm. By the
Ergodic Theorem, there exists a constant αh > 0 such that E[m(h)] ∼ αhN , as N tends to
infinity. Indeed, if πup is the stationary vector of the final strongly connected component
ofMup, the big Markov chain that captures everything, then αh is the sum of the πup(x),
when x ranges over the states such that the current history is h.

Observe also that the entry h of the global table can only be updated at the times τi+1,
that is, Tt(h) is constant for τi + 1 ≤ t ≤ τi+1, with the convention that τm+1 = N .

Let Hmain (resp. Hnested) be the set of histories h such that if ht = h then IFt = main
(resp. IFt = nested). The sets Hmain and Hnested are disjoint and contain all the histories
of size ` but 0`. Let h ∈ Hmain. From what we have just established, snapshots of Tt(h)
at times τ1 + 1, τ2 + 1, . . . , τm + 1 describe a random walk in the predictor of parameter
1
4 . Hence, the excepted number of mispredictions caused by this history is asymptotically
equivalent to µ(1/4)αhN , by Theorem 2. Similarly, if h ∈ Hnested, the excepted number of
mispredictions caused by this history is asymptotically equivalent to µ(1/3)αhN .

Let us analyze the behavior of the predictor of the entry 0`. When the history is 0`, the
current conditional can be either main or nested. Thus, we have to distinguish the two cases
and consider the pairs (s, i), where s is a state of the 2-bit predictor and i is either main
or nested. Thanks to the specificity of our problem, knowing the starting pair (s, i) and
whether the conditional is taken or not is enough to determine the next pair (s′, i′) reached
the next time the history is 0`: s′ is determined by the associated transition in the 2-bit
predictor; if the conditional is taken then we have another occurrence of 0` immediately
after and i′ 6= i, otherwise the next time the history is 0` is immediately after a 1, then
i′ = main as ` is even. This yields the automaton (and its associated Markov chain M0)

20 Good predictions are worth a few comparisons

SNT
main

NT
main

T
main

ST
main

SNT
nested

NT
nested

T
nested

0: 3
4

0: 2
3 0: 3

4

0: 3
4

0: 3
4

0: 2
3

0: 2
3

1: 1
3

1: 1
3

1: 1
3

1: 1
4 1: 1

4

1: 1
4

1: 1
4

Figure 12 The Markov chain corresponding to the entry 0`.

depicted on Figure 12. Note that for odd ` we obtain a different automaton, which can ba
study in the same way; however, ` is always even in real computers.

The stationary vector π0 ofM0 can easily be computed. In particular, we get that the
stationary probability of being in a main-state is pmain = 4

7 and of being on a nested-state
is pnested = 3

7 (this would be different for odd `). Moreover, the expected misprediction
probability of M0 is µ0 = 41

119 . The stationary probability of the history is 0` is p0 =
(3/4)`/2(1/3)`/2 = 2−`. Hence, by the Ergodic Theorem, the number Gn of mispredictions
for the global predictor has an expectation that is asymptotically equivalent to

E[Gn] ∼
(∑
h∈Hmain

αhµ2(1/4) +
∑

h∈Hnested

αhµ2(1/3) + µ0
2`

)
· E[Cn].

But, as the stationary probability of being in main is 4
7 , we have∑

h∈Hmain

αh = 4
7 − pmain · p0 = 4

7(1− 2−`).

Similarly,∑
h∈Hnested

αh = 3
7 − pnested · p0 = 3

7(1− 2−`).

As µ2(1/4) = 3
10 and µ2(1/3) = 2

5 , we get the announced result:

E[Gn] ∼
(

12
35(1− 2−`) + 41

1192−`
)
E[Cn] =

(
12
35 + 1

595 · 2`

)
E[Cn].

J

	Introduction
	Elements of computer architecture
	Simultaneous maximum and minimum finding
	Exponentiation by squaring
	Modified algorithms
	Analysis of the average number of mispredictions for GuidedPow

	Binary search and variants
	Unbalancing the binary search
	Experiments
	Local predictors analysis
	Analysis of the global predictor for skewSearch

	Conclusion
	Appendix
	Programs
	Proofs
	Proof of Proposition 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Lemma 5
	Proof of Theorem 6
	Proof of Theorem 7

