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Abstract. The introduction of TimSort as the standard algorithm for
sorting in Java and Python questions the generally accepted idea that
merge algorithms are not competitive for sorting in practice. In an at-
tempt to better understand TimSort algorithm, we define a framework
to study the merging cost of sorting algorithms that relies on merges
of monotonic subsequences of the input. We propose an optimal strat-
egy for lists and a 2-approximation for arrays. We compare them to the
merging strategy of TimSort by designing a simpler yet competitive al-
gorithm based on the same ideas. As a side benefit, our framework allows
to establish the announced running time of TimSort, that is O(n logn).

1 Introduction

TimSort [7] is a sorting algorithm designed in 2002 by Tim Peters, for use in
the Python programming language. It was thereafter implemented in other well-
known programming languages such as Java. It is quite a strongly engineered
algorithm, but its high-level principle is rather simple: The sequence S to be
sorted is decomposed into monotonic runs (i.e., nonincreasing or nondecreasing
subsequences of S), which are merged pairwise according to some specific rules.

In order to understand and analyze the merging strategy (meaning the or-
der in which the merges are performed) of TimSort, we consider other sort-
ing algorithms that operate in a similar fashion. For instance, Knuth’s Natu-
ralMergeSort [6] decomposes the sequence into nondecreasing runs, which
are then merged in the same order as in classical MergeSort. We investigate
efficient merging strategies for sorting algorithms that start with a decomposi-
tion into runs and we consider different settings, based on practical features such
as whether the sequence is encoded with a list or with an array. For each setting,
we propose algorithms to compute an efficient tree-like merging strategy, with
the constraint that the over cost of computing it must be at most O(n) time,
where n is the length of the input, and that it uses the run lengths only: we are
not allowed to compare elements of the sequence for establishing the strategy.

The merging strategy of TimSort follows yet another scheme as it relies on
a stack to avoid multiple merges of large runs. We give a general framework to
describe such algorithms and use it to design a simpler variant and to establish
the proof that the running time of TimSort is O(n log n).

The article is organized as follows. We explain the general settings in Sec-
tion 2. In Section 3, we investigate the case where the input is given as a list,



and propose an algorithm based on Huffman coding to compute the optimal
strategy. In Section 4, we focus on arrays and only allow merges of consecutive
runs; we propose an algorithm that computes a 2-approximation of the optimal
strategy in time O(n). In Section 5, we set up a general framework for algo-
rithms a la TimSort, and propose a new parametric algorithm which is simpler
and which has the same kind of properties; both this algorithm and TimSort
are then proved to run in O(n log n) time.1 Finally, some experiments and open
questions are presented in Section 6.

Due to lack of space, most of the proofs and some algorithms are omitted in
this extended abstract.

2 Settings

2.1 Sequences and runs

For every positive integers i and j, let [i] = {1, . . . , i} and let [i, j] = {i, . . . , j}.
Let (E,≤) be a totally ordered set. In this article, we consider non-empty finite
sequences of elements of E, that is, elements of E+ = ∪n≥1En. The length |S| of
such a sequence is its number of elements. A sequence S = (s1, . . . , sn) is sorted
when, for every i ∈ [n − 1], si ≤ si+1. We are interested in sorting algorithms
that, for any given sequence S ∈ En, find a permutation σ of [n] such that
(sσ(1), . . . , sσ(n)) is sorted. Most of the time, we do not want σ explicitly, but
instead directly compute the sequence sort(S) = (sσ(1), . . . , sσ(n)).

A run of a sequence S = (s1, . . . , sn) is a non-empty integer interval [i, j] such
that either (si, . . . , sj) or (sj , . . . , si) is sorted. The former is a nondecreasing run,
and the latter is a nonincreasing run.2 A run decomposition of a sequence S of
length n is a nonempty sequence R = (R1, . . . , Rm) of elements of E+ such
that each Ri is a run (either nondecreasing or nonincreasing), and such that
S = R1 ·R2 · · ·Rm, where R ·R′ denote the classical concatenation of sequences.

Example 1. R1 = (2, 3, 5, 7, 11) · (10) · (9) · (8, 9, 10) and R2 = (2, 3, 5, 7, 11) ·
(10, 9, 8) · (9, 10) are two run decompositions of S = (2, 3, 5, 7, 11, 10, 9, 8, 9, 10).

2.2 Run-merge sorting algorithms and run decomposition strategies

We now equip the runs with a merge operation. If R and R′ are two runs, let
merge(R,R′) denote the sequence made of the elements of R and R′ placed in
nondecreasing order, i.e., merge(R,R′) = sort(R ·R′).

In this article we are interested in sorting algorithms that follow what we
call a generic run-merge sort template. Such algorithms consist of two steps:
First the sequence is split into a run decomposition. Then, the runs are merged
pairwise until only one remains, which is the sorted sequence associated with
the input.3 This generic algorithm is depicted in Algorithm 1.

1 This fact is a folklore result for TimSort, but it does not seem to appear anywhere.
2 Observe that we do not require a run to be maximal, though they will usually be.
3 Except in the very specific case where R consists of only one nonincreasing run.
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Algorithm 1: Generic Run-Merge Sort for S

1 R← run decomposition of S
2 while |R| 6= 1 do
3 remove two runs R and R′ of R
4 add merge(R,R′) to R
5 if the unique run R1 in R is nonincreasing then reverse R1

6 return R1

To design such an algorithm, the two main concerns are how the run de-
composition is computed, and in which order the runs are merged. Observe that
several classical algorithms fit in this abstract settings.

MergeSort is a run-merge sorting algorithm in which each run is reduced
to a single element. Note that, in this case, the cost of computing the run de-
composition is O(1). Then, the runs are merged according to the recursive calls
made during the divide and conquer algorithm.

NaturalMergeSort is a variation of merge sort proposed by Knuth [6]. It
consists in first decomposing the sequence into maximal nondecreasing runs, then
in using the same merging strategy as in MergeSort. The run decomposition
can be obtained by scanning the input sequence S from left to right and by
starting a new run every time an element is smaller than the one before. This
uses n− 1 comparisons for a sequence of length n.

TimSort [7] is a relatively new algorithm that is implemented in standard
libraries of several common programming languages (Python, Java, ...). This
algorithm is highly engineered and uses many efficient heuristics, but this is not
our purpose to fully describe it here. However, we are quite interested in the run-
merging strategy it relies on, which consists in first computing a decomposition
into maximal nonincreasing and nondecreasing runs, which are then merged
using a stack. The merging strategy is defined by some invariants that must be
satisfied within this stack (merges occur when they are not) and we will give
more details on this in Section 5.

Concerning the run decomposition, the idea is to take advantage of the natu-
ral maximal runs of S, but each run can be either nonincreasing or nondecreasing,
according to order of its first two elements.4 As for the previous solution, n− 1
comparisons are required to calculate this decomposition. In Example 1, R1 was
computed as in NaturalMergeSort and R2 as in TimSort.

In the sequel, we consider two different data structures for the input sequence.
If it is a list, then the run decomposition is encoded as a list of runs, each run
being a list of its elements. Otherwise, if we are working on arrays, runs are
encoded by pairs of integers that represent their starting and ending positions.

Since the number of useful strategies to compute a run decomposition is
limited, we choose to mostly focus on merging strategies in this paper.

4 Actually, in TimSort, the size of short runs is artificially increased. We do not
consider this feature here and focus on the basic ideas of TimSort only.
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2.3 Merge tree and merging cost

To an execution of a run-merge algorithm is naturally associated what we call a
merge tree or a consecutive-merge tree. These are complete binary trees whose
leaves are the runs of the run decomposition, and where there is an internal
node for each merge, whose children are the runs that are being merged. In a
consecutive-merge tree, we furthermore ask that each merge involves two con-
secutive runs. In a merge tree, any two runs can be merged at each step.

More formally, to build the merge tree of a run decomposition R for a given
run-merge algorithm, we proceed as follows. We start with a forest where every
tree is reduced to a root labeled by a run of R (during the whole process, the
runs in R and their merges label the nodes of the trees). At each step, when
merging the runs R and R′, we remove the two trees T and T ′ of roots R and

R′ and replace them by a new tree T =
R′′

/\
T T ′

, where R′′ = merge(R,R′). If only

consecutive runs are merged at each step, the merge tree is called a consecutive-
merge tree (consecutive-merge trees therefore form a subset of merge trees).

We now turn our attention to the cost of a merge and we distinguish two
possible representations of the initial sequence S: lists or arrays. First, if S is
encoded using doubly linked lists,5 the standard merging algorithm applied to R
and R′ uses at most |R|+ |R′| − 1 comparisons.

If the sequence S is stored in an array A of size n (and the runs are encoded
by their starting and ending indices in A), merging runs that are not consecutive
may require to shift the whole array, which make the merge-sort strategy quite
impractical. Therefore, when using arrays, we ask that the algorithm only merges
consecutive runs. The classical implementations of the merging procedure use an
auxiliary array of length min(|R|, |R′|), where the smallest run is copied.6 In this
case, the number of comparisons is also at most |R|+ |R′| − 1.

In the sequel, we therefore consider that the number of comparisons needed
to merge two runs R and R′ is c(R,R′) − 1, where c(R,R′) = |R| + |R′|. We
extend inductively the definition of c to merge trees by (R is a run of the initial
run decomposition):

c (R) = 0, and c

(
merge(R′,R′′)

/\
T T ′

)
= c(R′, R′′) + c(T ) + c(T ′).

Let hT (R) be the height of the run R in the merge tree T .

Lemma 1. The number of comparisons done during the merge stage of a run-
merge algorithm of tree T on a run decomposition R is at most c(T )− |R|+ 1.
Moreover, we have c(T ) =

∑
R∈R hT (R) |R|.

5 To use singly linked lists, the runs should be either all nondecreasing or all nonin-
creasing, to avoid the additional cost induced by computing reverse lists.

6 This extra memory requirement is a reason why QuickSort is sometimes preferred
to MergeSort, even if it performs more comparisons in the worst and average cases.
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(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

(1, 2, 4, 10, 11)(0, 3, 5, 6, 7, 8, 9)

(0, 3, 5, 8, 9)

(3, 5, 9)(0, 8)

(6, 7)

(6)(7)

(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)

(6)(0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11)

(3, 5, 7, 9)

(7)(3, 5, 9)

(0, 1, 2, 4, 8, 10, 11)

(0, 8)(1, 2, 4, 10, 11)

Fig. 1. The merge stage of HuffmanSort (left) and NaturalMergeSort (right) for
the initial sequence S = (1, 2, 4, 10, 11, 0, 8, 3, 5, 9, 7, 6). The merge cost is 26 for the left
tree and 34 for the right one.

3 Optimal merging strategy for lists: HuffmanSort

In this section, sequences are assumed to be encoded using doubly linked lists.
We are therefore allowed to merge runs that are not consecutive.

3.1 A greedy optimal merge algorithm

We propose an algorithm that optimizes the number of comparisons, for a given
run decompositionR, when the cost of merge(R,R′) is |R|+|R′|−1. This comes
down to find a merge tree that minimizes the sum that appears in Lemma 1.

Consider the greedy algorithm that consists in merging the two shortest runs
at each step; we call this algorithm HuffmanSort (see example of Fig. 1). The
merge tree built by HuffmanSort is exactly the same as the Huffman tree [5]
associated to symbols having for weights the |Ri|’s, for R = (R1, . . . , Rm). The
average code length of this Huffman tree is exactly 1

m

∑
R∈R h(R) |R| and since

Huffman algorithm is optimal for prefix codes, we get the following lemma.

Lemma 2. For any fixed run decomposition R, the merge tree associated to
HuffmanSort is a merge tree of R that minimizes the cost c.

3.2 Reducing additional costs

In this section, we discuss how to implement the greedy merge strategy at a
reasonable cost. The classical way of implementing Huffman algorithm consists
in using a priority queue. If we do this, the cost of each step is O(logm), where m
is the number of runs, as we have (1) to extract the shortest run twice and (2)
to add their merge. The additional cost is therefore in O(m logm), where m is
the number of runs. This can be of the same order of magnitude than the worst
case complexity of the algorithm, if the number of runs is linear in n, which is
the case for uniform random inputs.

Fortunately, this additional cost can be reduced significantly. First recall that
van Leeuwen [8] proved that if the weights are sorted in nondecreasing order,
then there is a linear algorithm to construct the Huffman tree: We keep a list L
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containing the sequence of initial runs in nondecreasing order of their lengths,
and a queue Q containing the runs that are built during the merging process,
also in nondecreasing order. Q is empty at the beginning. At each step, it is
sufficient to check the first elements of L an Q to select the two shortest runs.
When these two runs are merged, it creates a new run of length greater than
or equal to any other run that have been created before: therefore, it can be
safely appended to Q. As every step can be performed in constant time, the
running time of the algorithm is linear in the number of runs of R. To apply
this idea, we must first sort the initial runs by their lengths. Since these lengths
are between 1 and n, this can be done as in CountingSort [1]: initialize an
array A of n empty lists, and insert each run R in A[|R|]; the queue Q is then
obtained by going through A.7 The whole process requires O(n) time and space.

We can further reduce this additional cost. Indeed, the size-n array used
for sorting the runs according to their length is sparse: as the sum of the run
lengths is n, there cannot be many large runs, which can be exploited as follows.
Let λn be an integer-valued sequence such that λn = Ω(log n) and λn = o(n).
For instance, one can take λn = d

√
n e. To sort the runs by their lengths, as

before, we use an array A to store runs of length at most λn, but we put the
longest runs into a separate list B, which is sorted using an optimal sorting
algorithm. The merges are then performed in optimal order going trough A and
then B, using an additional queue, as in the van Leeuwen algorithm. Since there
are at most n

λn
elements in the second list, the running time of this construction

is O(m + λn + n
λn

log n), and the additional space is O(λn). In any case, if
λn = Ω(log n), then the over cost is at most O(n). The sequence λn is therefore
used to set the trade-off between time and space for the construction of the
optimal strategy.

Theorem 1. Given a run decomposition R of a size-n sequence into m runs,
the algorithm HuffmanSort computes a merge tree T that minimizes c(T )
for this R. Let λn be any integer-valued sequence such that λn = Ω(log n) and
λn = o(n). The running time of building T is O(m + λn + n

λn
log n), and the

additional space required is O(λn).

3.3 A note on the uniform random case

In this section we explain how the data structures used in HuffmanSort can
be efficiently tuned for random lists, for the uniform distribution. Our remark
relies on the following lemma.

Lemma 3. For given n ≥ 1, let σ be a random permutation of [n] taken uni-
formly at random. Then, for any c > 0, the probability that there is a run of
length greater than log n in the run decomposition of NaturalMergeSort or
TimSort is O(n−c).

7 In this case, we actually do not even need an additional structure for Q, as the runs
created by merging can directly be inserted in A.
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As a consequence of Lemma 3, it is unlikely that there are long runs, in the
uniform case. Thus HuffmanSort works well with an extra space of O(log n),
obtained by taking λn = dlog ne. Since there is a linear number of runs in a
typical random permutation, the additional time cost of O(n) is unavoidable.
On the other hand, most often, we do not need to sort the list of long runs, since
there are none of them with high probability.

4 Merging strategies for arrays

We now consider that the elements of S are stored in an array and we therefore
only allow merges of consecutive runs. Indeed, merging non-consecutive runs
would require a lot of additional space or some costly shifts. This means that the
merging strategies are no longer encoded into merge trees, but into consecutive-
merge trees. For a given sequence of runs R, let Opt(R) be the smallest c(T ),
where T ranges over all possible consecutive-merge trees for R.

4.1 The optimal consecutive merging strategy

The problem of computing the optimal merge tree when only consecutive merges
are allowed resemble the classical matrix chain ordering problem [1, Ch. 15.2].
However, the improvements and approximation algorithms proposed in [3,4] do
not seem to apply here. As for matrices, the optimal strategy can be computed
using a dynamic programming approach: if the run lengths sum to n, the induc-
tion is

Opt(R) = min
i∈[m−1]

[
Opt(R1, . . . , Ri) + Opt(Ri+1, . . . , Rm) + n

]
,

as the last merge costs n. Unfortunately, this results in an O(m3) running time
algorithm, which is prohibitive in our settings. Since there is little hope to find a
linear algorithm to compute this optimal strategy, we propose, instead, a linear
approximation algorithm in the next section.

4.2 An efficient heuristic: GreedyMergeSort

Let R = (R1, . . . , Rm) be a sequence of runs. In this section we analyze the
greedy strategy that consists in iteratively merging the two consecutive runs Ri
and Ri+1 that minimize the quantity |Ri|+|Ri+1|. This is the same as Huffman-
Sort, except that only consecutive runs can be merged. We call this algorithm
GreedyMergeSort and we establish that this is a good approximation of the
optimal solution:

Theorem 2. Let R be a run decomposition. For any consecutive-merge tree T
of R produced by GreedyMergeSort, we have c(T ) ≤ 2Opt(R).

As a consequence, the number of comparisons performed by GreedyMerge-
Sort during the merge stage is at most 2Opt(R) + |R| − 1.
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44

31

18

9
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15
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9
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18

6
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12

7

34

5

Fig. 2. Merge trees (showing only run lengths) of HuffmanSort (left), Opt(R) (cen-
ter) and of GreedyMergeSort (right), for runs of lengths (5, 4, 3, 5, 1). Their merge
costs, which are the sum of the internal nodes, are respectively 40, 42 and 43.

In order to pick two consecutive runs with minimal merge cost at each step,
our algorithm needs to keep a list of pairs of runs which is sorted according
to their merge cost. We use the same idea as for HuffmanSort and we store
them in an array A of size n, such that the index of a pair (Ri, Ri+1) in A
is |Ri| + |Ri+1|. Then we can go through A to perform the merges using the
greedy strategy, but we need to keep A updated after each merge. Indeed, when
merging Ri and Ri+1 into a new run R′, we should delete the pairs (Ri−1, Ri)
and (Ri+1, Ri+2) and replace them by new pairs (Ri−1, R

′) and (R′, Ri+2). Since
the added pairs have a higher cost than the deleted ones, they are placed further
away in A. For any pair of runs, we can do this at cost O(1), by keeping pointers
on the previous and next pair of runs in the run decomposition.

Theorem 3. Building a consecutive-merge tree with GreedyMergeSort can
be done using O(n) space and time.

In Fig. 2, we give an example of the different consecutive-merge trees ob-
tained for the same run decomposition, using each of the strategies that have
been discussed so far. Proposition 1 below states the complexity of these three
algorithms.

Proposition 1. The number of comparisons performed during the merge stage
of HuffmanSort, the optimal consecutive merging and GreedyMergeSort
is O(n logm), where n is the length of the sequence and m is the number of runs.

5 TimSort-like strategies

As mentioned above, TimSort is a recent sorting algorithm for arrays that fol-
lows our generic run-merge template. As in the previous section, only consecutive
merges are performed in order to avoid additional costs. It contains many heuris-
tics that will not be discussed here. In the sequel, we will therefore describe a
simplified version of TimSort, called SimplifiedTimSort, which focus on the
main theoretical ideas.

Before describing SimplifiedTimSort in details, we propose a framework
to design a whole class of merge strategies based on the use of a stack, which we
call stack strategies. SimplifiedTimSort will be an example of such a strategy.
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Algorithm 2: Generic Stack Run-Merge Sort for the strategy S

1 R← run decomposition of S
2 X ← ∅
3 while R 6= ∅ do
4 R← pop(R)
5 Append R to X
6 while X violates at least one rule of S do
7 (ρ, µ)← first pair such that ρ is not satisfied
8 Apply µ to X /* ρ is activated */

9 while |X | ≥ 1 do
10 R,R′ ← pop(X ), pop(X )
11 Append merge(R,R′) to X
12 return the unique element of X

5.1 Stack strategies

Let R = (R1, . . . , Rm) be a run decomposition. A stack strategy relies on a
stack X of runs that is initially empty. During the first stage, at each step, a
run is extracted from R and added to the stack. The stack is then updated, by
merging runs, in order to assure that some conditions on the top of the stack
are satisfied. These conditions and the way runs are merged when they are not
satisfied define the strategy. The second stage occurs when there is no more run
in R: the runs in X are then merged pairwise until only one remains.

A rule of degree k ≥ 2 is a property of a stack X that involves the k topmost
elements of X . By convention, the rule is always satisfied when there are less
than k elements in X . A merge strategy of degree k is the process of merging
some of the k topmost runs in a stack X ; at least one merge must be performed.
A stack strategy of degree k consists of a nonempty sequence of s pairs (ρi, µi),
where ρi is a rule of degree at most k and µi is a merge strategy of degree
at most k. The stack-merge algorithm associated with the stack strategy S =
〈(ρ1, µ1), . . . , (ρs, µs)〉 is depicted in Algorithm 2. The order of the rules matters:
when one or several rules are violated, the merge strategy associated with the
first one, and only this one, is performed. This rule is said to be activated.

Note that such an algorithm always halts, as the inner loop reduces the
number of runs in X : at some point the stack X contains less elements than the
minimal degree of the rules, which are then all satisfied.

Before discussing this family of algorithms further, we provide two examples:
SimplifiedTimSort and a new algorithm we called α-StackSort.

5.2 SimplifiedTimSort and α-StackSort

SimplifiedTimSort can be seen as a stack-merge algorithm of degree 4. It is
not the way it is usually written, but it is strictly equivalent to the following
merge strategy, for a stack that ends with the runs W , X, Y and Z:
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(1, 7)

•
•

(1, 7)

(6, 5, 2)

•
ρ4 violated

(1, 2, 5, 6, 7)

•
•

(1, 2, 5, 6, 7)

(3, 4, 10)

•

(1, 2, 5, 6, 7)

(3, 4, 10)

(8, 9)

ρ2 violated

(1, 2, 5, 6, 7)

(3, 4, 8, 9, 10)

•
ρ4 violated

(1, . . . , 10)

•
•

Fig. 3. The stack configurations during the execution of SimplifiedTimSort for the
sequence S = (1, 7, 6, 5, 2, 3, 4, 10, 8, 9).

– ρ1 := |X| ≥ |Z| and µ1 consists in merging X and Y ;
– ρ2 := |X| > |Y |+ |Z| and µ2 consists in merging Y and Z;
– ρ3 := |W | > |X|+ |Y | and µ3 consists in merging Y and Z;
– ρ4 := |Y | > |Z| and µ4 consists in merging Y and Z;

An example of the successive states of the stack is given in Fig 3. Remark
that in the original version of TimSort, the third rule was missing. This lead to
some problems; in particular, Lemma 4 did not hold without this rule. This new
rule was proposed in [2], where the problem in the invariant was first identified,
and quickly corrected in Python.8

We propose our own stack-merge algorithm α-StackSort, which is of degree
2. It depends on a fixed parameter α > 1, and consists only in one rule ρ which
is |Y | > α |Z|. If it is violated, µ consists in merging Y and Z. The algorithm
α-StackSort is therefore a very simple stack-merge algorithm.

5.3 Analysis of SimplifiedTimSort and α-StackSort

The rules and merge strategies of both algorithms are designed in order to ensure
that some global invariants hold throughout the stack. This is the meaning of
the next two lemmas. The part on SimplifiedTimSort was proven in [2].

Lemma 4. Let X = (x1, . . . , x`) be the stack configuration at the beginning of
any iteration of the while loop at line 3 of Algorithm 2.
• For SimplifiedTimSort we have |xi| > |xi+1|+ |xi+2|, for every i ∈ [`− 2].
• For α-StackSort we have |xi| > α |xi+1|, for every i ∈ [`− 1].

As remarked by Tim Peters who designed TimSort, the stack containsO(log n)
runs at any time. This is the same for α-StackSort.

Lemma 5. At any time during the execution of SimplifiedTimSort or α-
StackSort on a sequence of length n, the stack X contains O(log n) runs.

Next theorem is a folklore result for TimSort, announced in the first de-
scription of the algorithm [7]. However, we could not find its proof anywhere in
the literature. The same result holds for α-StackSort. Notice that this is not
a direct consequence of Lemma 5: if we merge the runs as they arrive, the stack
has size O(1) but the running time is O(n2).

Theorem 4. The number of comparisons needed for SimplifiedTimSort and
α-StackSort to sort a sequence of length n is O(n log n).

8 https://hg.python.org/cpython/file/default/Objects/listobject.c
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Sketch of proof. To analyze the running time of α-StackSort, we rely on a
classical technique used for amortized complexity. We define a quantity C that
is set to 0 at the beginning of the algorithm. This quantity is increased by
(1 +α) |X | |R| whenever a new run R is added in the stack X . By Lemma 5, this
is at most (1 +α) log n |R|. Hence, the sum of all increases of C is bounded from
above by (1 + α) log n

∑
R∈R |R| = O(n log n). The quantity C is decreased

whenever a merge is performed, by an amount equal to this merge cost. We
can readily prove that C is always non-negative. Hence, the total number of
comparisons performed in this part is O(n log n).

The last while loop also performs at most O(n log n) comparisons, as the
stack is of length O(log n): by Lemma 5, every run is involved in at most O(log n)
merges during this loop.

If we want to proceed for SimplifiedTimSort as for α-StackSort, there
are some technical difficulties inherent to the structure of the rules in Sim-
plifiedTimSort. Again, define a variable C initialized with 0 and which is
increased by 3iR whenever a run R arrive at position i on the stack. We still
remove an amount equal to this merge cost whenever two runs are merged. How-
ever, we cannot directly guarantee that C is always positive; for some cases we
need to consider several consecutive merges made by the algorithm in order to
conclude. Hence, we unroll the main while loop as needed, to obtain an algorithm
equivalent to the main while loop, but that is much bigger. On this redundant
code we can prove that C remains nonnegative. ut

5.4 About TimSort and its variants

There are several reasons why TimSort has been adopted as a standard sorting
algorithm in many different languages. An important difference between Tim-
Sort and other similar algorithms such as NaturalMergeSort or Greedy-
MergeSort is the number of cache misses done during their execution. Indeed,
in TimSort, runs are computed on the fly, and merges most often apply on
the last few computed runs. Hopefully, they are still in the cache when they are
needed. Analyzing cache misses is beyond the scope of this article, but we can
notice that stack strategies of small degree like α-StackSort have the same
kind of behavior, and should be cache-efficient too.

An interesting feature of α-StackSort is that the value of α can be chosen
to improve its efficiency, provided we have some knowledge on the distribution of
inputs. It is even possible to change the value of α dynamically, if the algorithm
finds a better value in view of the first elements. The stack invariant can be
violated if α is increased, but this does not affect the complexity of the algorithm.

Also observe that after designing a stack strategy, it is straightforward to
take benefit from all the heuristics implemented in TimSort, as we just change
the part where the rules are checked and the appropriate merges are performed.
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n k Huffman opt. consec. GreedyMS TimSort α-Stack

10,000 - 121,862.02 - 124,292.43 129,271.65 129,178.79

10,000 10 28,277.40 30,013.87 30,284.15 33,581.81 33,479.05

10,000 100 60,852.36 62,103.52 63,200.42 68251.65 67,154.79

100,000 100 607,144.56 619,912.79 630,031.46 678,449.70 669,692.66

Fig. 4. Average number of comparisons performed by merge sorting algorithms (α =
1.5, Line 1: random permutations of size n, Lines 2-4: sequences of size n with k runs).

6 Experiments and open questions

We ran a few experiments to measure empirically the differences between our
various algorithms. Uniform random permutations of size 10, 000 were used for
the first experiments, while we used sequences of exactly k runs in the second
ones. The results, given in Fig. 4, indicates the cost c of the different merging
strategies. We also checked on random permutations that the α-StackSort
strategy performs as well as the implementation of TimSort in Java.9

The first open question we would like to mention is whether the the ratio
of approximation of Theorem 2 can be improved. We suspect that it decreases
with the number of runs. It is also natural to ask if the number of comparisons
performed by TimSort is in O(n logm) where m is the number of runs. This is
the case for MergeSort, HuffmanSort and GreedyMergeSort. It can be
proved that it does not hold for α-StackSort, even though it should be easy
to design a O(n logm) version of this algorithm.
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Appendix A: Algorithms

Auxiliary functions:

– nextRun(A, i) is a function that takes an array A containing lists of runs, an index i and returns the
position j of the next run in A (either i if A[i] is not empty or the next j > i such that A[j] is not
empty).

– extractMinRun(A,B) is a function that takes any two data structures that contain runs and returns
the smallest run in the union of A and B.

Algorithm 3: HuffmanSort (S, n)

1 smallRuns, largeRuns← countRuns(S, λn) /* λn ∈]0, n] */

2 i← 0
3 Q← ∅

4 while smallRuns is not empty do
5 i← nextRun(smallRuns, i)
6 R1 ← extractMinRun(smallRuns[i], Q)
7 if smallRuns is empty then
8 add R1 to largeRuns /* handling the last run */

9 else
10 i← nextRun(smallRuns, i)
11 R2 ← extractMinRun(smallRuns[i], Q)
12 M ←merge(R1, R2)
13 add M to Q

/* the runs in Q are sorted by design */

14 sort the runs in largeRuns

15 while |Q| 6= 1 or largeRuns is not empty do
16 R1 ← extractMinRun(largeRuns,Q)
17 R2 ← extractMinRun(largeRuns,Q)
18 M ←merge(R1, R2)
19 add M to Q

20 S ← pop(Q)
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Algorithm 4: GreedyMergeSort (S, n)

1 R = (R1, R2, . . . , Rm)← run decomposition of S
2 A← an array of size n filled with empty doubly linked lists
3 prev ← null
4 while |R| 6= 2 do
5 R1 ← pop(R)
6 R2 ← first(R) /* R2 is not removed from R */

7 V ← (left = R1, right = R2, prev = prev, next = null)
8 if prev 6= null then
9 prev.next← a pointer on V

10 prev ← a pointer on V
11 add V to A[|R1|+ |R2|]
12 i← 0
13 while i 6= n do
14 MergeMinAndUpdate(A, i)

/* this algorith works in place: S is sorted */

15 MergeMinAndUpdate (A, i (

16 i← nextRuns(A, i)
17 V ← pop(A[i])
18 R←merge(V.left, V.right)
19 V1 ← (V.prev.left, R, V.prev.prev, null)
20 V2 ← (R, V.next.r, V1, V.next.next)
21 V1.next← a pointer on V2

22 add V1 to A[|V1.left|+ |V1.right|]
23 add V2 to A[|V2.left|+ |V2.right|]
24 delete V.prev and V.next

Algorithm 5: merge collapse(stack ms), the main loop of TimSort for Python (in C)

while (n > 1) {

n = size(ms) - 2;

if ((n > 0 && p[n-1]. len <= p[n].len + p[n+1]. len) ||

(n > 1 && p[n-2]. len <= p[n-1]. len + p[n].len)) {

if (p[n-1]. len < p[n+1]. len)

--n;

if (merge_at(ms , n) < 0)

return -1;

}

else

if (p[n].len <= p[n+1]. len) {

if (merge_at(ms, n) < 0)

return -1;

}

else break;

}

return 0;
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Appendix B: Proofs

I Proof of Lemma 1

Every merge of R and R′ in T costs at most one less than c(R,R′). Since there are exactly |R| − 1 merges
in total, we directly get that there are at most c(T ) − |R| + 1 comparisons performed during the merging
phase for the strategy given by T .

By structural induction. If T is reduced to a single node R, then R = (R) and hT (R) = 0 = c(R).

Assume now that the property hold for A and A′ and that T =
merge(R,R′)

/\
A A′

, where R and R′ are the runs at

the roots of A and A′, respectively. By definition of c, we have c (T ) = c(R,R′) + c(A) + c(A′). Hence, by
induction hypothesis,

c (T ) = c(R,R′) +
∑

X leaf of A

hA(X) |X|+
∑

X leaf of A′

hA′(X) |X|.

But c(R,R′) is the sum of the lengths of the runs ofR, and thus c(R,R′) =
∑
X leaf of A |X|+

∑
X leaf of A′ |X|.

Therefore,

c (T ) =
∑

X leaf of A

(1 + hA(X)) |X|+
∑

X leaf of A′

(1 + hA′(X)) |X|.

This conclude the proof, as for a leaf X of A (resp. of A′), we have 1 +hA(X) = hT (X) (resp. 1 +hA′(X) =
hT (X)). ut

I Proof of Lemma 3

Let ` ≥ 2. For any i ∈ [n − ` + 1], let Si be the set of permutations σ of [n] such that σ is monotonic on
[i, i + ` − 1]. If σ is taken uniformly at random, then the ordering of (σ(i), . . . , σ(i + 1)) is also a uniform
order on a set of size `. Hence it is monotonic with probability 2

`! .
If there is a run of length greater than ` in the run decomposition of NaturalMergeSort or TimSort,

then σ belongs to a Si for some i ∈ [i, i+ `− 1]. By the union bound, this happens with probability at most
2n
`! . Taking ` = dlog ne concludes the proof by Stirling formula. ut

I Proof of Theorem 2

For any positive integer i < m, we denote by

R[i] = (R1, . . . , Ri−1, Ri +Ri+1, Ri+2, . . . , Rm),

the sequence of length m− 1 obtained after replacing Ri and Ri+1 by Ri +Ri+1. We say that (Ri, Ri+1) is
a minimal pair of R if for all positive j < m, Rj +Rj+1 ≥ Ri +Ri+1.

We establish several lemmas, whose proofs are quite similar. Nonetheless, we think it is clearer to do this
way than to try to put everything in one lemma.

In the sequel, if A is a merging tree, let ‖A‖ be the sum of the lengths of its runs (i.e. the lengths of the
leaves of A).

First observe that the first merge made by GreedyMergeSort, which involves Ri and Ri+1, can be
either a choice that belongs to an optimal strategy or not. In the former case, Opt(R) = Opt(R[i]) +Ri +
Ri+1. In the latter case, Opt(R) < Opt(R[i])+Ri+Ri+1, as merging Ri and Ri+1 is not an optimal choice.

Lemma 6. Let R = (R1, . . . , Rm) be a sequence of runs and let (Ri, Ri+1) be a minimal pair of R. If
Opt(R) < Opt(R[i]) + Ri + Ri+1, then in every optimal merging tree T of R, Ri is the right child of its
father and Ri+1 is the left child of its father.
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Proof. By symmetry we only need to prove that Ri is the right child of its father in T . Assume by contra-
diction that it is the left child of its father x. The right child A of x cannot be a tree reduced to Ri+1, as
by hypothesis, Ri and Ri+1 are not siblings in an optimal tree. Hence, Ri+1 is the left child of a node y of

A. Let B be its associated right subtree: we have
x
/\

Ri A
and

y
/ \

Ri+1 B
, and the height hT (x) of x in T is smaller

than the height hT (y) of y. Let T ′ be the tree obtained by changing the node Ri into
•

/ \
Ri Ri+1

and y into B.

The tree T ′ is still a merging tree of R. By construction of T ′ and by Lemma 1, we have

c(T ′)− c(T ) = |Ri|+
(
hT (x)− hT (y) + 1

)
|Ri+1| − ‖B‖.

Since hT (x)− hT (y) + 1 ≤ 0, then c(T ′)− c(T ) ≤ |Ri| − ‖B‖. But B contains Ri+2 as it is not empty, and
|Ri+2| ≥ |Ri| by minimality of (Ri, Ri+1). Hence ‖B‖ ≥ |Ri| and therefore c(T ′) ≤ c(T ). Thus T ′ is optimal,
which is a contradiction with the hypothesis, since Ri and Ri+1 are siblings in T ′. ut

Lemma 7. Let R = (R1, . . . , Rm) be a sequence of runs and let (Ri, Ri+1) be a minimal pair of R. Assume
that Opt(R) < Opt(R[i]) +Ri +Ri+1. Then Ri and Ri+1 have same height in any optimal merging tree.

Proof. Let T be any optimal tree for R. By Lemma 6, Ri is the right child of its father x and Ri+1 is the

left child of its father y. Let A be the left subtree of x and let B be the right subtree of y: we have
x
/\
A Ri

and
y
/ \

Ri+1 B
in T . Let also hT (x) and hT (y) be the respective heights of x and y in T . Assume by contradiction

that hT (x) 6= hT (y), and assume by symmetry that hT (x) > hT (y). Consider the tree T ′ obtained from T
by changing the node Ri into

•
/ \

Ri Ri+1
and y into B. The tree T ′ is still a merging tree of R. Moreover, by

construction of T ′, we have

c(T ′)− c(T ) = |Ri|+ (hT (x)− hT (y) + 1) |Ri+1| − ‖B‖.

This is not possible, for the same reasons as in the proof of Lemma 6. ut

Lemma 8. Let R = (R1, . . . , Rm) be a sequence of runs and let (Ri, Ri+1) be a minimal pair of R. The
following inequality holds:

Opt(R) ≥ Opt(R[i]) +
|Ri|+ |Ri+1|

2
. (1)

Proof. If there is an optimal strategy for which Ri and Ri+1 are siblings, then its cost is Opt(R) =
Opt(R[i]) + |Ri|+ |Ri+1|, and therefore Equation (1) holds trivially in this case.

We now prove that Equation (1) also holds when there are no optimal strategy for which Ri and Ri+1

are siblings. In this case, let T be any optimal merging tree for R. By Lemma 6 and Lemma 7, Ri is the

right child of its father x, Ri+1 is the left child of its father y, and hT (x) = hT (y): we have
x
/\
A Ri

and
y
/ \

Ri+1 B
in T . Assume by symmetry that |Ri| ≥ |Ri+1|. Consider the tree T ′ obtained from T by changing the node

Ri into
•

/ \
Ri Ri+1

and y into B. The tree T ′ is still a merging tree of R. Moreover, by construction of T ′ and

Lemma 1, we have

c(T ′)− c(T ) = |Ri|+ (hT (x)− hT (y) + 1) |Ri+1| − ‖B‖ = |Ri|+ |Ri+1| − ‖B‖.

But T ′ is a merging tree for R, in which Ri and Ri+1 are siblings. We therefore have c(T ′) ≥ Opt(R[i]) +
|Ri|+ |Ri+1|. Thus,

c(T ) + |Ri|+ |Ri+1| − ‖B‖ ≥ Opt(R[i]) + |Ri|+ |Ri+1|.
Hence, as c(T ) = Opt(R), we have Opt(R) ≥ Opt(R[i]) + ‖B‖. We assumed that |Ri| ≥ |Ri+1|. Moreover,
the minimality of (Ri, Ri+1) ensures that |Ri| ≤ |Ri+2|. Since Ri+2 is a leaf of B, this yields

‖B‖ ≥ |Ri+2| ≥ max
(
|Ri|, |Ri+1|

)
≥ |Ri|+ |Ri+1|

2
,
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which concludes the proof. ut

The proof of Theorem 2 is a direct consequence of Lemma 8. Indeed if we follow GreedyMergeSort,

we start with R(0) = R then select i1 ∈ [m − 1] such that (R
(0)
i1
, R

(0)
i1+1) is a minimal pair and merge these

two runs to produce R(1) = R(0)
[i1]

. And we repeat this construction until we reach R(m−1) which contains

exactly one run: at step k < m, we select a minimal pair (R
(k−1)
ik

, R
(k−1)
ik+1 ) from R(k−1), and build the new

sequence of runs R(k) = R(k−1)
[ik]

. The cost of each step is |R(k−1)
ik

|+ |R(k−1)
ik+1 |.

Let (i1, . . . , im−1) be the indices chosen during the execution of GreedyMergeSort in the description
above. By Lemma 8 we have

Opt(R(0)) ≥ Opt(R(1)) +
|R(0)
i1
|+ |R(0)

i1+1|
2

≥ Opt(R(2)) +
|R(1)
i2
|+ |R(1)

i2+1|
2

+
|R(0)
i1
|+ |R(0)

i1+1|
2

≥ . . .

≥ 1

2

m−1∑
k=1

(
|R(k−1)
ik

|+ |R(k−1)
ik+1 |

)
.

This concludes the proof as by construction,
∑m−1
k=1

(
|R(k−1)
ik

|+ |R(k−1)
ik+1 |

)
is exactly the cost of the merging

tree associated with GreedyMergeSort. ut

I Proof of Proposition 1

First, since GreedyMergeSort always performs at least as many comparisons as the other two algorithms,
it is sufficient to prove the statement for GreedyMergeSort.

Let R = (R1, . . . , Rm) be a run decomposition of S with m ≥ 2 (if m = 1, no comparison is performed,
hence the result). Consider the set E(R) = {(R2i+1, R2i+2) : 0 ≤ i ≤ bm2 c − 1}. Since the run lengths sum
to n, if we sum the length of all pairs of E(R), the result is at most n. Hence, the pair of minimal sum
(R2j+1, R2j+2) of E is such that

|R2j+1|+ |R2j+2| ≤
n

bm2 c
≤ 2n

m− 1
,

since bm2 c ≥
m−1
2 . Hence, if (Ri, Ri+1) is a minimal pair of R, then

|Ri|+ |Ri+1| ≤ |R2j+1|+ |R2j+2| ≤
2n

m− 1
.

This yields that when performing the first step of GreedyMergeSort, we go from R to R[i] at a cost

bounded from above by 2n
m−1 . Observe that the resulting sequence of runs is made of m − 1 runs whose

lengths sum to n. Hence, a direct induction yields that the total number of comparisons performed by
GreedyMergeSort is bounded from above by

2n

m− 1
+

2n

m− 2
+ · · ·+ 2n

1
= 2n

m−1∑
k=1

1

k
= O(n logm).

This concludes the proof. ut
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Algorithm 6: merge collapse translated

1 R← run decomposition of S
2 X ← ∅
3 while R 6= ∅ do
4 R← pop(R)
5 Append R to X
6 while True do
7 if |X| ≤ |Y |+ |Z| or |W | ≤ |X|+ |Y | then
8 if |X| < |Z| then Merge X and Y
9 else Merge Y and Z

10 else if |Y | ≤ |Z| then
11 Merge Y and Z

12 else
13 break

I Proof that the strategy of Section 5.2 is equivalent to SimplifiedTimSort

Algorithm 5 is the code found in Python for the main loop of TimSort. We “translate” it into pseudo-code,
using the convention that X = (x1, · · · , x`−4,W,X, Y, Z). Hence W , X, Y , and Z are the four topmost
elements of the stack, Z being on top. The result is given in Algorithm 6.

Important: whenever a predicate in a if conditional uses a variable that is not available because the stack
is too small, for instance |W | ≤ |X|+ |Y | for a stack of size 3, we consider that this predicate is false. This
convention is useful to avoid many tests on the length of the stack.

As Algorithm 6 is not exactly in the form of pairs (rules,merge), we rewrite the algorithm as depicted in
Algorithm 7. The rules and merge strategies are, in order:

ρ1 := |X| ≥ |Z| µ1 = merge(X,Y )
ρ2 := |X| > |Y |+ |Z| µ2 = merge(Y, Z)
ρ3 := |W | > |X|+ |Y | µ3 = merge(Y, Z)
ρ4 := |Y | > |Z| µ4 = merge(Y, Z)

Lemma 9. Algorithm 6 and Algorithm 7 are equivalent: for given sequence of runs R, they are both char-
acterized by the same merge tree.

Proof. Straightforward. Just check that the conditions that leads to the merge of X and Y , Y and Z or no
merge are equivalent. ut

I Proof of Lemma 4

As already stated, the case of SimplifiedTimSort was proved in [7].

Let us consider α-StackSort. The proof is done by induction on the iteration t of the while loop. The
result holds trivially for t = 1, since at the first iteration, the stack is empty. Assume it holds at iteration t
and consider iteration t+ 1. During the (t+ 1)-th iteration, we append a new run R at the end of the stack.
If |x`| > α |R| then we are done. Otherwise, the inner while loop merge the two rightmost runs Y and Z
until they verify |Y | > α|Z|. As the condition is satisfied everywhere before by induction hypothesis, this
ensures that the condition is satisfied everywhere. ut
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Algorithm 7: SimplifiedTimSort (S, n)

1 R← run decomposition of S
2 X ← ∅
3 while R 6= ∅ do
4 R← pop(R)
5 Append R to X
6 while X violates at least one rule of S do
7 if |X| < |Z| then /* ρ1 is activated */
8 Merge X and Y

9 else if |X| ≤ |Y |+ |Z| then /* ρ2 is activated */
10 Merge Y and Z

11 else if |W | ≤ |X|+ |Y | then /* ρ3 is activated */
12 Merge Y and Z

13 else if |Y | ≤ |Z| then /* ρ4 is activated */
14 Merge Y and Z

I Proof of Lemma 5

It is sufficient to prove the lemma at the beginning of each iteration of the while loop of line 3 in Algorithm 2,
as the stack can have at most one more element, when it is inserted at line 5.

For SimplifiedTimSort, Lemma 4 ensures that if the stack is X = (x1, · · · , x`), then |xi| > |xi+1|+|xi+2|
for every i ∈ [`− 2]. Moreover |x`−1| > |x`|. Hence, by direct induction, for every i ∈ [`], |x`−i+1| ≥ |x`|Fi,
where Fi is the i-th Fibonacci number. As Fn ≥ cφn for n ≥ 1 and some well chosen c, we have

∑̀
i=1

|xi| ≥ |x`|
∑̀
i=1

cφi ≥ c φ
` − 1

φ− 1
= Ω(φ`).

Since the sum of the run lengths is at most n, we get that ` = O(log n).
The proof for α-StackSort is similar, α playing the role of φ. ut

I Proof of Theorem 4 for α-StackSort

We start with α-StackSort. The run decomposition uses only n−1 comparisons. To analyze the complexity
of the while loop of line 3, we rely on a classical technique used for amortized complexity and rewrite this
part of the algorithm as in Algorithm 8. In blue have been added some computation on a variable C. Observe
first that C is decreased at line 9 every time a merge is done, by an amount equal to the cost of this merge.

We now prove that after each blue instruction (Line 2, Line 6 and Line 9), we have, if the current stack
is X = (x1, . . . , x`),

C ≥
∑̀
i=1

(1 + α)i|xi| (2)

We prove this property by induction: It clearly holds after Line 2. Observe that any time the stack is altered,
C is updated immediately after. Hence we just have to prove that if the property holds before an alteration,
then it still holds when C is updated just after:

– For Lines 5-6: if X = (x1, . . . , x`) before Line 5, then X = (x1, . . . , x`, R) after Line 6. By induction

hypothesis C ≥
∑`
i=1(1+α)i|xi| before Line 5, and it is increased by (1+α)(`+1)|R| at Line 6. Therefore

the property still holds after Line 6.
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Algorithm 8: Main loop of α-StackSort

1 X ← ∅
2 C ← 0
3 while R 6= ∅ do
4 R← pop(R)
5 Append R to X
6 C ← C + (1 + α) |X | |R| /* used for the proof only */
7 while X violates the rule |Y | ≥ α |Z| do
8 Merge Y and Z
9 C ← C − (|Y |+ |Z| − 1) /* used for the proof only */

– For Lines 8-9: if X = (x1, . . . , x`−2, Y, Z) before Line 8, then after Line 9 the stack is

X = (x1, . . . , x`−2,merge(Y,Z)).

By induction hypothesis, before Line 8 we have

C ≥
`−2∑
i=1

(1 + α)i|xi|+ (1 + α)(`− 1)|Y |+ (1 + α)`|Z|

≥
`−2∑
i=1

(1 + α)i|xi|+ (1 + α)(`− 1)(|Y |+ |Z|) + (1 + α)|Z|.

But we are in the case where the rule is activated, hence |Y | < α |Z|. Thus (1 + α)|Z| > |Y | + |Z| >
|Y |+ |Z| − 1. This yields

C − (|Y |+ |Z| − 1) ≥
`−2∑
i=1

(1 + α)i|xi|+ (1 + α)(`− 1)(|Y |+ |Z|).

Hence, the property still holds after Line 9.

The quantity C is increased on Line 6 only. By Lemma 5, when a new run R is added in X , C is increased
by at most K log n |R|, for some positive constant K. Hence, the sum of all increases of C is bounded from
above by K log n

∑
R∈R |R| = O(n log n). The quantity C is decreased whenever a merge is performed, by

an amount equal to this merge cost. As we just proved that Equation (2) always holds after an update of C,
C is non-negative at the end of this part of the algorithm. Hence, the total number of comparisons performed
in this part is O(n log n).

The last while loop of Algorithm 2 also performs at most O(n log n) comparisons, as the stack is of length
O(log n): every run is involved in at most O(log n) merges during this loop.

I Proof of Theorem 4 for SimplifiedTimSort

We want to proceed for SimplifiedTimSort as for α-StackSort, but there are some technical difficulties
inherent to the structure of the rules in SimplifiedTimSort. We still define a variable C initialized with 0
and which is increased by 3iR whenever a run R arrive at position i on the stack. We still remove |R|+|R′|−1
from C whenever R and R′ are merged. However, we cannot directly guarantee that C is always positive;
for some cases we need to consider several consecutive merges made by the algorithm in order to conclude.
Hence, we will unroll the main while loop as needed, to obtain an algorithm equivalent to the main while
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loop, but that is bigger. On this redundant code we then prove that at the end of any iteration, if the stack
is X = (x1, . . . , x`) then

C ≥
∑̀
i=1

3i|xi|. (3)

We first establish three lemmas, which give hints of what happens, in certain cases, during two consecutive
iterations of the while loop.

Lemma 10. If rule ρ2 is activated, then rule ρ4 is violated at the next iteration of the while loop.

Proof. If rule ρ2 is activated, then the runs Y and Z are merged. The new stack is X ′ = (x1, . . . , x`−3, Y
′, Z ′)

with Y ′ = X and Z ′ = merge(Y,Z). Since ρ2 is violated, we have |X| ≤ |Y |+ |Z|, thus |Y ′| ≤ |Z ′| which is
the negation of ρ4. ut

Lemma 11. If rule ρ3 is activated, then the rule ρ2 is violated at the next iteration.

Proof. If rule ρ3 is activated, then the runs Y and Z are merged. The new stack is X ′ = (x1, . . . , x`−4, X
′, Y ′, Z ′)

with X ′ = W , Y ′ = X, and Z ′ = merge(Y,Z). Since ρ3 is violated, we have |W | ≤ |X|+|Y | ≤ |X|+|Y |+|Z|.
Thus |X ′| ≤ |Y ′|+ |Z ′|, and therefore ρ2 is violated at the next iteration. ut

Using this lemmas, we rewrite Algorithm 7 by unrolling some loops. More precisely, we obtained Algo-
rithm 9 page 23 the following way:

– if ρ1 is activated, then we merge X and Y and we are done.
– if ρ2 is activated, then we merge Y and Z: the stack is now X ′ = (x1, . . . , x`−4,W,X,merge(Y,Z)). We

unroll the loop once since Lemma 10 ensures that another rule is violated after the merge. We check
whether ρ1 is violated, if not we are sure that either ρ2, ρ3 or ρ4 is not satisfied; in every of these cases X
and merge(Y,Z) are merged. We just have to be careful to use X ′ for writing the nested conditions.
For instance the nested condition for ρ1 Line 13 is |X ′| < |Z ′|, for X ′ = (. . . , X ′, Y ′, Z ′), which rewrites
|W | < |Y |+ |Z|.

– if ρ3 is activated, then we merge Y and Z: the stack is now X ′ = (x1, . . . , x`−5, V,W,X,merge(Y, Z)).
By Lemma 11, we know that ρ2 is violated on next iteration. Hence, we unroll once. The nested test
for ρ1 is done as previously. If ρ1 is satisfied we know that ρ2 is activated and then the stack is now
X ′′ = (x1, . . . , x`−5, V,W,merge(X,Y, Z)). We unroll once more (that is, three nested if), using the
properties ensured when ρ2 is activated, as before.

– if ρ4 is activated, then we merge Y and Z and do not unroll the loop.

In this complicated version of SimplifiedTimSort, which is strictly equivalent to SimplifiedTimSort,
we removed from C the costs of the merges that have been performed. What remains to prove, as we did for
α-StackSort, is that Equation (3) holds after each update of C. This is done by induction. As C is always
decreased just before ending an iteration of the main loop, we assume the property holds at the beginning
of the while loop, and verify that it still holds when C is updated. There are seven cases, which we detail
in the following.

For a given stack configuration X = (x1, . . . , x`), let f(X ) =
∑
i∈[`] 3i|xi|. By induction hypothesis, we

assume that at the beginning of an iteration of the main loop, C ≥ f(X ). We now check for the different
cases, which is tedious but straightforward. merge(X,Y, Z) denote the result of merging X, Y and Z.

– Line 10: the stack goes from X = (x1, . . . , x`−3, X, Y, Z) to X ′ = (x1, . . . , x`−3,merge(X,Y ), Z). Hence
f(X )− f(X ′) = 3|Y |+ 3|Z|. As rule ρ1 is violated in this case, we have |X| < |Z|. Thus, the cost paid
at Line 10 satisfies |X|+ |Y | − 1 < |Y |+ |Z| < 3|Y |+ 3|Z|. Hence, the property still holds after Line 10.

– Line 15: X = (x1, . . . , x`−4,W,X, Y, Z) becomes X ′ = (x1, . . . , x`−4,merge(W,X),merge(Y, Z)).
Hence f(X ) − f(X ′) = 3|X| + 3|Y | + 6|Z|. As |W | < |Y | + |Z| in this case, the cost paid at Line 15
satisfies |W | + |X| + |Y | + |Z| − 2 < |X| + 2|Y | + 2|Z| < 3|X| + 3|Y | + 6|Z|. Hence, the property still
holds after Line 15.
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– Line 18: X = (x1, . . . , x`−4,W,X, Y, Z) becomes X ′ = (x1, . . . , x`−4,W,merge(X,Y, Z)). Hence f(X )−
f(X ′) = 3|Y |+6|Z|. As |X| ≤ |Y |+|Z| in this case, the cost paid at Line 18 satisfies |X|+2|Y |+2|Z|−2 <
3|Y |+ 3|Z| < 3|Y |+ 6|Z|. Hence, the property still holds after Line 18.

– Line 23: This is exactly the same as for Line 15.
– Line 28: X = (x1, . . . , x`−5, V,W,X, Y, Z) becomes X ′ = (x1, . . . , x`−5,merge(V,W ),merge(X,Y, Z)).

Hence f(X )− f(X ′) = 3|W |+ 3|X|+ 6|Y |+ 9|Z|. As |V | < |X|+ |Y |+ |Z| in this case, the cost paid at
Line 28 satisfies |V |+ |W |+ |X|+2|Y |+2|Z|−3 < |W |+2|X|+3|Y |+3|Z| < 3|W |+3|X|+6|Y |+9|Z|.
Hence, the property still holds after Line 28.

– Line 31: X = (x1, . . . , x`−5, V,W,X, Y, Z) becomes X ′ = (x1, . . . , x`−5, V,merge(W,X, Y, Z)). Hence
f(X ) − f(X ′) = 3|X| + 6|Y | + 9|Z|. As |W | ≤ |X| + |Y | in this case, the cost paid at Line 31 satisfies
|W |+ 2|X|+ 3|Y |+ 3|Z| − 3 < 3|X|+ 4|Y |+ 3|Z| < 3|X|+ 6|Y |+ 9|Z|. Hence, the property still holds
after Line 31.

– Line 34: X = (x1, . . . , x`−2, Y, Z) becomes X ′ = (x1, . . . , x`−2,merge(Y, Z)). Hence f(X ) − f(X ′) =
3|Z|. As |Y | ≤ |Z| in this case, the cost paid at Line 34 satisfies |Y |+ |Z| − 1 < 2|Z| < 3|Z|. Hence, the
property still holds after Line 34.

We conclude as for α-StackSort: Equation (3) ensures that C ≥ 0 when SimplifiedTimSort halts.
Moreover, the sum of all increases of C is O(n log n) and the number of comparisons is at most the sum of
all decreases of C. Also, as for α-StackSort, the last stage of the algorithm where the remaining runs are
merged, is O(n log n). ut
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Algorithm 9: Main loop of unrolled-SimplifiedTimSort

1 X ← ∅
2 C ← 0
3 while R 6= ∅ do
4 R← pop(R)
5 Append R to X
6 C ← C + 3 |X | |R|
7 while X violates at least one rule of S do
8 if |X| < |Z| then /* ρ1 is activated */
9 Merge X and Y

10 C ← C − (|X|+ |Y | − 1)

11 else if |X| ≤ |Y |+ |Z| then /* ρ2 is activated */
12 Merge Y and Z
13 if |W | < |Y |+ |Z| then /* ρ1 is activated */
14 Merge W and X
15 C ← C − (|W |+ |X|+ |Y |+ |Z| − 2)

16 else /* ρ2, ρ3 or ρ4 is activated */
17 Merge X and merge(Y,Z)
18 C ← C − (|X|+ 2|Y |+ 2|Z| − 2)

19 else if |W | ≤ |X|+ |Y | then /* ρ3 is activated */
20 Merge Y and Z
21 if |W | < |Y |+ |Z| then /* ρ1 is activated */
22 Merge W and X
23 C ← C − (|W |+ |X|+ |Y |+ |Z| − 2)

24 else /* ρ2 is activated */
25 Merge X and merge(Y,Z)
26 if |V | < |X|+ |Y |+ |Z| then /* ρ1 is activated */
27 Merge V and W
28 C ← C − (|V |+ |W |+ |X|+ 2|Y |+ 2|Z| − 3)

29 else /* ρ2, ρ3 or ρ4 is activated */
30 Merge W and merge(X,merge(Y,Z))
31 C ← C − (|W |+ 2|X|+ 3|Y |+ 3|Z| − 3)

32 else if |Y | ≤ |Z| then /* ρ4 is activated */
33 Merge Y and Z
34 C ← C − (|Y |+ |Z| − 1)
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